istitut pendidikan guru

32
1.0 Maksud Tesalasi Perkataan tesalasi berasal dari perkataan Bahasa Inggeris ”Tesselation”. Namun menurut MathForum, perkataan ” tessellate berasal dari bahasa Yunani, Tesseres yang membawa maksud “empat” dalam Bahasa Inggeris. Terdapat banyak bentuk tesalasi dalam kehidupan. Contohnya corak pada kain batik, jubin, sarang lebah dan sebagainya. Teselasi bermaksud penyusunan suatu corak secara berulang untuk memenuhi sebuah bidang. Dalam terminologi geometri, tesalasi adalah corak yang dihasilkan dari susunan poligon yang sekata untuk menutup sebuah permukaan satah tanpa ruang (gap) atau pertindihan. Corak ini biasanya berulang. 1 1

Upload: mu-yien-lee

Post on 26-Apr-2015

828 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Istitut Pendidikan Guru

1.0 Maksud Tesalasi

Perkataan tesalasi  berasal dari perkataan Bahasa Inggeris ”Tesselation”.

Namun menurut MathForum, perkataan ” tessellate ” berasal dari bahasa Yunani,

Tesseres yang membawa maksud “empat” dalam Bahasa Inggeris.

Terdapat banyak bentuk tesalasi dalam kehidupan. Contohnya corak pada

kain batik, jubin, sarang lebah dan sebagainya.

Teselasi bermaksud penyusunan suatu corak secara berulang untuk

memenuhi sebuah bidang.

Dalam terminologi geometri,  tesalasi adalah corak yang dihasilkan dari 

susunan poligon yang sekata untuk menutup sebuah permukaan

satah tanpa ruang (gap) atau pertindihan. Corak ini biasanya berulang. 1

_______________________________________________________

1 http://en.wikipedia.org/wiki/Tesellation

1

Page 2: Istitut Pendidikan Guru

2.0 Jenis-jenis Tesalasi

Terdapat tiga jenis tesalasi, iaitu

2.1 Tesalasi Sekata

2.2 Tesalasi separuh-sekata

2.3 Tesalasi bukan-sekata

2.1 Tesalasi Sekata

Tesalasi sekata merupakan sepenuhnya dari poligon sekata kongruen semua

pertemuan bucu bertemu bucu.

Hanya terdapat tiga tesalasi sekata yang menggunakan :

2.1.1 segitiga sama sisi

2.1.2 segi empat tepat

2.1.3 segi enam.

Berikut adalah contoh tesalasi menggunakan segi tiga dan segi enam.

2

Page 3: Istitut Pendidikan Guru

2.2 Tesalasi separuh sekata

Tesalasi Separuh-sekata dicipta dengan dua atau lebih jenis poligon 

sekata yang dipasangkan bersama-sama sedemikian rupa supaya poligon

 yang sama dalam susunan kitaran yang sama mengelilingi setiap bucu.

Contoh:

3

Page 4: Istitut Pendidikan Guru

2.3 Tesalasi Tidak Sekata

Tesalasi tidak sekata adalah di mana tidak ada halangan dalam susunan

poligon di sekeliling. Terdapat nombor infiniti di dalam teselasi.

Tesalasi boleh direka dengan mempersembahkan satu atau lebih operasi asas,

translasi, putaran dan pantulan pada polyiamond (gabungan segitiga sama sisi).

Translasi – menggerakkan polyiamond di sepanjang satah.

Operasi translasi boleh diaplikasikan kepada semua polyiamond.

Putaran – putar polyiamond di atas satah.

Operasi putaran boleh diaplikasikan kepada semua polyiamond

yang mana tidak mempunyai simetri bulat, contohnya hexiamond

sisi enam, yang mana tidak berubah.

Pantulan – memantulkan polyiamond di atas satah, seperti yang terdapat

pada cermin.

Tesalasi ringkas ialah tesalasi yang hanya menggunakan translasi.

4

translasi

putaran

pantulan

Page 5: Istitut Pendidikan Guru

Tesalasi kompleks ialah tesalasi yang menggunakan satu atau lebih operasi

putaran dan pantulan bersama-sama operasi translasi.

Satu atau lebih polyiamond boleh digabungkan untuk membentuk rajah yang

boleh mentesalasikan satah menggunakan hanya operasi translasi. Rajah ini akan

dipanggil unit sel.

Satu unit sel yang biasa boleh diisi dengan beberapa polyiamond yang

berlainan. Gardner menerangkan bagaimana lima pasang heptiamond boleh

digunakan untuk mengisi unit sel corak tesalasi yang sama.

Contoh:

5

Page 6: Istitut Pendidikan Guru

Tesalasi boleh diklasifikasikan dengan lebih mendalam mengikut bagaimana

unit sel mengandungi satu atau lebih polyiamond yang disusun.

Periodic -Unit sel disusun seperti corak sekata yang berulang-

ulang atau corak rambang.

Aperiodic -Unit sel yang disusun menghasilkan corak yang tidak

sekata atau rambang.

Radial - Susunan yang menghasilkan tesalasi dengan pusat

simetri bulat.2

____________________________________________________________

2 http://mathpuzzle.com/Tessel.htm

6

Page 7: Istitut Pendidikan Guru

3.0 contoh-contoh tesalasi

Terdapat banyak contoh tesalasi dalam dunia yang sebenar. Kita telah belajar

yang tesalasi adalah bentuk poligon yang berulang-ulang tanpa mempunyai ruang

atau seksyen yang bertindih. Contohnya sisik pada ikan, cengkerang kura-kura,

ataupun kulit nenas.

Contoh tesalasi yang dapat kita lihat adalah dalam pembinaan ialah susunan

batu bata dan mozek semasa membina bangunan,

Contoh pembinaan yang menggunakan tesalasi ialah:

1. Masjid Biru dan Haiga Sophia di Istanbul, Turki

2. Senibina Moorish di Sepanyol.

3. Industri jubin Delft di Belanda.

4. Westminster Abbey di London, England

Masjid Biru, Turki Senibina Moorish di Sepanyol

7

Page 8: Istitut Pendidikan Guru

Contoh-contoh tesalasi dalam kehidupan sebenar dan hasil seni:

1. Sisik Ikan

2. Bangunan

3. Lantai/mozek

8

Page 9: Istitut Pendidikan Guru

4

5

6

9

Page 10: Istitut Pendidikan Guru

4.0 Bagaimana tesalasi boleh dihasilkan

10

Page 11: Istitut Pendidikan Guru

5.0 Penerangan tentang penghasilan tesalasi saya

Langkah 1 : Gunakan “Microsoftword” untuk membuat teselasi saya.

Langkah 2 : Cari corak dari “Insert”, “Shapes” dan pilih bentuk bintang

sebagai corak asas yang pertama. Bintang mewakili harapan dan ia

merupakan corak pada duit syiling 10sen Malaysia siri ke-3.

Langkah 3 :Ukuran sudut ialah 1000 , manakala panjang sisi setiap bucu ialah 5mm.

Langkah 4 : Cari corak dari “Insert” dan “Shapes” lagi. Pilih bentuk hexagon sebagai

corak asas yang kedua.

Langkah 5 : Ukuran sisi hexagon ialah 5mm. 5mm

Langkah 6 :Tempatkan corak hexagon di tepi bintang.

11

5mm

1000

1000

5mm

Page 12: Istitut Pendidikan Guru

Langkah 7 : Gunakan fungsi “ copy” dan “paste” untuk memperbanyakkan

corak ini.

Langkah 8 : Apabila digabungkan bentuk baru muncul di antara bintang dan

hexagon. Dua pentagon yang bertentangan telah muncul.

Langkah 9 : Gunakan fungsi “eraser” untuk memadamkan garisan dalam bintang.

Langkah 10 : Gunakan fungsi “insect”, “shapes” dan pilih garis untuk melukis garis-

garis di luar semua bentuk supaya bentuk-bentuk dapat dilihat dengan

lebih jelas..

Langkah 11 : Gunakan fungsi “copy” dan “paste” untuk memperbanyakkan corak

yang dihasilkan.

(Lampiran a)

12

Page 13: Istitut Pendidikan Guru

Langkah 12 : “Copy “ tesalasi ini ke “Paint” untuk diwarnakan.

Langkah 13 : Warnakan pentagon yang dihasilkan dengan warna kuning terlebih

dahulu. Kuning merupakan warna Diraja bagi Duli-Duli Yang Maha

Mulia Raja-Raja Melayu.

(Lampiran b)

Langkah 14 :Warnakan bintang dengan warna hijau, pentagon yang melintang warna

merah, dan hexagon berwarna ungu.

Warna merah membawa maksud keberanian.

Warna hijau adalah warna universal love. Hijau adalah warna cinta yang

menyeluruh dan sangat besar. Ia merangkumi semua cinta. Cinta pada

ALLAH, cinta pada ibubapa, cinta pada anak-anak, cinta pada rakan-

rakan, cinta pada alam sekitar dan sebagainya. Cinta adalah kunci

kemakmuran. Tanpa cinta, dunia akan semakin hilang segala

kemakmurannya.

Warna ungu pula mewakili raja, kaum ningrat, spirituality, kemewahan,

dan cita-cita.

(Lampiran c)

13

Page 14: Istitut Pendidikan Guru

6.0 Refleksi

Sebelum saya mulakan tugasan ini, saya membaca dan meneliti kehendak

tugasan terlebih dahulu. Tugasan meminta kami menyediakan sekeping tesalasi saiz

A4.

Sebelum saya mulakan tugasan, saya telah membaca petikan petikan tentang

tesalasi. Saya juga telah meneliti contoh-contoh dari internet sebelum membuat

keputusan tentang corak asas tesalasi saya.

Selepas memahami maksud tesalasi, iaitu corak yang berulang,saya telah

memilih corak asas yang mudah kerana ini kali pertama saya menghasilkan tesalasi.

Tambahan pula, saya dapati corak bintang 6 penjuru yang ada pada belakang duit

syiling 10 sen baru Malaysia siri ke-3 sangat cantik dan bermakna. Bintang 6 penjuru

pada duit syiling tersebut melambangkan keunikan anyamam orang Asli di Negara

ini.3

Semasa membuat tesalasi, saya memilih “Microsoft word “ dan “Paint” untuk

menyiapkan tugasan tesalasi ini.Corak asas yang saya pilih ialah hexagon dan

bintang 6 penjuru.Saya telah mengukur corak asas saya dengan menggunakan

pembaris dan jangka lukis.

Saya padamkan garis-garis di dalam bintang supaya kelihatan lebih cantik.

Apabila bintang dan hexagon digabungkan, saya dapati satu bentuk yang baru wujud

di antaranya, iaitu bentuk dua pentagon yang disambungkan. Panjang sisi pentagon

ialah 5mm juga.

3 Bank Negara Malaysia. (2011). Keunikan Malaysia. Duit Syiling Siri Malaysia Siri Ketiga. Retrieved from

http://www.bnm.gov.my/microsites/2011/coins/03_10sen_bm.htm.

14

100°

5mm5mm

Page 15: Istitut Pendidikan Guru

Selepas menyiapkan tugasan ini, saya telah mempelajari banyak perkara.

Contohnya, saya mengenal apa itu “tesalasi”. Saya juga mempelajari kemahiran ICT

“Microsoftword” dan “Paint” dalam penghasilan tesalasi.

Saya dapat mengaplikasikan kemahiran ini dalam pengajaran dan

pembelajaran di sekolah nanti iaitu topic Bentuk dalam pengajaran dan pembelajaran

Matematik. Murid-murid boleh diminta menghasilkan tesalasi dengan bentuk-bentuk

yang telah dipelajari.

Saya juga sedar tentang kepentingan tesalasi dalam penyusunan judin dan

seni.

15

Page 16: Istitut Pendidikan Guru

7.0 Bibliografi

1 Census data revisited. (n.d.). Retrieved August 12, 2011, from

Wikipedia, free encyclopedia website http://en.wikipedia.org/wiki/Tessellation

.

2 Census data revisited. (n.d.). Retrived August 12, 2011, from Tessellations

website http://mathpuzzle.com/Tessel.htm.

3 Bank Negara Malaysia. (2011). Keunikan Malaysia. Duit Syiling Siri Malaysia

Siri Ketiga. Retrieved from

http://www.bnm.gov.my/microsites/2011/coins/03_10sen_bm.htm.

16

Page 18: Istitut Pendidikan Guru

A tessellation or tiling of the plane is a pattern of plane figures that fills the plane with no overlaps and no gaps. One may also speak of tessellations of parts of the plane or of other surfaces. Generalizations to higher dimensions are also possible. Tessellations frequently appeared in the art of M. C. Escher, who was inspired by studying the Moorish use of symmetry in the Alhambra tiles during a visit in 1922. Tessellations are seen throughout art history, from ancient architecture to modern art.

In Latin, tessella is a small cubical piece of clay, stone or glass used to make mosaics.[1] The word "tessella" means "small square" (from "tessera", square, which in its turn is from the Greek word for "four"). It corresponds with the everyday term tiling which refers to applications of tessellations, often made of glazed clay.

Contents

[hide]

1 Wallpaper groups 2 Tessellations and color

3 Tessellations with quadrilaterals

4 Regular and semi-regular tessellations

5 Self-dual tessellations

6 Tessellations and computer models

7 Tessellations in nature

8 Number of sides of a polygon versus number of sides at a vertex

9 Tessellations of other spaces

10 See also

11 Notes

12 References

[edit] Wallpaper groups

Tilings with translational symmetry can be categorized by wallpaper group, of which 17 exist[citation needed]. All seventeen of these groups are represented in the Alhambra palace in Granada, Spain. Of the three regular tilings two are in the p6m and one is in p4m.

[edit] Tessellations and color

18

Page 19: Istitut Pendidikan Guru

If this parallelogram pattern is colored before tiling it over a plane, seven colors are required to ensure each complete parallelogram has a consistent color that is distinct from that of adjacent areas. (This tiling can be compared to the surface of a torus.) Coloring after tiling, only four colors are needed.

When discussing a tiling that is displayed in colors, to avoid ambiguity one needs to specify whether the colors are part of the tiling or just part of its illustration. See also symmetry.

The four color theorem states that for every tessellation of a normal Euclidean plane, with a set of four available colors, each tile can be colored in one color such that no tiles of equal color meet at a curve of positive length. Note that the coloring guaranteed by the four-color theorem will not in general respect the symmetries of the tessellation. To produce a coloring which does, as many as seven colors may be needed, as in the picture at right.

[edit] Tessellations with quadrilaterals

Copies of an arbitrary quadrilateral can form a tessellation with 2-fold rotational centers at the midpoints of all sides, and translational symmetry whose basis vectors are the diagonal of the quadrilateral or, equivalently, one of these and the sum or difference of the two. For an asymmetric quadrilateral this tiling belongs to wallpaper group p2. As fundamental domain we have the quadrilateral. Equivalently, we can construct a parallelogram subtended by a minimal set of translation vectors, starting from a rotational center. We can divide this by one diagonal, and take one half (a triangle) as fundamental domain. Such a triangle has the same area as the quadrilateral and can be constructed from it by cutting and pasting.

[edit] Regular and semi-regular tessellations

Hexagonal tessellation of a floor

A regular tessellation is a highly symmetric tessellation made up of congruent regular polygons. Only three regular tessellations exist: those made up of equilateral triangles, squares,

19

Page 20: Istitut Pendidikan Guru

or hexagons. A semiregular tessellation uses a variety of regular polygons; there are eight of these. The arrangement of polygons at every vertex point is identical. An edge-to-edge tessellation is even less regular: the only requirement is that adjacent tiles only share full sides, i.e. no tile shares a partial side with any other tile. Other types of tessellations exist, depending on types of figures and types of pattern. There are regular versus irregular, periodic versus aperiodic, symmetric versus asymmetric, and fractal tessellations, as well as other classifications.

Penrose tilings using two different polygons are the most famous example of tessellations that create aperiodic patterns. They belong to a general class of aperiodic tilings that can be constructed out of self-replicating sets of polygons by using recursion.

A monohedral tiling is a tessellation in which all tiles are congruent. Spiral monohedral tilings include the Voderberg tiling discovered by Hans Voderberg in 1936, whose unit tile is a nonconvex enneagon; and the Hirschhorn tiling discovered by Michael Hirschhorn in the 1970s, whose unit tile is an irregular pentagon.

[edit] Self-dual tessellations

Tilings and honeycombs can also be self-dual. All n-dimensional hypercubic honeycombs with Schlafli symbols {4,3n−2,4}, are self-dual.

[edit] Tessellations and computer models

20

Page 21: Istitut Pendidikan Guru

A tessellation of a disk used to solve a finite element problem.

These rectangular bricks are connected in a tessellation which, considered as an edge-to-edge tiling, is topologically identical to a hexagonal tiling; each hexagon is flattened into a rectangle whose long edges are divided in two by the neighboring bricks.

This basketweave tiling is topologically identical to the Cairo pentagonal tiling, with one side of each rectangle counted as two edges, divided by a vertex on the two neighboring rectangles.

In the subject of computer graphics, tessellation techniques are often used to manage datasets of polygons and divide them into suitable structures for rendering. Normally, at least for real-time rendering, the data is tessellated into triangles, which is sometimes referred to as triangulation. Tessellation is a staple feature of DirectX 11 and OpenGL.[2][3]

In computer-aided design the constructed design is represented by a boundary representation topological model, where analytical 3D surfaces and curves, limited to faces and edges constitute a continuous boundary of a 3D body. Arbitrary 3D bodies are often too complicated to analyze directly. So they are approximated (tessellated) with a mesh of small, easy-to-

21

Page 22: Istitut Pendidikan Guru

analyze pieces of 3D volume — usually either irregular tetrahedrons, or irregular hexahedrons. The mesh is used for finite element analysis.

Mesh of a surface is usually generated per individual faces and edges (approximated to polylines) so that original limit vertices are included into mesh. To ensure approximation of the original surface suits needs of the further processing 3 basic parameters are usually defined for the surface mesh generator:

Maximum allowed distance between planar approximation polygon and the surface (aka "sag"). This parameter ensures that mesh is similar enough to the original analytical surface (or the polyline is similar to the original curve).

Maximum allowed size of the approximation polygon (for triangulations it can be maximum allowed length of triangle sides). This parameter ensures enough detail for further analysis.

Maximum allowed angle between two adjacent approximation polygons (on the same face). This parameter ensures that even very small humps or hollows that can have significant effect to analysis will not disappear in mesh.

Algorithm generating mesh is driven by the parameters. Some computer analyses require adaptive mesh, which is made finer (using stronger parameters) in regions where the analysis needs more detail.

Some geodesic domes are designed by tessellating the sphere with triangles that are as close to equilateral triangles as possible.

[edit] Tessellations in nature

Basaltic lava flows often display columnar jointing as a result of contraction forces causing cracks as the lava cools. The extensive crack networks that develop often produce hexagonal columns of lava. One example of such an array of columns is the Giant's Causeway in Northern Ireland.

The Tessellated pavement in Tasmania is a rare sedimentary rock formation where the rock has fractured into rectangular blocks.

[edit] Number of sides of a polygon versus number of sides at a vertex

For an infinite tiling, let a be the average number of sides of a polygon, and b the average

number of sides meeting at a vertex. Then (a − 2)(b − 2) = 4. For example, we have the combinations (3, 6), (313, 5), (334, 427), (4, 4), (6, 3), for the tilings in the article Tilings of regular polygons.

A continuation of a side in a straight line beyond a vertex is counted as a separate side. For example, the bricks in the picture are considered hexagons, and we have combination (6, 3). Similarly, for the basketweave tiling often found on bathroom floors, we have (5, 313).

22

Page 23: Istitut Pendidikan Guru

For a tiling which repeats itself, one can take the averages over the repeating part. In the general case the averages are taken as the limits for a region expanding to the whole plane. In cases like an infinite row of tiles, or tiles getting smaller and smaller outwardly, the outside is not negligible and should also be counted as a tile while taking the limit. In extreme cases the limits may not exist, or depend on how the region is expanded to infinity.

For finite tessellations and polyhedra we have

where F is the number of faces and V the number of vertices, and χ is the Euler characteristic (for the plane and for a polyhedron without holes: 2), and, again, in the plane the outside counts as a face.

The formula follows observing that the number of sides of a face, summed over all faces, gives twice the total number of sides in the entire tessellation, which can be expressed in terms of the number of faces and the number of vertices. Similarly the number of sides at a vertex, summed over all vertices, also gives twice the total number of sides. From the two results the formula readily follows.

In most cases the number of sides of a face is the same as the number of vertices of a face, and the number of sides meeting at a vertex is the same as the number of faces meeting at a vertex. However, in a case like two square faces touching at a corner, the number of sides of the outer face is 8, so if the number of vertices is counted the common corner has to be counted twice. Similarly the number of sides meeting at that corner is 4, so if the number of faces at that corner is counted the face meeting the corner twice has to be counted twice.

A tile with a hole, filled with one or more other tiles, is not permissible, because the network of all sides inside and outside is disconnected. However it is allowed with a cut so that the tile with the hole touches itself. For counting the number of sides of this tile, the cut should be counted twice.

For the Platonic solids we get round numbers, because we take the average over equal numbers: for (a − 2)(b − 2) we get 1, 2, and 3.

From the formula for a finite polyhedron we see that in the case that while expanding to an infinite polyhedron the number of holes (each contributing −2 to the Euler characteristic) grows proportionally with the number of faces and the number of vertices, the limit of (a − 2)(b − 2) is larger than 4. For example, consider one layer of cubes, extending in two

directions, with one of every 2 × 2 cubes removed. This has combination (4, 5), with (a − 2)(b − 2) = 6 = 4(1 + 2 / 10)(1 + 2 / 8), corresponding to having 10 faces and 8 vertices per hole.

Note that the result does not depend on the edges being line segments and the faces being parts of planes: mathematical rigor to deal with pathological cases aside, they can also be curves and curved surfaces.

23

Page 24: Istitut Pendidikan Guru

[edit] Tessellations of other spaces

An example tessellation of the surface of a sphere by a truncated icosidodecahedron.

A torus can be tiled by a repeating matrix of isogonal quadrilaterals.

M.C.Escher, Circle Limit III (1959)

As well as tessellating the 2-dimensional Euclidean plane, it is also possible to tessellate other n-dimensional spaces by filling them with n-dimensional polytopes. Tessellations of other spaces are often referred to as honeycombs. Examples of tessellations of other spaces include:

Tessellations of n-dimensional Euclidean space. For example, 3-dimensional Euclidean space can be filled with cubes to create the cubic honeycomb.

Tessellations of n-dimensional elliptic space, either the n -sphere (spherical tiling, spherical polyhedron) or n-dimensional real projective space (elliptic tiling, projective polyhedron).

For example, projecting the edges of a regular dodecahedron onto its circumsphere creates a tessellation of the 2-dimensional sphere with regular spherical pentagons, while taking the quotient by the antipodal map yields the hemi-dodecahedron, a tiling of the projective plane.

Tessellations of n-dimensional hyperbolic space. For example, M. C. Escher's Circle Limit III depicts a tessellation of the hyperbolic plane (using the Poincaré disk model) with congruent fish-like shapes. The hyperbolic plane admits a tessellation with regular p-gons meeting in q's

whenever ; Circle Limit III may be understood as a tiling of octagons meeting in threes, with all sides replaced with jagged lines and each octagon then cut into four fish.

See (Magnus 1974) for further non-Euclidean examples.

There are also abstract polyhedra which do not correspond to a tessellation of a manifold because they are not locally spherical (locally Euclidean, like a manifold), such as the 11-cell and the 57-cell. These can be seen as tilings of more general spaces.

24