persamaan deferensial

32
PERSAMAAN DEFERENSIAL PersamaanDeferensial(PD) :adalahpersamaan yang melibatkanpeubah/variabeltakbebas dan derivatif-derivatifnyaterhadapvariabel- variabel bebas . PD dibedakanmenjadidua: PD Biasa( ordinarydifferentialequation ) ( PD yang melibatkanhanyasatuvariabel bebas ) . Jikadiambil y(x) sebagaifungsisatuvariabel, dengan x sebagaivariabel bebas dan y sebagaivariabeltak bebas. Contoh : dy dx + 2 xy = 5x 2 +1 d 2 y dx 2 + 3 dy dx +3 y= 5 PD Parsial ( partialdifferentialequation) adalahsuatu PD yang melibatkanduaataulebihvariabel bebas ) Contoh : 2 z x y + 10 yx = 0 2 z x 2 + 2 z y 2 = 5 Orde ( tingkat) n : Turunan yang tertinggiyang terdapatdalampersamaanadalahturunanke n , maka PD itudisebutPD orde (tingkat) n Derajat k : Pangkatdariturunantertinggidalampersamaandeferensialitu adalah k , makaderajatdari PD adalah k Contoh :

Upload: hassan-assaqaf

Post on 10-Nov-2015

75 views

Category:

Documents


15 download

DESCRIPTION

PERSAMAAN DEFERENSIAL, KALKULUS

TRANSCRIPT

PERSAMAAN DEFERENSIAL

PersamaanDeferensial(PD) :adalahpersamaan yang melibatkanpeubah/variabeltakbebas dan derivatif-derivatifnyaterhadapvariabel-variabel bebas .PD dibedakanmenjadidua: PD Biasa( ordinarydifferentialequation ) ( PD yang melibatkanhanyasatuvariabel bebas ) . Jikadiambil y(x) sebagaifungsisatuvariabel, dengan x sebagaivariabel bebas dan y sebagaivariabeltak bebas.

Contoh :

PD Parsial ( partialdifferentialequation) adalahsuatu PD yang melibatkanduaataulebihvariabel bebas )

Contoh :

Orde ( tingkat) n : Turunan yang tertinggiyang terdapatdalampersamaanadalahturunanke n , maka PD itudisebutPD orde (tingkat) n

Derajat k : Pangkatdariturunantertinggidalampersamaandeferensialituadalah k , makaderajatdari PD adalah k

Contoh :

MENCARI PERS. DEFERENSIAL

Langkah-langkah mencari P.D.1. Hitung banyaknya konstanta sembarang yang ada dalam Persamaan1. Hilangkan konstanta dengan cara mengeliminasi semua konstanta sembarang itu . Jika jumlah konstanta sembarang sama dengan n maka dinutuhkan ( n+1 ) persamaan untuk mengelimanasi konstanta yang ada. Persamaan didapat dengan mendeferensialkan persamaan mula-mula sampai turunan ke n1. Banyaknya konstanta = orde tertinggi dari PD yang dicari

Contoh :

1. Cari PD dari persamaan :y = Ce -4x , C adalah konstanta sembarangPenyelesaian :

y = Ce -4x -------- ada 1 ( satu ) konstanta sembarang yaitu C, maka perlu 2 pers.untuk mengelimansi C

y = Ce -4x -------- (pers. 1)

2. Cari Persamaan Deferensial dari persamaan :y = A sin 3x + B cos 3x

Penyelesaian :Pers. Tersebut ada 2 konstantasembarangyaitu( A dan B ), makaperlu (2+1= 3 ) persm.untukmengelimasinya.

y = A sin 3x + B cos 3x pers.(1)

1. Cari Persamaan Deferensial dari persamaan :

y = x3 + Ax2 +Bx +C

Penyelesaian :Pers. Ada 3 konstanta sembarang ( A,B,C) mk perlu (3+1=4) persm.

y = x3 + Ax2 +Bx +C

Penyelesaian Persamaan Deferensial adalah suatu fungsi tanpa turunan -turunan dan yang memenuhi persamaan deferensial itu

Penyelesaian Persamaan Deferensial ada dua yaitu : 1. Penyelesaian Umum Persamaan Deferensial ( PUPD)Adalah penyelesaian Persamaan Deferensial yang memuat konstanta konstanta sembarang yang banyaknya sama dengan orde dari PD itu

2.Penyelesaian Partikulir Persamaan Deferensial ( PPPD)Adalah penyelesaian PD yang didapat dari PUPD dimana konstanta sudah mempunyai nilai tertentu

Contoh :

1. Tentukan PUPD dari :

2. Tentukan PPPD dari :

1.

Jawab :

MasukkanBatasan / syaratawal yang diketahui

Substitusikan c2kepersamaandiatas , didapat :

PERSAMAAN DEFERENSIALORDE PERTAMA DERAJAT PERTAMA

1. PD dengan variabel terpisah

Bentuk PD. : f (x) dx + g (y) dy = 0

Penyelesaian Umum PD ( PUPD):

2. PD denganvariabel yang bisa dipisahkan:

Bentuk PD : f1(x) g1(y) dx + f2(x) g2(y) dy =0

Diubahmenjadi :

PUPD :

Contoh :Selesaikan PD berikutini :1. x5 dx + (y+2)2dy = 0

Penyelesaian: 1/6 x6 + 1/3(y+2)3 = c1X6 + 2(y+2)3 = 6 c1PUPD :x6 + 2( y+2)3 = c

2.

Penyelesaian :

2ln( 1+x) + 3ln (1 +y) = ln c

ln (1+x)2 ( 1 + y )3 = ln c

(1+x )2 (1 +y)3 = c ( PUPD )

1. x ( y +1) dx + x2dy = 0

Penyelesaian :

x ( y +1) dx + x2dy = 0 atau

atau

ln x + ln ( y+1 ) = ln c

ln ( x) ( y+1) = ln c

x (y+1) = c ( PUPD )

3. PD Homogen

Suatufungsi f(x,y) dikatakanhomogenberderajad n jika

f (

Pandang PD : M(x,y) dx + N(x,y) dy = 0

PD dikatakanhomogenjika M(x,y) dan N(x,y) adalahhomogen dan berderajat samaLangkah-langkahmencariPUPD : Gunakansubstitusi y = v x dy = x dv + vdxatau

x = v y y dv + vdy

PD homogen tereduksi menjadi PD dengan variabel terpisah Gunakan aturan PD dengan variabel terpisah utk mendapatkan PUPD Gantilah v = y/x, jikamenggunakantransformasi y = vx dan v=x/y , jikamenggunakantransformasi x= uyutkmendapatkankembalivariabelsemula

Contoh :Selesaikan PD homogenberikutini :

1.( x2 + y2 ) dx = 2xy dy

Penyelesaian :

Substitusi : y = vx

PD menjadi : ( x2 + (vx)2 ) dx = 2x (vx) ( xdv + vdx )( x2 + (vx)2 ) dx = 2x3v dv + 2x2v2 dx( x2 + (vx)2 dx - 2x2v2 dx = 2x3v dv ( x2 + (vx)2 - 2x2v2 )dx = 2x3v dv ( x2 - (vx)2 )dx = 2x3 v dv ( x2 ( 1- v2 )dx = 2x3 v dv ( x2 ( 1- v2 )dx - 2x3 v dv = 0

ln x + ln ( 1-v 2 ) = ln c

x ( 1- v ) = c

x ( 1 - ()2 ) = c

x = c

x2 - y2 = cx

1. ( x2 3y2) dx + 2xy dy = 0Jawab :

Substitusi : y = vx( x2 3 (vx)2 ) dx + 2x.vx ( vdx +xdv) =0( x2 (vx) 2 ) dx + 2x3v dv =0x2( 1-v2 ) dx + 2x3 v dv = 0 (1-v2 ) dx + 2vx dv = 0

ln x - ln ( 1-v 2 ) = ln c

Carilah penyelesaian persamaan deferensial ( PUPD) berikut ini:1. (y+2) dx yx dy =01. 2y dx- 3x dy = 01. Sin x sin y dx + cos x cos y dy =01. xy dx - (x+2) dy =01. (1+2y)dx +(x-4) dy = 01. dy/dx + y/x =01. x(y2+2) dx+y(x2+1) dy =01. x cos 2y dx + tg y dy =01. (xy+x)dx + (xy-y)dy=01. (y2+1) dx +(x2+1) dy =0Carilah PPPD dari PD berikut :1. dy/dx + 2xy=0 , jika x=0 , y=y01. xy dy/dx y2 =1, jika x=2 , y=11. v dv/dx g = 0 , jika x=x0 , v = v01. dy/dx = -2y , y(1) = -51. dy/dx = y2 sin x , y(0) =

PERSAMAAN DEFERENSIAL DENGAN KOFISIEN FUNGSI LINIER

Bentuk Persamaan : ( ax + by + c ) dx + ( px + qy + r ) dy = 0

dengan a,b,c,p,q,r adalah bilangan real

9. Jika Dimisalkan ax + by = u dengan deferensialnya yaitu

9. Jika Dimisalkan : x = u + x1 y = v +y1dengan x1 dan y1 berturut-turut adalah nilai x dan y yang merupakan penyelesaian dari sistem persamaan linier :ax + by + c = 0px + qy + r = 0

Contoh :Selesaikanpersamaandeferensial : (x-2y+9) dx (3x-6y+19) dy = 0

PERSAMAAN DEFERENSIAL EKSAK

BENTUK PD : M (x,y) dx + N(x,y) dy = 0

Dikatakan PD eksak apabila Mempunyai Penyelesaian Umum : F(x,y) = c

F (x,y) = c M (x,y) dx + N(x,y) dyMk :

F(x,y) bisa dicari dari M(x,y) atau dari N (x,y)

F(x,y) = (1)

Contoh :Tentukan PUPD dari PD ini : 2xy dx + (x2+1) dy =0Jawab :

M(x,y) = 2xy N(x,y) = x2+1

PD diatas adalah PD eksak

F(x,y) = .......(1)

Sehingga F(x,y) = x2 y + y = c

PD TIDAK EKSAK (REDUKSI KE PERSAMAAN DEFERENSIAL EKSAK)

Jika M(x,y) dx +N (x,y) dy = 0 adalah persamaaan Deferensial tidak eksak ,dapat diubah menjadi PD eksak dengan cara mengalikan suatu fungsi V(x,y) dengan PD tersebut sehingga menjadi :V(x,y).M(x,y) dx + V(x,y). N (x,y) dy = 0V(x,y) dinamakan faktor integrasi, maka :

Beberapa jenis faktor integrasi ( kita ambil dua ) , yaitu : 1. Jika V = f (x) saja, 2. Jika V = f(y) sajaSetelah kita dapatkan faktor integrasi , masukkan ( kalikan faktor integrasi ke persamaan deferensial mula-mula, dan selesaikan persamaan deferensial yang didapat dengan cara yang ada.

1. Jika V = f(x) saja,maka :

Setelahmenjadi PD eksakdiselesaikandengancarapenyelesaian PD eksakdiatasContoh : Selesaikan PD : (x2+x-y)dx+xdy=0M = x2+x-y ; N = x

Persamaan berubah menjadi Persamaan deferensial eksak yaitu menjadi : V (x2+x-y)dx+V x dy=0

2.Jika V = f (y), maka

Setelah didapatkan faktor integrasi maka penyelesaian persamaan deferensial eksak yang didapat seperti yang sudah dijelaskan dimuka. Contoh : SelesaikanPD : y3 x dx ( 1-x2y2)dy = 0M = y3 x ; N = ( 1 - x2 y2 )

Selesaikan PD tidakEksakberikut

PERSAMAAN DIFERENSIAL LINIER ORDE PERTAMA

BENTUK PD :

Contoh : Selesaikan PD berikut :

Dari sini P(x) =1 , Q(x) = 2 +2x

Faktorintegrasi :=

PUPD dari PD linier orde satu :

= 2 ex + 2x ex - 2ex +c = 2x ex +c

y = ( 2x ex + c ) / ex = 2x + c e-x

PERSAMAAN DIFERENSIAL BERNOULLI

BENTUK PD :

Contoh :Selesaikan PD Bernoulli berikut :

Dari sini :P(x) = -1 ; Q(x) = x , n=2Gunakan cara untuk menyelesaikan PD Bernoulli .z=y -2+1 = y-1dz/dx= -1 y-2 dy/dx ---- dy/dx = -y2 dz/dxPD Bernoulli tereduksi menjadi :

Dalam hal ini :P(x)=1 ; Q(x) = -xFaktor integrasi :

Faktorintegrasi :=

PUPD dari PD linier orde satu :

z = 1-x + c/ex1/y = 1 x + c e -x

Selesaikan PD linier orde satu berikut :9. x dy 2y dx = (x-2) ex dx9. x dy/dx = y(1-x tan x ) +x2 cos x9. dy/dx +y cos x = sin 2x9. dy/dx = 2 y/x + x2 e x

Selesaikan PD Bernoulli berikut :5. dy/dx + y = y2 ex5. x dy +y dx = x3 y 6 dxP. D. LINIER ORDE n DENGAN KOEFISIEN KONSTAN

BENTUK PD:

P0

Dimana P00 , P1,P2, ......, Pn , Q adalah fungsi dari x atau konstan

Bentuk PD tsb dapat ditulis d, ng menggunakan operator diferensial D, dimana :

Bentuk PD diatas dapat ditulis sebagai :

Atau

Dan F(D) = dinamakan polinomial operator dalam D

1. Jika semua P0, P1, P2, .........Pn adalah konstanta PD linier orde n dng koefisisen konstanta1. Jika tidak semua P0, P1, P2, .........Pn adalah konstanta ( ada atau semuanya merupakan fungsi dari x ) PD linier orde n dng koefisisen variabel 1. Jika Q = 0 , mk bentuk PD dinamakan PD linier homogen orde n1. Jika Q 0 , mk bentuk PD dinamakan PD linier tidak homogen

Contoh : 1.

2.

3.

PD LINIER HOMOGEN ORDE n DENGAN KOEFISIEN KONSTAN

Bentuk PD:

P0Atau

Dimana P00 , P1, P2, .........Pn adalah konstan

Substitusi y = e dan turunan-turunannya memberikan pers. karakteristik :

Pers. karakteristik ini dapat difaktorkan ke dalam :

PUPD dari PD diatas didasarkan pada jenis akar-akar dari pers. karakteristik 1. Semua akar riil dan berbeda , yaitu :

PUPD :

1. JikaPUPD :

Secara umum , jika terjadi r kali, mk PUPD ini adalah :

1. Beberapa akarnya merupakan akar komplek

Jika P0, P1, P2, .........Pn adalah riil dan jika a b i adalah akar kompleks , mk PUPD :

Langkah langkah menentukan PUPD dari PD ini konstanta:1. Tentukan persamaan karakteristiknya1. Tentukan akar-akar dari persamaan karakteristiknya1. Dengan memperhatikan ketiga jenis akar-akar persm.karakteristik mk PUPD dapat ditentukanContoh :Selesaikan PD dibawahini :

1. Jawab :PD dapat ditulis sebagai :

, pers. karakteristiknya adalah :

PUPD : y = c1 e 2x + c2 e -2x + c3 e x + c4 e -x

2. Jawab :PD dapat ditulis sebagai :

, pers. karakteristiknya adalah :

PUPD :y = ( c1+c2x +c3 x2) e -x

3.Jawab :PD dapat ditulis sebagai :

, pers. karakteristiknya adalah :

PUPD :y = c1+(c2 +c3x +c4 x2) e 2x

PD LINIER TAK HOMOGEN ORDE n DG KOEFISIEN KONSTAN

Bentuk PD:

P0Atau

Dimana P00 , P1, P2, .........Pn adalah konstan dan q = Q(x) 0PUPD dari pers. ini adalah jumlah dari penyelesaian komplementer /Yc (x) dan penyelesaian partikuler /khusus / Yp (x) PUPD : y = Yc(x) + Yp (x)Yc(x) adalah PUPD dari PD linier homogen

Cara menentukan Yp(x) :

1. Metode Invers Operator

PD linier tak homogen orde n dg koefisien konstan dapat ditulis :F( D )y = QDg invers operator diperoleh hubungan bahwa :

Yp =

Atau : Yp =

Ada 3 cara utk menentukan Yp(x):I. Metode pertama 1. Tentukan faktor riil linier dari F(D)1. Tentukan invers operatornya, yaitu :

Yp =

1. Secara berantai, tentukan penyelesaian PD linier orde satu, yaitu :Tahap 1 :

Misalnya : u =

Diperoleh : u = e

Tahap 2 : Penyelesaian tahap 1 digunakan dalam tahap 2 :

Misalnya : v = Dg langkah yang sama diperoleh bahwa :

v = e

Tahap 3. : Penyelesaian tahap 2 digunakan dalam tahap 3 :Penyelesaian tahap 1 digunakan dalam tahap 2 :

Misalnya : s = Dg langkah yang sama diperoleh bahwa :

s = e dan seterusnya ........Tahap (n-1 )

Diperoleh w = = e

Tahap terakhir ( n) Dalam tahap terakhir ini, berarti bahwa :

Yp =

Dg langkah yg sama diperoleh bhw :

Yp = e 4. Dg demikian penyelesaian partikulir Yp (x) telah diperoleh

II. Metode kedua

dinyatakan sebagai jumlahan dari n pecahan bagian :Penyelesaian partikulir Yp(x) adalah :

Langkah-langkah utk menentukan Yp(x) adalah sbb :1. Tentukan faktor linier dari F(D)1. Tentukan invers operator yg dinyatakan sebagai jumlahan n pecahan bagian yaitu :

= 1. Dg cara manyamakan koefisien dari masing-masing pembilang di ruas kanan dan ruas kiri akan didapatkan besarnya N1, N2, ...., Nn1. Setelah N1, N2, ...., Nn dpt ditentukan besdarnya, kemudian masukkanlah pd rumus Yp(x)1. Integrasikan bagian demi bagian1. Yp(x) diperoleh

III. Metode singkat

Metode ini berlaku untk bentuk Q tertentu 1. Jika Q berbentuk e ax maka :

Yp(x) = e ax = e ax , F(a) 01. Jika berbentuk sin ( ax + b ) atau cos ( ax + b ) , maka :1. Yp(x) = 1. Yp(x) = 1. Yp(x) = 1. Yp(x) =

1. Jika Q berbentuk x n maka :

Yp(x) = x n =

Diperoleh dg menderetkan d. Jika Q berbentuk e ax v(x) , maka :

Yp(x) = e ax v(x) = e ax v(x)e. Jika Q berbentuk x v(x) maka :

Yp(x) = x v(x) = x v(x)- v(x)

Contoh metode pertama :1. Selesaikan PD berikut :( D2 4 D + 3 ) y = 1Jawab : PD tsb adalah PD linier tak homogen, shg PUPD : y = Yc + YpCara mencari Yc :

( D2 4 D + 3 ) = 0 , Pers. karakteristik adalah : ( 2 4 + 3 ) = 0

( -1 ) ( - 3 ) = 0

1 = 1 ; 2 = 3

Yc = c 1 e x + c2 e 3x

Cara menentukan Yp :

Yp =

= Tahap 1 :

Misal u =

u = e

Tahap2 :

Berarti

Yp = e

=

PUPD :y = Yc(x) + Yp (x) y = c 1 e x + c2 e 3x +

1. (8 D2 6 D + 1) y = 6 e x + 3x - 16

Jawab : PD linier homogen : (8 D2 6 D + 1) y = 0

Pers. karakteristik : 8 2 6 + 1 = 0

Yc =

Yp = 6 e x + 3x - 16 ) =

Karena Q = 6 e x + 3x - 16 yaitu terdiri dari 3 suku maka :

Yp = 6 e x ) + 3 x ) - 16)

Sukupertama :

Yp1 = 6 e x )Tahap1 :Misal u =

u = e

= e

Tahap 2 :

Berarti :

Yp1 = e

= 2 = 2 e x

Sukukedua : Yp2 = 3x )Tahap 1 :

u = e

= e

= = - 3 x - 12

Tahap 2 :

Yp2 = e

= e = 3x + 18

Suku ke tiga : Yp3 = 16 )Tahap 1 :

u = e

= - 16 e = - 16

Tahap 2 :

Yp3 = e

= 16 e = 16

Jadi : Yp = Yp1 + Yp2 - Yp3

= 2 e x + 3x + 18 - 16 = 2 e x + 3x +2

PUPD : y = Yc + Yp

y = + 2 e x + 3x +2Contoh metode ke dua :Spt soal ( 1 ) Selesaikan PD berikut :( D2 4 D + 3 ) y = 1Jawab :Yc dari jawaban no 1 bisa dipakai ( tdk usah dicari lagi )Yc = c 1 e x + c2 e 3xCara menentukan Yp :

2. (8 D2 6 D + 1) y = 6 e x + 3x - 16Jawab :

Yc= (dariperhitungansoal no 2 diatas )

Dengan demikian diperoleh :

(6 e x + 3x - 16)= (6 e x + 3x - 16)