dp-1 ok

Upload: ekos

Post on 04-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 DP-1 ok

    1/23

    concrete = 41 x 1,000,000 = 41,250,000 57%

    reinforcement = 866 x 18,000 = 15,595,416 22%

    bekisting = 15,595,416 22%

    Rp 72,440,832 ,- /m'

    reinforcement = 21 kg/m3-concrete

    ber_lapar2_lah maka engkau akan dapat melihat_KU

    fokuskan hidup_mu hanya untuk ber_ibadah kepada_KU,

    maka engkau akan sampai kepada_KU !!!

    tak mungkin cinta kepada_KU dan cinta kepada dunia,

    bersanding dalam satu hati.

    ( Hadist Qudsi )

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

  • 8/14/2019 DP-1 ok

    2/23

    0.00 0.00

    0.00 2.00

    0.50 3.00

    0.50 11.00

    1.50 11.00

    3.50 3.00

    9.50 2.00

    9.50 0.00

    1 0.00 0.00

    1 0.00 4.00

    2 0.50 4.00

    1 0.50 7.50

    2 9.50 7.50

    1 0.00 6.50

    2 0.50 6.50

    U su temporary baja

    22 2,200 1,250 1,800 polos lunak 1,276

    24 2,400 1,400 2,000 polos lunak 1,392

    32 3,200 1,850 2,650 deform sedang 1,856

    39 3,900 2,250 3,200 deform keras 2,262

    48 4,800 2,750 4,000 deform keras 2,784

    sa = 0.58 su

    sa

  • 8/14/2019 DP-1 ok

    3/23

    Lokasi : Randangan

    Elevasi Dinding atas = m

    - u u Elevasi Lantai = mMuka air tanah = mMuka air sungai = m Kondisi debit norma

    Elevasi Pondasi = m h =

    Dimensi (unit l

    H = m B = m L =

    a

    b11 = m b12 = m b13 =

    b21 = m b22 = m b23 =

    h1 = m h31 = m h32 =

    h4 = m hw1 = m hw2 =

    Live load, q = t/m2 Kh =Tanah timbunan gc = t/m gw =

    gsoil = t/m

    gsat = m a = (untuk analisa st

    f =o

    a =o

    (untuk analisa st

    c = t/m2

    b =o

    Tanah fondasigs' = t/m Faktor aman (normal) (seis

    fB = Guling e

    Koefisien gesekan Daya dukung tanah fondasi

    m = qmax >

    Koefisien tekanan ke atas Tegangan ijin

    Um = Beton tekan sca =Cover of bar Baja ssa =

    Dinding Beton geser ta =

    dback = cm Young's modulus ratio

    dfront = cm

    Kaki fondasidupper = cm

    dlower = cm

    9.50

    4.00

    35.0

    6.00

    11.00

    Potongan Melintang

    4.00

    1

    7

    10

    8.

    B/3=

    1.00

    qa=qu/3 qae=

    1.

    0.55

    10

    10

    1850

    5.5

    24

    0.95

    30.00

    0.00

    1.75

    127

    0.15

    1.95

    14.04

    1.30

    75

    1.

    1.

    3.00

    2.00

    0.

    2.00

    B/6=1.83

    0.50

    1.00

    7.50

    15.00

    8.0011.50

    10.50

    3.

    11.00

    1.

    2.00 0.

    2.40

    6.

    0.2

    b12

    H=h1

    h31

    b21 b23

    q (t/m2)

    h4

    b11 b13

    b22

    h32

    hw1

    hw2

    B

    187568489.xls.ms_office-11/11/2013

  • 8/14/2019 DP-1 ok

    4/23

    STABILITY : D1 - Hulu

    Normal Condition Seismic Condition

    a) Stability against overturning a) Stability against overturning

    |e| = m < B/6 = m OK! |e| = m < B/3 = m OK!

    b) Stability against sliding b) Stability against sliding

    Fs = > OK! Fs = > OK!

    c) Reaction of foundation soil c) Reaction of foundation soil

    q1 = t/m2

    < qa = t/m2

    OK! q1 = t/m2

    < qae = t/m2

    OK!

    q2 = t/m2

    < qa = t/m2

    OK! q2 = t/m2

    < qae = t/m2

    OK!

    0.55 1.58 1.39 3.17

    17.91 59.22 9.31

    1.35 1.25

    88.83

    26.77 59.22 34.53 88.83

    16.95 2.00

    187568489.xls.ms_office-11/11/2013

  • 8/14/2019 DP-1 ok

    5/23

    Stressing of Reinforcement and Concrete

    Name of Structure :

    Location :

    Normal Condition Allowable compressive stress ( ca) = kg/cmAllowable tensile stress ( sa) = kg/cmAllowable shearing stress (a) = kg/cm

    Young's modulus ratio =

    Item

    b (cm)

    h (cm)

    d1 (cm) back back

    d2 (cm) front front

    d (cm)

    M (ton m)

    S (ton)

    Bar size and spacing (mm)

    Bar (As1) D 22 - D 22 - D 22 -

    Bar (As2) D 22 - D 22 - D 22 -

    Stress c OK! OK!

    Stress s OK! OK!

    Stress OK! OK!

    Seismic Condition Allowable compressive stress ( ca) = kg/cmAllowable tensile stress ( sa) = kg/cmAllowable shearing stress (a) = kg/cm

    Young's modulus ratio =

    Item

    b (cm)h (cm)

    d1 (cm)

    d2 (cm)

    d (cm)

    M (ton m)

    S (ton)

    Bar size and spacing (mm)

    Bar (As1) D 22 - D 22 - D 22 -

    Bar (As2) D 22 - D 22 - D 22 -

    Stress c OK! OK!

    Stress s OK! OK!

    Stress OK! OK!0.44 1.32 0.48

    0.20 0.65 0.35

    2775

    Section A-A Section B-B Sectio

    100.0

    187.5

    7.0

    300

    7.0

    5.5

    24

    75

    1850

    100.0

    300.0

    10.0

    180.5

    4

    4

    300

    D1 - Hulu

    Randangan

    10.0

    100.0

    300.0

    10.0

    10.0

    290.0

    3

    10

    113

    293.0

    52

    19

    150

    Section of Retaining wall

    7 0

    207 75747

    300

    2

    100.0 100.0 100.0

    8.25

    16

    Section A-A Section B-B Sectio

    7.0 7.0 10.0

    187.5 300.0 300.0

    180.5 293.0 290.0

    10.0 10.0 10.0

    8 39 14

    10 113 4

    Section of Retaining wall 300 300

    300 150

    5 18 1

    476 1605 101

    D C

    BB

    A A

    CD

    D C

    BB

    A A

    CD

    187568489.xls.ms_office-11/11/2013

  • 8/14/2019 DP-1 ok

    6/23

    St

    1. Design Data

    1.1 Dimensions

    B = 9.50 m H = 11.00 m

    L = 1.00 m (unit length)

    b11 = 2.00 m b21 = 6.00 m

    b12 = 1.00 m b22 = 3.00 m

    b13 = 0.00 m b23 = 0.50 m

    h1 = 11.00 m h4 = 4.00 m

    h31 = 2.00 m hw1 = 7.50 m

    h32 = 1.00 m hw2 = 6.50 m

    1.2 Parameters

    q = 0.50 t/m2(for normal condition)

    = 0.00 t/m2(for seismic condition) Section of Retaining Wall

    gc = 2.40 t/m

    gw = 1.00 t/m

    Backfill soil Foundation soil Safety factor

    gsoil = 1.75 t/m gs' = 0.95 t/m (=gsat-gw) Overturning

    gsat = 1.95 t/m cB = 0.00 t/m normal |e| 1.25

    a = 1.300o

    (for stability analysis) Reaction of foundation soil

    = 14.036o

    (for structural analysis) normal qmax

  • 8/14/2019 DP-1 ok

    7/23

    Stability

    (1) Vertical Load

    No. Description W X W x X

    1 2.00 x 6.00 x 2.40 28.800 6.500 187.20

    2 3.00 x 3.00 x 2.40 21.600 2.000 43.20

    3 2.00 x 0.50 x 2.40 2.400 0.250 0.60

    4 0.50 x 1.00 x 6.00 x 2.40 7.200 5.500 39.60

    5 0.50 x 1.00 x 0.50 x 2.40 0.600 0.167 0.10

    6 0.50 x 8.00 x 2.00 x 2.40 19.200 2.833 54.40

    7 8.00 x 1.00 x 2.40 19.200 1.000 19.20

    8 0.50 x 8.00 x 0.00 x 2.40 0.000 0.500 0.009 0.50 x 8.00 x 2.00 x 1.75 14.000 2.833 39.67

    10 6.00 x 3.50 x 1.75 36.750 6.500 238.88

    11 6.00 x 4.50 x 1.95 52.650 6.500 342.23

    12 0.50 x 6.00 x 1.00 x 1.95 5.850 7.500 43.88

    q 0.50 x 8.00 4.000 5.500 22.00

    T o t a l(1 to q) 212.250 1,030.96

    Pu1 7.50 x 9.50 x 0.50 x -1.00 -35.625 6.333 -225.63

    Pu2 6.50 x 9.50 x 0.50 x -1.00 -30.875 3.167 -97.77

    Total ( 1 to Pu2) 145.750 707.56

    (2) Horizontal Load

    Coefficient of Active earth pressure

    Ka =

    (for stability analysis)

    a = 1.300o

    d = 0.000o

    Cos2(f -a) = 0.692 Sin(f+d) = 0.574

    Cos2a = 0.999 Sinf = 0.574

    Cos(a+d) = 1.000 Cosa = 1.000

    Ka = 0.280 for stability analysis

    (for structural analysis)

    a = 14.036o

    d = 23.333o

    Cos2

    (f -a) = 0.872 Sin(f+d) = 0.851Cos

    2a = 0.941 Sinf = 0.574

    Cos(a+d) = 0.795 Cosa = 0.970

    Ka' = 0.361 for structural analysis

    Coefficient of Passive earth pressure

    Kp =

    a = 1.300o

    d = 0.000o

    Cos2(f+a) = 0.650 Sin(f+d) = 0.574

    Cos2a = 0.999 Sinf = 0.574

    Cos(a -d) = 1.000 Cosa = 1.000

    Kp = 3.585

    qa1 = Ka x q = 0.140 ton/m

    qa2 = Ka x (h1- hw1) x gsoil = 1.713 ton/m

    qa3 = qa1 + qa2 = 1.852 ton/m

    qa4 = Ka x hw1x (gsat- gw) = 1.992 ton/m

    qw 1 = hw1x gw = 7.500 ton/m

    qw 2 = hw2x gw = 6.500 ton/m

    qp1 = Kp x h4x (gsat- gw) = 13.624 ton/m

    2

    Cos2(f -a)

    Cos2ax Cos(a+d) x 1+Sin(f+d) x Sinf

    Cos(a+d) x Cosa

    2

    Cos2(f+a)

    Cos2ax Cos(a -d) x 1 -Sin(f+d) x Sinf

    Cos(a -d) x Cosa

    187568489 l ffi 11/11/2013

  • 8/14/2019 DP-1 ok

    8/23

    Stability8/

    No. Description H Y H x Y

    Pa1 0.140 x 3.50 0.489 9.250 4.53

    Pa2 1.713 x 3.50 x 0.50 2.997 8.667 25.97

    Pa3 1.852 x 7.50 13.892 3.750 52.10

    Pa4 1.992 x 7.50 x 0.50 7.470 2.500 18.68

    Pw1 7.500 x 7.50 x 0.50 28.125 2.500 70.31

    Pw2 -6.500 x 6.50 x 0.50 -21.125 2.167 -45.77

    Pp1 -13.624 x 4.00 x 0.50 -27.248 1.333 -36.32

    T o t a l 4.601 89.49

    (3) Stability Calculation

    a) Stability against overturning

    a) -1 Without Uplift

    B = 9.50 m

    SW x X - SH x Y 1,030.96 - 89.49

    X = = = 4.436 m

    SW 212.250

    B 9.50

    e = - X = - 4.436 = 0.314 m < B/6 = 1.583 m OK !

    2 2

    a) -2 With Uplift

    B = 9.50 m

    SW x X - SH x Y 707.56 - 89.49X = = = 4.241 m

    SW 145.750

    B 9.50

    e = - X = - 4.241 = 0.509 m < B/6 = 1.583 m OK !

    2 2

    b) Stability against sliding

    b)-1 Without Uplift

    Sliding force : SH = 4.601 ton

    Resistance : HR = mx SW = 0.55 x 212.250 = 116.738 ton

    (friction coefficient : m= 0.55 )

    HR 116.738

    Fs = = = 25.374 > 2.00 OK !SH 4.601

    b)-2 With Uplift

    Sliding force : SH = 4.601 ton

    Resistance : HR = mx SW = 0.55 x 145.750 = 80.163 ton

    (friction coefficient : m= 0.55 )

    HR 80.163

    Fs = = = 17.424 > 2.00 OK !

    SH 4.601

    c) Reaction of foundation soil

    SW 6 x e

    q1,2 = x (1 + )

    B B

    212.250 6 x 0.314

    q1 = x (1 + ) = 26.773 t/m2

    < qa = 59.217 t/m2

    OK !

    9.50 9.50

    212.250 6 x 0.314

    q2 = x (1 - ) = 17.911 t/m2

    < qa = 59.217 t/m2

    OK !

    9.50 9.50

    17.911 t/m2

    - t/m2

    26.773 t/m2

    - t/m2

    in case, e > 0 in case, e < 0

    (applicable) (not applicable)

    Reaction of Foundation Soil in Case 1

    187568489.xls.ms_office-11/11/2013

  • 8/14/2019 DP-1 ok

    9/23

    Stab

    2.2 Case 2 (Normal condition, without vertical live load)

    2.00

    q = 0.50 t/m2

    1.00

    0.00

    11.00 8.00

    1.00

    7.50

    4.00 6.50

    2.00

    6.00 3.00 0.50

    Acting Load in Case 2

    (1) Vertical Load

    No. Description W X W x X

    1 2.00 x 6.00 x 2.40 28.800 6.500 187.202 3.00 x 3.00 x 2.40 21.600 2.000 43.20

    3 2.00 x 0.50 x 2.40 2.400 0.250 0.60

    4 0.50 x 1.00 x 6.00 x 2.40 7.200 5.500 39.60

    5 0.50 x 1.00 x 0.50 x 2.40 0.600 0.167 0.10

    6 0.50 x 8.00 x 2.00 x 2.40 19.200 2.833 54.40

    7 8.00 x 1.00 x 2.40 19.200 1.000 19.20

    8 0.50 x 8.00 x 0.00 x 2.40 0.000 0.500 0.00

    9 0.50 x 8.00 x 2.00 x 1.75 14.000 2.833 39.67

    10 6.00 x 3.50 x 1.75 36.750 6.500 238.88

    11 6.00 x 4.50 x 1.95 52.650 6.500 342.23

    12 0.50 x 6.00 x 1.00 x 1.95 5.850 7.500 43.88

    T o t a l (1 to 12) 208.250 1008.96

    Pu1 7.50 x 9.50 x 0.50 x -1.00 -35.625 6.333 -225.63

    Pu2 6.50 x 9.50 x 0.50 x -1.00 -30.875 3.167 -97.77

    Total ( 1 to Pu2) 141.750 685.56

    (2) Horizontal Load

    Coefficient of Active earth pressure

    Ka = 0.280 (for stability analysis)

    Ka ' = 0.361 (for structural analysis)

    Coefficient of Passive earth pressure

    Kp = 3.585

    qa1 = Ka x q = 0.140 ton/m

    qa2 = Ka x (h1- hw1) x gsoil = 1.713 ton/m

    qa3 = qa1 + qa2 = 1.852 ton/mqa4 = Ka x hw1x (gsat- gw) = 1.992 ton/m

    qw 1 = hw1x gw = 7.500 ton/m

    qw2 = hw2x gw = 6.500 ton/m

    qp1 = Kp x h4x (gsat- gw) = 13.624 ton/m

    No. Description H Y H x Y

    Pa1 0.140 x 3.50 0.489 9.250 4.53

    Pa2 1.713 x 3.50 x 0.50 2.997 8.667 25.97

    Pa3 1.852 x 7.50 13.892 3.750 52.10

    Pa4 1.992 x 7.50 x 0.50 7.470 2.500 18.68

    Pw1 7.500 x 7.50 x 0.50 28.125 2.500 70.31

    Pw2 -6.500 x 6.50 x 0.50 -21.125 2.167 -45.77

    Pp1 -13.624 x 4.00 x 0.50 -27.248 1.333 -36.32

    T o t a l 4.601 89.49

    Pw1 Pa4

    Pa2

    Pa1

    qa2

    qa3qw1 qa4

    Pa3

    O

    9

    Pp1

    qa1

    qp1

    7

    1

    10

    12

    2 3

    5

    8

    4

    11

    Pw2

    qw2qu2 Pu2qu1

    Pu1

  • 8/14/2019 DP-1 ok

    10/23

    Stability10/

    (3) Stability Calculation

    a) Stability against overturning

    a)-1 Without Uplift

    B = 9.50 m

    SW x X - SH x Y 1,008.96 - 89.49

    X = = = 4.415 m

    SW 208.250

    B 9.50

    e = - X = - 4.415 = 0.335 m < B/6 = 1.583 m OK !

    2 2

    a)-2 With Uplift

    B = 9.50 m

    SW x X - SH x Y 685.56 - 89.49

    X = = = 4.205 m

    SW 141.750

    B 9.50

    e = - X = - 4.205 = 0.545 m < B/6 = 1.583 m OK !

    2 2

    b) Stability against sliding

    b)-1 without Uplift Pressure

    Sliding force : SH = 4.601 ton

    Resistance : HR = mx SW = 0.55 x 208.250 = 114.538 ton

    (friction coefficient : m= 0.55 )

    HR 114.538

    Fs = = = 24.90 > 2.00 OK !

    SH 4.601

    b)-2 with Uplift Pressure

    Sliding force : SH = 4.601 ton

    Resistance : HR = mx SW = 0.55 x 141.750 = 77.963 ton

    (friction coefficient : m= 0.55 )

    HR 77.963

    Fs = = = 16.95 > 2.00 OK !

    SH 4.601

    c) Reaction of foundation soil

    SW 6 x e

    q1,2 = x (1 + )

    B B

    208.250 6 x 0.335

    q1 = x (1 + ) = 26.559 t/m2

    < qa = 59.217 t/m2

    OK !

    9.50 9.50

    208.250 6 x 0.335

    q2 = x (1 - ) = 17.283 t/m2

    < qa = 59.217 t/m2

    OK !

    9.50 9.50

    17.283 t/m2

    - t/m2

    26.559 t/m2

    - t/m2

    in case, e > 0 in case, e < 0

    (applicable) (not applicable)

    Reaction of Foundation Soil in Case 2

    187568489.xls.ms_office-11/11/2013

  • 8/14/2019 DP-1 ok

    11/23

    Stab

    2.3 Case 3 (Seismic condition)

    2.00

    1.00

    0.00

    11.00 8.00

    1.00

    7.50

    4.00 6.50

    2.00

    6.00 3.00 0.50

    Acting Load in Case 3

    (1) Vertical Load = Same as Case 2

    (2) Horizontal Load

    f = 35.00o

    a = 1.300o

    (for stability analysis) F = 13.275o

    b = 0.00o

    a = 14.036o

    (for structural analysis) (F = Arc tan(Kh) )

    q = 0.00 t/m2(for seismic condition) Kh = 0.24

    Coefficient of Active earth pressure

    Kae =

    (for stability analysis)

    a = 0.000 o d = 32.53 o

    tan d = Sin f Sin ( F + D- b )

    1 - Sin f Cos ( F + D- b )

    sin D= Sin ( F + b )

    Sin f

    Sin (F+ b ) = 0.230 Sin f = 0.574

    Sin D = 0.401 then D = 23.64

    Sin(F+D-b) = 0.601 Cos(F+D-b)= 0.800

    tand = 0.638

    Cos2(f-F-a)= 0.863 Sin(f+d) = 0.924

    CosF = 0.973 Sin(f-b-F) = 0.370

    Cos2a = 1.000 Cos(a-b) = 1.000

    Cos(a+d+F = 0.697

    Kae = 0.440 (for stability analysis)

    (for structural analysis)

    a = 14.036o

    d = 17.50o

    Cos2(f-F-a)= 0.982 Sin(f+d) = 0.793

    CosF = 0.973 Sin(f-b-F) = 0.370

    Cos2a = 0.941 Cos(a-b) = 0.970

    Cos(a+d+F)= 0.709

    2

    Cos2(f-F-a)

    CosFx Cos2ax Cos(a+d+F) x 1+Sin(f+d)x Sin(f-b-F)

    Cos(a+d+F) x Cos(a-b)

    Pa1

    qa1

    qa2qa3qw1

    Pa2

    Pa3Pw1

    O

    7

    1

    10

    12

    9

    2 3

    5

    8

    4

    11

    Pw2

    qw2

    Pp1

    qp1Pu1

    qu2 Pu2qu1

  • 8/14/2019 DP-1 ok

    12/23

    Stability12

    Kae = 0.554 (for structural analysis)

    Coefficient of Passive earth pressure

    Kpe =

    a = 0.000o

    d = 32.53o

    Cos2(f-F+a)= 0.863 Sin(f-d) = 0.043

    CosF = 0.973 Sin(f+b-F) = 0.370

    Cos2a = 1.000 Cos(a-b) = 1.000

    Cos(a+d-F)= 0.944

    Kpe = 1.241

    qa1 = Kae x ( h1- hw1) x gsoil = 2.695 ton/m

    qa2 = qa2 = 2.695 ton/m

    qa3 = Kae x hw1x (gsat- gw) = 3.135 ton/m

    qw 1 = hw1x gw = 7.500 ton/m

    qw 2 = hw2x gw = 6.500 ton/m

    qp1 = Kp x h4x (gsat- gw) = 4.716 ton/m

    No. Description H Y H x Y

    1 0.24 x 28.80 6.795 1.000 6.79

    2 0.24 x 21.60 5.096 1.500 7.64

    3 0.24 x 2.40 0.566 1.000 0.57

    4 0.24 x 7.20 1.699 2.333 3.96

    5 0.24 x 0.60 0.142 2.333 0.33

    6 0.24 x 19.20 4.530 5.667 25.67

    7 0.24 x 19.20 4.530 7.000 31.71

    8 0.24 x 0.00 0.000 5.667 0.00

    Pw1 0.50 x 7.50 x 7.50 28.125 2.500 70.31

    Pw2 0.50 x -6.50 x 6.50 -21.125 2.167 -45.77

    Pa1 0.50 x 2.70 x 3.50 4.716 8.667 40.87

    pa2 2.70 x 7.50 20.213 3.750 75.80

    Pa3 0.50 x 3.135 x 7.50 11.756 2.500 29.39

    Pp1 -4.716 x 4.00 x 0.50 -9.432 4.000 -37.73T o t a l 57.611 209.56

    (3) Stability Calculation

    a) Stability against overturning

    a)-1 Without Uplift

    B = 9.50 m

    SW x X - SH x Y 1,008.96 - 209.56

    X = = = 3.839 m

    SW 208.250

    B 9.50

    e = - X = - 3.839 = 0.911 m < B/3 = 3.167 m OK !

    2 2

    a)-2 With Uplift

    B = 9.50 m

    SW x X - SH x Y 685.56 - 209.56

    X = = = 3.358 m

    SW 141.750

    B 9.50

    e = - X = - 3.358 = 1.392 m < B/3 = 3.167 m OK !

    2 2

    2

    Cos2(f-F+a)

    CosFx Cos2ax Cos(a+d-F) x 1-Sin(f-d)x Sin(f+b-F)

    Cos(a+d-F) x Cos(a-b)

    187568489.xls.ms_office-11/11/2013

  • 8/14/2019 DP-1 ok

    13/23

    Stability13

    b) Stability against sliding

    b)-1 Without Uplift

    Sliding force : SH = 57.611 ton

    Resistance : HR = mx SW = 0.55 x 208.250 = 114.538 ton

    (friction coefficient : m= 0.55 )

    HR 114.538

    Fs = = = 1.99 > 1.25 OK !

    SH 57.611

    b)-2 With Uplift Sliding force : SH = 57.611 ton

    Resistance : HR = mx SW = 0.55 x 141.750 = 77.963 ton

    (friction coefficient : m= 0.55 )

    HR 77.963

    Fs = = = 1.35 > 1.25 OK !

    SH 57.611

    c) Reaction of foundation soil

    c-1) in case, |e| < B/6 (applicable)

    SW 6 x e

    q1,2 = x (1 + )

    B B

    208.250 6 x 0.911

    q1 = x (1 + ) = 34.534 t/m2

    < qae = 88.825 t/m2

    OK !

    9.50 9.50

    208.250 6 x 0.911

    q2 = x (1 - ) = 9.308 t/m2

    < qae = 88.825 t/m2

    OK !

    9.50 9.50

    c-2) in case, B/6 < |e| < B/3 (not applicable)

    2 x SW

    q1' = = = - t/m2

    qae = - t/m2

    3 x (B/2-|e|)

    9.308 t/m2

    34.534 t/m2

    - t/m2

    in case, e > 0 and e < B/6 in case, e > 0 and B/6 < e < B/3

    (applicable) (not applicable)

    - t/m2

    - t/m2

    - t/m2

    in case, e < 0 and |e| < B/6 in case, e < 0 and B/6 < |e| < B/3

    (not applicable) (not applicable)

    Reaction of Foundation Soil in Case 3

    187568489.xls.ms_office-11/11/2013

  • 8/14/2019 DP-1 ok

    14/23

    Stability14

    2.4 Bearing Capacity of soil

    (1) Design Data

    fB = 30.00o cB = 0.00 t/m gs' = 0.95 t/m (=gsat-gw)

    B = 9.50 m z = 4.00 m L = 1.00 m (unit length)

    (2) Ultimate Bearing Capacity of soil, (qu)

    Calculation of ultimate bearing capacity will be obtained by applying the following

    Terzaghi's formula :

    qu = (ax c x Nc) + (gsoil' x z x Nq) + (bx gsoilx B x Ng)

    Shape factor (Table 2.5 of KP-06)

    a = 1.00 b = 0.50

    Shape of footing : 1 (strip)

    Shape of footing a b

    1 strip 1.00 0.50

    2 square 1.30 0.40

    3 rectangular, B x L 1.11 0.40

    (B < L) (= 1.09 + 0.21 B/L)

    (B > L) (= 1.09 + 0.21 L/B)

    4 circular, diameter = B 1.30 0.30

    Bearing capacity factor (Figure 2.3 of KP-06, by Capper)

    Nc = 36.0 Nq = 23.0 Ng = 20.0

    f Nc Nq Ng

    0 5.7 0.0 0.0

    5 7.0 1.4 0.0

    10 9.0 2.7 0.2

    15 12.0 4.5 2.3

    20 17.0 7.5 4.7

    25 24.0 13.0 9.5

    30 36.0 23.0 20.0

    35 57.0 44.0 41.0

    37 70.0 50.0 55.0

    39 > 82.0 50.0 73.0

    (ax c x Nc) = 0.000

    (gsoilx z x Nq) = 87.400

    (bx gsoilx B x Ng) = 90.250

    qu = 177.650 t/m2

    (3) Allowable Bearing Capacity of soil, (qa)

    qa = qu / 3 = 59.217 t/m2

    (safety factor = 3 , normal condition)

    qae = qu / 2 = 88.825 t/m2

    (safety factor = 2 , seismic condition)

    187568489.xls.ms office-11/11/2013

  • 8/14/2019 DP-1 ok

    15/23

    Structur

    3. Structure Calculation

    3.1 Normal Condition

    (1) Wall 2.00

    q = 0.50 t/m2

    1.00

    0.00

    8.00

    4.50 3.50

    1.00

    2.00 2.00

    6.00 3.00 0.50

    Load Diagram on Wall in Normal Condition

    Ka = 0.361

    a = 14.036o

    d = 23.33o

    cos (a+d) = 0.795

    Kha = Ka x cos (a+d) = 0.287

    a) Section A - A

    h = 3.50 m

    qa1 = Khax q = 0.144 ton/m

    qa2 = Khax h x gsoil = 1.759 ton/m

    No. Description Ha Y (from A-A) Ha x Y

    Pa1 0.144 x 3.50 0.503 1.750 0.880

    Pa2 1.759 x 3.50 x 0.50 3.079 1.167 3.592

    T o t a l 3.581 4.471

    Sa = 3.581 ton Ma = 4.471 ton m

    b) Section B - B

    h = 3.50 m hw1 = 4.50 m hw2 = 3.50 m

    qa1 = Khax q = 0.144 ton/m

    qa2 = Khax h x gsoil = 1.759 ton/m

    qa3 = qa1 + qa2 = 1.903 ton/m

    qa4 = Khax hw2x (gsat- gw) = 1.228 ton/m

    qw1 = hw1x gw = 4.500 ton/m

    qw2 = hw2x gw = 3.500 ton/m

    No. Description Hb Y (from B-B) Ha x Y

    Pa1 0.144 x 3.50 0.503 6.250 3.142

    Pa2 1.759 x 3.50 x 0.50 3.079 5.667 17.446

    Pa3 1.903 x 4.50 8.563 2.250 19.267

    Pa4 1.228 x 4.50 x 0.50 2.763 1.500 4.144

    Pw1 4.500 x 4.50 x 0.50 10.125 1.500 15.188

    Pw2 -3.500 x 3.50 x 0.50 -6.125 1.167 (7.146)

    T o t a l 18.907 52.040

    Sb = 18.907 ton Mb = 52.040 ton m

    qa1

    qa4 qa3qw1

    Pw1 Pa4

    Pa2

    Pa1

    qa2

    Pa3 B

    A

    B

    A

    Pw2

    qw2

  • 8/14/2019 DP-1 ok

    16/23

    Stru

    (2) Footing

    Case 1 (with vertical live load) Case 2 (without vertical live load)

    q = 0.50 t/m2

    q = 0.50 t/m2

    3.50 3.50

    4.50 4.50

    1.00 1.00

    2.00 2.00

    6.00 3.00 0.50 6.00 3.00 0.50

    in case, e > 0 in case, e > 0

    17.911 t/m2

    17.283 t/m2

    23.508 t/m2

    23.142 t/m2

    26.307 t/m2

    26.071 t/m2

    26.773 t/m2

    26.559 t/m2

    in case, e < 0 in case, e < 0

    - t/m2

    - t/m2

    - t/m2

    -

    - t/m2

    - t/m2

    - t/m2

    -

    Load Diagram on Footing in Normal Case

    a) Section C - C

    Case 1 (with vertical live load)

    No. Description Hc X (from C-C) Hc x X

    1 2.000 x 0.50 x 2.40 2.400 0.250 0.600

    1.000 x 0.50 x 2.40 x 0.50 0.600 0.167 0.100

    2 -26.307 x 0.50 -13.153 0.250 -3.288

    -0.466 x 0.50 x 0.50 -0.117 0.333 -0.039

    T o t a l -10.270 -2.627

    Case 2 (without vertical live load)

    No. Description Hc X (from C-C) Hc x X

    1 2.000 x 0.50 x 2.40 2.400 0.250 0.600

    1.000 x 0.50 x 2.40 x 0.50 0.600 0.167 0.100

    2 -26.071 x 0.50 -13.035 0.250 -3.259

    -0.488 x 0.50 x 0.50 -0.122 0.333 -0.041

    T o t a l -10.157 -2.600

    Case 1 Sc = -10.270 ton Mc = -2.627 ton m

    Case 2 Sc = -10.157 ton Mc = -2.600 ton m

    1

    1

    C

    C

    D

    D

    4

    3

    26

    1

    C

    C

    D

    D

    3

    4

    3 1 3

    4

    5

    4

    62 2

    6

    26

  • 8/14/2019 DP-1 ok

    17/23

    Structure

    b) Section D - D

    Case 1 (with vertical live load)

    No. Description Hd X (from D-D) Hd x Y

    3 2.000 x 6.00 x 2.40 28.800 3.000 86.400

    1.000 x 6.00 x 2.40 x 0.50 7.200 2.000 14.400

    4 3.500 x 6.00 x 1.75 36.750 3.000 110.250

    4.500 x 6.00 x 1.95 52.650 3.000 157.950

    1.000 x 6.00 x 1.95 x 0.50 5.850 4.000 23.400

    5 0.500 x 6.00 3.000 3.000 9.000

    6 -17.911 x 6.00 -107.466 3.000 -322.398

    -5.597 x 6.00 x 0.50 -16.791 2.000 -33.582

    T o t a l 9.993 45.420

    Case 2 (without vertical live load)

    No. Description Hd X (from D-D) Hd x Y

    3 2.000 x 6.00 x 2.40 28.800 3.000 86.400

    1.000 x 6.00 x 2.40 x 0.50 7.200 2.000 14.400

    4 3.500 x 6.00 x 1.75 36.750 3.000 110.250

    4.500 x 6.00 x 1.95 52.650 3.000 157.950

    1.000 x 6.00 x 1.95 x 0.50 5.850 4.000 23.400

    6 -17.283 x 6.00 -103.698 3.000 -311.094

    -5.859 x 6.00 x 0.50 -17.576 2.000 -35.151

    T o t a l 9.976 46.155

    Case 1 Sd = 9.993 ton Md = 45.420 ton m

    case 2 Sd = 9.976 ton Md = 46.155 ton m

    3.2 Seismic Condition

    (1) Wall 2.00

    1.00

    0.00

    8.009.00

    4.50 3.50

    1.00

    2.00 2.00

    6.00 3.00 0.50

    Load diagram on Wall for Seismic case

    Kae = 0.554

    a = 14.036o

    d = 17.50o

    cos (a+d) = 0.852Khea = Kae x cos (a+d) = 0.472 Kh = 0.24

    a) Section A - A

    h = 3.50 m

    qa1 = Khaex h x gsoil = 2.892 t/m

    No. Description Hae Y (from A-A) Hae x Y

    1 0.500 x 3.500 x 0.875 x 2.400 x 0.236 0.867 1.167 1.012

    2 3.500 x 1.000 x 2.400 x 0.236 1.982 1.750 3.468

    3 0.500 x 3.500 x 0.000 x 2.400 x 0.236 0.000 1.167 0.000

    Pa1 2.892 x 3.500 x 0.500 5.061 1.167 5.905

    T o t a l 7.910 10.385

    Sae = 7.910 ton Mae = 10.385 ton mb) Section B - B

    2

    Pa2

    Pa1

    qa2

    qa1

    qa3

    Pa3

    A A

    B B

    1 3

    Pw1 Pw2

    qw2qw1

  • 8/14/2019 DP-1 ok

    18/23

    Stru

    h = 3.50 m hw1 = 4.50 m hw2 = 3.50 m

    qa1 = Khaex h x gsoil = 3.393 t/m

    qa2 = qa1 = 3.393 t/m

    qa3 = Khaex hw1x ( gsat - gw) = 2.019 t/m

    qw1 = hw1x gw = 4.500 ton/m

    qw2 = hw2x gw = 3.500 ton/m

    No. Description Hbe Y (from B-B) Hbe x Y

    Pa1 3.393 x 3.50 x 0.50 5.938 5.667 33.650

    Pa2 3.393 x 4.50 15.270 2.250 34.357

    Pa3 2.019 x 4.50 x 0.50 4.542 1.500 6.813

    Pw1 4.500 x 4.50 x 0.50 10.125 1.500 15.188

    Pw2 -3.500 x 3.50 x 0.50 -6.125 1.167 -7.146

    1 0.500 x 8.00 x 2.00 x 2.40 x 0.24 4.530 2.667 12.080

    2 8.000 x 1.00 x 2.40 x 0.24 4.530 4.000 18.120

    3 0.500 x 8.00 x 0.00 x 2.40 x 0.24 0.000 2.667 0.000

    T o t a l 38.809 113.060

    Sbe = 38.809 ton Mbe = 113.060 ton m

    (2) Footingin case, e < B/6 in case, B/6 < e < B/3

    3.50 3.50

    4.50 4.50

    1.00 1.00

    2.00 2.00

    6.00 3.00 0.50 6.00 3.00 0.50

    in case, e > 0 ande < B/6 in case, e > 0 and B/6 < e < B/3

    9.308 t/m2

    - t/m2

    25.240 t/m2

    33.206 t/m2

    - t/m2

    34.534 t/m2

    - t/m2

    in case, e < 0 and |e| < B/6 in case, e < 0 and B/6 < |e| < B/3

    - t/m2

    - t/m2

    - t/m2

    -

    - t/m2

    - t/m2

    - t/m2

    Load Diagram on Footing in Seismic Case

    D

    1

    1

    C

    C

    D

    D

    2

    4

    5

    3 1

    C

    C

    D

    D

    2

    3

    4

    3 1 3

    4 4

    6

    62

    2

    6

  • 8/14/2019 DP-1 ok

    19/23

    Structure19/

    a) Section C - C

    No. Description Hce X (from C-C) Hce x X

    1 2.000 x 0.50 x 2.40 2.400 0.250 0.600

    1.000 x 0.50 x 2.40 x 0.50 0.600 0.167 0.100

    2 -33.206 x 0.50 -16.603 0.250 -4.151

    -1.328 x 0.50 x 0.50 -0.332 0.333 -0.111

    T o t a l -13.935 -3.561

    Sce = -13.935 ton Mce = -3.561 ton m

    b) Section D - D

    No. Description Hde X (from D-D) Hde x X

    3 2.000 x 6.00 x 2.40 28.800 3.000 86.400

    1.000 x 6.00 x 2.40 x 0.50 7.200 2.000 14.400

    4 8.000 x 6.00 x 1.86 89.400 3.000 268.200

    1.000 x 6.00 x 1.95 x 0.50 5.850 4.000 23.400

    5 -9.308 x 6.00 -55.848 3.000 -167.544

    -15.932 x 6.00 x 0.50 -47.797 2.000 -95.593

    T o t a l 27.605 129.263

    Sde = 27.605 ton Mde = 129.263 ton m

    3.3 Design Bending Moment and Shear Force

    (1) Bending moment and shear force in each case

    Description Bending Moment Shear Force

    Normal Seismic Normal Seismic

    Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

    Section A - A 4.471 4.471 10.385 3.581 3.581 7.910

    Section B - B 52.040 52.040 113.060 18.907 18.907 38.809

    Section C - C 2.627 2.600 3.561 10.270 10.157 13.935

    Section D - D 45.420 46.155 129.263 9.993 9.976 27.605

    (2) Design bending moment and shear force

    Description Bending Moment Shear Force

    Normal Seismic Normal Seismic

    Section A - A 4.471 10.385 3.581 7.910

    Section B - B 52.040 113.060 18.907 38.809

    Section C - C 2.627 3.561 10.270 13.935

    Section D - D 46.155 113.060 9.993 27.605

    Notes: - Moment at Section C-C < Moment at Section B-B

    - Moment at Section D-D < Moment at Section B-B

    187568489.xls.ms_office-11/11/2013

  • 8/14/2019 DP-1 ok

    20/23

    Reinforcement Bar Arrangement and Stress

    Normal ConditionName of Structure : D1 - Hulu

    Location : Randangan

    Wall (upper) Wall (lower) Footing (toe)

    Section A-A Section B-B Section C-C

    back front back front lower upper

    Bending moment M kgfcm 447,148 5,204,020 262,719 4

    Shearing force (joint) S kgf 3,581 18,907 10,270

    Axial force N kgf 0 0 0

    Height of member h cm 187.5 300.0 300.0

    Covering depth d' cm 7.0 7.0 10.0

    Effective height d cm 180.5 293.0 290.0

    Effective width b cm 100.0 100.0 100.0

    Young's modulus ratio n - 24 24 24

    Required R-bar Asreq cm2 1.42 10.23 0.51

    R-bar arrangement 22~300 22~300 22~150 22~300 22~300 22~300 2

    Reinforcement As cm2 12.67 12.67 25.34 12.67 12.67 12.67

    Perimeter of R-bar U 23.04 ok 46.08 ok 23.04 ok

    Dist. from neutral axis x cm 30.23 53.93 39.07

    Compressive stress sc kgf/cm2 1.7 7.0 0.5

    Allowable stress sca kgf/cm2 75.0 75.0 75.0

    ok ok ok

    Tensile stress ss kgf/cm2 207.1 746.7 74.9

    Allowable stress ssa kgf/cm2 1850.0 1850.0 1850.0

    ok ok ok

    Shearing stress at joint t kgf/cm2 0.20 0.65 0.35

    Allowable stress ta kgf/cm2 5.50 5.50 5.50

    ok ok ok

    Resisting Moment Mr kgfcm 2,885,222 10,108,045 4,264,120 10

    Mr for compression Mrc kgfcm 8,110,621 26,823,667 15,693,842 26

    x for Mrc cm 22.329 41.767 28.125

    ss for Mrc kgf/cm2 6608.3 6180.5 8323.5

    Mr for tensile Mrs kgfcm 2,885,222 10,108,045 4,264,120 10

    x for Mrs cm 25.187 47.461 31.017

    sc for Mrs kgf/cm2 24.5 26.6 18.8

    Distribution bar (>As/6 and >Asmin) 2.11 2.11 4.22 2.11 2.11 2.11

    16~300 16~300 16~300 16~300 16~300 16~300 1

    Reinforcement As cm2 6.70 6.70 6.70 6.70 6.70 6.70

    ok ok ok ok ok ok

    Minimum requirement of distribution bar As min = 4.50 cm2

  • 8/14/2019 DP-1 ok

    21/23

    Reinforcement Bar Arrangement and Stress

    Seismic ConditionName of Structure : D1 - Hulu

    Location : Randangan

    Wall (upper) Wall (lower) Footing (toe)Section A-A Section B-B Section C-C

    back front back front lower upper

    Bending moment M kgfcm 1,038,452 11,306,035 356,143 11

    Shearing force (joint) S kgf 7,910 38,809 13,935

    Axial force N kgf 0 0 0

    Height of member h cm 187.5 300.0 300.0

    Covering depth d' cm 7.0 7.0 10.0

    Effective height d cm 180.5 293.0 290.0

    Effective width b cm 100.0 100.0 100.0

    Young's modulus ratio n - 16 16 16

    Required R-bar Asreq cm2 2.17 14.65 0.46

    R-bar arrangement 22~300 22~300 22~150 22~300 22~300 22~300 2

    Reinforcement As cm2 12.67 12.67 25.34 12.67 12.67 12.67

    Perimeter of R-bar U 23.04 46.08 23.04

    Dist. from neutral axis x cm 25.10 44.86 32.32

    Compressive stress sc kgf/cm2 4.8 18.1 0.8

    Allowable stress sca kgf/cm2 112.5 112.5 112.5

    ok ok ok

    Tensile stress ss kgf/cm2 476.1 1604.5 100.7

    Allowable stress ssa kgf/cm2 2775.0 2775.0 2775.0

    ok ok ok

    Shearing stress at joint t kgf/cm2 0.44 1.32 0.48

    Allowable stress ta kgf/cm2 8.25 8.25 8.25

    ok ok ok

    Resisting Moment Mr kgfcm 4,181,747 14,631,463 6,158,619 14

    Mr for compression Mrc kgfcm 10,309,299 33,907,690 19,422,528 33

    x for Mrc cm 18.654 34.848 23.234

    ss for Mrc kgf/cm2 8280.8 7734.9 10313.9

    Mr for tensile Mrs kgfcm 4,181,747 14,631,463 6,158,619 14

    x for Mrs cm 20.582 38.691 25.179

    sc for Mrs kgf/cm2 42.6 46.0 33.3

    Distribution bar (>As/6 and >Asmin) 16~300 16~300 16~300 16~300 16~300 16~300 1

    Reinforcement As cm2 6.70 6.70 6.70 6.70 6.70 6.70

    Minimum requirement of distribution bar As min = 4.50 cm2

  • 8/14/2019 DP-1 ok

    22/23

    ( )

    +

    D22~300D22~300

    D16~300

    D16~300

    D22~150 D22~300

    D16~300

    D16~300

    D16~300 D16~300

    D22~150 D22~300

    +

    +

    D22~300

    D16~300 D22~300 D16~300

    concrete = m3reinforcement = kg

    = kg/m3

    2.00

    8.00

    Reinforcement Bar ArrangementD1 - Hulu

    2.00 1.00 0.00

    0.50

    15.00

    4.00

    1.00

    Randangan

    7.50

    3.50

    21

    41866

    Section of Retaining wall

    3.00

    9.50

    11.00

    6.00

    D

    A A

    B BC

    CD

    187568489.xls.ms_office-11/11/2013

  • 8/14/2019 DP-1 ok

    23/23

    12th Oct, Stability Analysis

    Uplift pressure are added for stability analysis.

    Reinforcement Bar Arrangement

    Reinforcement bar for Footing (heel) are collected.

    Jan. 7, '03 Stability

    Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.

    (distributed width of reaction of foundation soil)

    Structure

    Calculation formula in case of (B/6 < e < B/3) under seismic condition are corrected.

    (distributed width of reaction of foundation soil)