universiti putra malaysia - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/fk 2013...

46
UNIVERSITI PUTRA MALAYSIA SEYYED MASOUD SEYYEDOSHOHADAEI FK 2013 139 OPTIMIZED SCHEME FOR FAST MOBILE IPV6 HANDOVER AND MOBILITY IN IEEE 802.16 NETWORK

Upload: lecong

Post on 12-Mar-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

UNIVERSITI PUTRA MALAYSIA

SEYYED MASOUD SEYYEDOSHOHADAEI

FK 2013 139

OPTIMIZED SCHEME FOR FAST MOBILE IPV6 HANDOVER AND MOBILITY IN IEEE 802.16 NETWORK

Page 2: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

OPTIMIZED SCHEME FOR FAST MOBILE IPV6 HANDOVER AND

MOBILITY IN IEEE 802.16 NETWORK

By

SEYYED MASOUD SEYYEDOSHOHADAEI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in

Fulfillment of the Requirement for the Degree of Doctor of Philosophy

April 2013

Page 3: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

ii

DEDICATION

To

my dearest family,

my kindest Wife, Shahrzad,

my lovely daughter, Tandis,

my sweet son, Arta,

my mother and father, for their encouragement

…in all love, humility, and gratitude

Page 4: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

iii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in

Fulfillment of the Requirement for the Degree of Doctor of Philosophy

OPTIMIZED SCHEME FOR FAST MOBILE IPV6 HANDOVER AND

MOBILITY IN IEEE802.16 NETWORK

By

SEYYED MASOUD SEYYEDOSHOHADAEI

April 2013

Chairman: Professor Borhanuddin Mohd Ali, PhD

Faculty: Engineering

The IEEE 802.16 standard defined mobility capability to cover the physical (PHY)

and Medium Access Control (MAC) layer and intra-domain mobility. When the

FMIPv6 is utilized for inter-domain mobility in WiMAX, reducing the handover

latency and packet loss are still two major challenges in order to realize seamless

handover. Long Latency is the main problem of previous schemes especially for

real-time applications such voice over IP (VOIP) and video streaming. In addition,

previous schemes cannot guarantee predictive mode for high speed users and handle

handover in reactive mode with longer latency than predictive mode. To reduce

overhead of handovers in group mobility in WiMAX network, a protocol such as

Network Mobility Basic Support (NEMOBS) is required. However, utilizing

NEMOBS in WiMAX network causes handover latency due to consequent layer-2

and layer-3 handover execution. This latency is not negligible for real-time

applications.

Page 5: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

iv

To address these issues, this thesis proposes an Optimized Fast Handover Scheme

(OFHS) and an Optimized Fast NEMO (OFNEMO) that will support inter-domain

handover and network mobility in IEEE 802.16e network respectively. In OFHS, a

pre-established multi-tunnel concept is adapted to prepare for handover in advance.

Both link layer handover procedure in IEEE 802.16e and IP layer handover

procedure in FMIPv6 are blended and the messages of both layers are interleaved

effectively to reduce handover latency. This scheme uses cross layer design and

cross function optimization. In OFNEMO the messages of handover procedure in

both layer-2 in IEEE 802.16 and layer-3 in the NEMOBS are merged. In addition,

preparation and pre-established multi-tunnel concept are used to reduce service

disruption time. In both OFHS and OFNEMO, the time consuming reactive mode is

eliminated and a semi-predictive mode which results in better performance is

designed.

Performances of proposed schemes have been evaluated through numerical timing

model, cost analysis model (considering probability of predictive mode failure) and

simulation scenarios through QualNet v5.0 simulator. All three evaluation methods

were applied to the proposed schemes and related standard works published as

RFC5270 and RFC3963 respectively. The simulation results show that the OFHS

predictive mode reduces at least 6.3% of total handover time and 40% handover

latency compared to RFC5270 predictive mode. Also, OFHS semi-predictive mode

reduces 9% of total handover time and 72% handover latency compared to RFC5270

reactive mode. OFNEMO reduces 11% of total handover time and 91% handover

latency in predictive mode, and 6% total handover time and 73% handover latency in

Page 6: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

v

semi-predictive mode respectively, compared to RFC3963. In addition, the proposed

protocols increase probability of predictive mode which has better performance than

reactive mode, even for high speed movement.

The results demonstrate that OFHS and OFNEMO can optimize inter-domain

handover procedures to achieve lower handover latency, reduced packet losses and

increased probability of predictive mode. Hence, with this improvement, the OFHS

and OFNEMO should be able to provide seamless communications for high speed

mobile users, and support network mobility in WiMAX.

Page 7: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

vi

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

SKIM OPTIMUM UNTUK IPV6 MUDAH ALIH PANTAS DAN

RANGKAIAN MUDAH ALIH DALAM RANGKAIAN IEEE802.16

Oleh

SEYYED MASOUD SEYYEDOSHOHADAEI

April 2013

Pengerusi: Professor Borhanuddin Mohd Ali, PhD

Fakulti: Kejuruteraan

Piawaian IEEE 802.16 mendefinisikan keupayaan pergerakan untuk meliputi lapisan

fizikal (PHY) dan Kawalan Capaian Medium (MAC), dan mobiliti dalam-domain.

Apabila FMIPv6 digunakan untuk mobiliti antara-domain dalam WiMAX,

pengurangan pendaman serahan dan kehilangan paket masih menjadi dua cabaran

utama untuk merealisasikan serahan lancar. Pendaman yang panjang adalah masalah

utama pada skima terdahulu terutama untuk aplikasi masa-nyata seperti Suara atas IP

(VoIP) dan pengaliran video. Selain dari itu, skima-skima terdahulu tidak dapat

memastikan mod ramalan untuk pengguna kelajuan tinggi dan sebaliknya

mengendalikan serahan dalam mod reaktif dengan pendaman yang lebih lama dari

mod ramalan. Untuk mengurangkan overhed serahan dalam mobility kumpulan

dalam rangkaian WiMAX satu protocol seperti Sokongan Asas Mobiliti Rangkaian

atau Network Mobility Basic Support (NEMOBS) adalah diperlukan. Walau

Page 8: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

vii

bagaimanapun, NEMOBS memberi kesan yang negatif ke atas prestasi pendaman

pergerakan, ia itu yang tidak boleh diabaikan untuk aplikasi masa-nyata.

Untuk menangani isu-isu ini, tesis ini mencadangkan satu skim optimum untuk

penyerahan pantas Optimized Fast Handover Scheme (OFHS) dan Optimized Fast

NEMO (OFNEMO) yang boleh menyokong serahan antara-domain dan pergerakan

rangkaian dalam rangkaian IEEE 802.16e masing-masing. Dalam OFHS, suatu

konsep bebilang terowong yang ditubuh terlebih awal adalah diterima pakai untuk

bersiap-sedia membuat penyerahan terlebih dahulu. Kedua-dua prosedur serahan

lapisan pautan dalam IEEE 802.16e dan prosedur serahan lapisan IP dalam FMIPv6

digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

berkesan untuk mengurangkan pendaman.. Skim ini menggunakan rekabentuk

lapisan bersilang , dan pengoptimuman bersilang fungsi. Dalam OFNEMO risalah

prosedur penyerahan untuk kedua-dua lapisan-2 dalam IEEE 802.16 dan lapisan-3

dalam NEMOBS adalah digabungkan. Selain itu, mekanisme persediaan dan konsep

berbilang-terowong dibentuk-dahulu, digunakan untuk mengurangkan tempoh

gangguan perkhidmatan. Dalam kedua-dua OFHS dan OFNEMO, mod reaktif yang

memakan masa adalah dihapuskan dan mod separa-ramalan yang menatijah prestasi

yang lebih baik adalah direkabentukkan.

Prestasi skim cadangan ini telah dinilai melalui model masa numeric, model analisis

kos (mengambil kira kebarangkalian kegagalan mod ramalan) dan senario simulasi

melalui simulator QualNet v5.0. Kesemua tiga kaedah penilaian telah diaplikasikan

kepada skim yang dicadangkan dan kerja-kerja piawaian yang diterbitkan sebagai

RFC5270 dan RFC3963 masing-masing. Hasil keputusan simulasi menunjukkan

Page 9: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

viii

bahawa OFHS mod ramalan mengurangkan sekurang-kurangnya 6.3% jumlah masa

serahan dan 40% pendaman serahan dibandingkan dengan mod ramalan RFC5270.

Juga, OFHS mode separa-ramalan mengurangkan 9% jumlah masa serahan dan 72%

pendaman serahan berbanding dengan RFC5270 mod reaktif. OFNEMO

mengurangkan 11% daripada jumlah masa serahan dan 73% pendaman serahan

dalam mod separa-ramalan masing-masing berbanding dengan RFC3963. Sebagai

tambahan, protokol cadangan ini meningkatkan kebarangkalian mod ramalan yang

mempunyai prestasi lebih baik dari mod reaktif, walaupun dalam kelajuan tinggi.

Hasil keputusan menunjukkan bahawa OFHS dan OFNEMO boleh

mengoptimumkan prosedur penyerahan antara-domain untuk mencapai pendaman

serahan lebih rendah, kehilangan paket yang lebih kecil dan kebarangkalian mod

ramalan yang lebih tinggi. Oleh itu, dengan pembaikan ini, OFHS dan OFNEMO

seharusnya mampu memberi komunikasi lancar untuk pengguna WiMAX

berkelajuan tinggi, dan menyokong pergerakan rangkaian.

Kata kunci- penyerah mudah alih yang laju, penyerahan kependaman, IEEE 802.16,

mobiliti jaringan, terowong wujud-semula, WiMAX.

Page 10: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

ix

ACKNOWLEDGEMENTS

It is my pleasure to express my gratitude to Professor Borhanuddin Mohd Ali, my

advisors. The completion of this thesis would not be possible without his reading and

correction patience, as well as technical advices.

I am also delighted to convey my appreciations to other my supervisory committee

members, Professor Sabira Khatun, Professor Mohamed Othman and Professor Farht

Anwar for providing valuable suggestions and criticisms, for their unwavering

scholarly support that led me to provide independent ideas and research skills.

Although few words do not justice to their contribution, I am grateful to have such

helpful friends around who always showed concerns for my work.

Page 11: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

x

I certify that a Thesis Examination Committee has met on (5/5/2013) to conduct the

final examination of Seyyed Masoud Seyyedoshohadaei on his thesis entitled

“Optimaized Scheme for Fast Mobile IPv6 Handover and Network Mobility In IEEE

802.16 Network” in accordance the with Universities and University Colleges Act

1971 and the Constitution of Universiti Putra Malaysia [P.U.(A) 106] 15 March

1998. The Committee recommends that the student be awarded the degree of Doctor

of Philosophy.

Members of the Thesis Examination Committee were as follows:

Abdul Rahman Ramli, PhD

Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Chairman)

Mohd Fadlee bin A Rasid, PhD

Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Internal Examiner)

Shamala a/p K Subramaniam, PhD

Associate Professor

Faculty of Computer Science

Universiti Putra Malaysia

(Internal Examiner)

Hamid Aghvami, PhD

Professor

Centre for Telecommunications Research

King’s Collage London

(External Examiner)

NORITAH OMAR, PhD

Assoc. Professor and Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 2 AUGUST 2013

Page 12: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xi

This thesis submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfillment of the requirements for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Borhanuddin b. Mohd. Ali, PhD

Professor

Faculty of Engineering

Universiti Putra Malaysia

(Chairman)

Mohamed Othman, PhD

Professor

Faculty of Computer Science

Universiti Putra Malaysia

(Member)

Sabira Khatun, PhD

Professor

Faculty of Computer Systems & Software Engineering

Universiti Malaysia Pahang

(Member)

Farhat Anwar, PhD

Professor

Faculty of Electrical and Computer Engineering

International Islamic University Malaysia

(Member)

BUJANG KIM HUAT, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

Page 13: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xii

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations

and citations, which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at University Putra

Malaysia or other institutions.

SEYYED MASOUD SEYYEDOSHOHADAEI

Date:

Page 14: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xiii

TABLE OF CONTENTS

Page

DEDICATION ii

ABSTRACT iii

ABSTRAK vi

ACKNOWLEDGEMENTS ix

APPROVAL x

DECLARATION xii

LIST OF TABLES xvi

LIST OF FIGURES xvii

LIST OF ABBREVIATIONS xxi

CHAPTER Page

1 INTRODUCTION 1

1.1 Overview 1

1.2 Research Motivation and Problem Statement 5

1.3 Research Objectives 9

1.4 Research Scope 10

1.5 Contributions 11

1.6 Organization of the Thesis 12

2 LITERATURE REVIEW 14

2.1 IEEE 802.16e Family of Standards 14

2.1.1 IEEE 802.16 History 16

2.1.2 IEEE 802.16 Network Architecture 19

2.2 Handover 22

2.2.1 Different Handover Types 23

2.2.2 Handover in IEEE 802.16 25

2.3 Mobile IPv4 30

2.4 Mobile IPv6 33

2.4.1 Hierarchical Mobile IPv6 34

2.4.2 Proxy Mobile IPv6 36

2.4.3 Fast Mobile IPv6 (FMIPv6) 36

2.5 Mobile Network 38

2.5.1 Network Mobility Scenario 39

2.5.2 Network Mobility Basic Support 41

Page 15: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xiv

2.6 IP Layer Handover for IEEE 802.16e 46

2.7 FMIPv6 Over IEEE 802.16 47

2.7.1 Fast Handover in IEEE 802.16 (FH802.16e) 48

2.7.1 RFC5270 49

2.7.3 Cross Layer Handover Scheme (CLHS) 53

2.7.4 Integrating Fast Handover in IEEE 802.16e 55

2.7.5 Integrating Fast Handover in IEEE 802.16e 56

2.8 Network Mobility Related Works 57

2.9 Summary 58

3 METHODOLOGY 63

3.1 Optimized Fast Handover Scheme (OFHS) 64

3.2 The Designing Concept of OFHS 65

3.3 OFHS Procedure 69

3.3.1 OFHS Predictive Mode 70

3.3.2 OFHS Semi-Predictive Mode 72

3.4 Performance Evaluation Method of OFHS 76

3.4.1 Timing Model of OFHS 76

3.4.2 Cost Analysis Model of OFHS 84

3.4.3 Simulation of OFHS 93

3.5 Optimized Fast Network in Mobility (OFNEMO) 97

3.6 The Designing Concept of OFNEMO 99

3.7 OFNEMO Procedure 102

3.7.1 OFNEMO Predictive Mode 102

3.7.2 OFNEMO Semi-Predictive Mode 105

3.7.3 OFNEMO Reactive Mode 106

3.8 Performance Evaluation Method of OFNEMO 107

3.8.1 Timing Model of OFNEMO 108

3.8.2 Cost Analysis Model of OFNEMO 112

3.8.3 Simulation of OFNEMO 116

4 RESULTS AND DISCUSSION 119

4.1 OFHS Performance 119

4.1.1 Total Handover Time of OFHS 120

4.1.2 Handover Latency of OFHS 121

4.1.3 Mobile Station (MS) Speed in OFHS 123

4.1.4 Packet Loss in OFHS 125

4.1.5 Total Cost of OFHS 129

4.2 OFNEMO Performance 139

4.2.1 Total Handover Time of OFNEMO 140

4.2.2 Handover Latency of OFNEMO 141

Page 16: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xv

4.2.3 Mobile Router (MR) Speed in OFNEMO 143

4.2.4 Packet Loss in OFNEMO 144

4.2.5 Total Cost of OFNEMO 148

4.3 Summary 152

4.3.1 Evaluation Results of OFHS 152

4.3.2 Evaluation Results of OFNEMO 156

5 CONCLUSION 160

5.1 Conclusion 160

5.2 Recommendations for Further Works 164

REFERENCES 166

APPENDICES 174

BIODATA OF STUDENT 189

LIST OF PUBLICATIONS 190

Page 17: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xvi

LIST OF TABLES

Table Page

2.1 IEEE 802.16 standards 18

2.2 The Components of the Mobile IP 31

2.3 The Comparison of the previous work 62

3.1 OFHS Timing Parameters 77

3.2 OFHS Cost Analyze Parameters 86

4.1 Timing Model Parameters Assumption 119

4.2 Maximum MS Speed to Handle Predictive Mode 124

4.3 Parameters Values 131

4.4 Timing Model Parameters Assumption of NEMO 139

4.5 Summary of Improvements of OFHS 154

4.6 Summary of Improvements of OFNEMO 159

Page 18: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xvii

LIST OF FIGURES

Figure Page

1.1 Handover Latency of Layer-2 and Layer-3 5

1.2 Mobile WiMAX Handover Research Issues 8

1.3 Research Scope 11

2.1 Various Architecture of BS and AR 20

2.2 MWiMAX Model Structure 20

2.3 Network Reference Model 21

2.4 ASN Reference Model 22

2.5 Macro-Mobility and Micro-Mobility 24

2.6 Signal Strength and Hard handover realization 25

2.7 IEEE 802.16e Handover Procedure 26

2.8 Initial Network Entry Handover 29

2.9 Mobile IP diagram 32

2.10 HMIPv6 Architecture 35

2.11 FMIPv6 Procedure Predictive and Reactive Modes 38

2.12 NEMO Basic Support Protocol 42

2.13 NEMO Basic Support Modes of Operation 45

2.14 The Message Sequence Chart of FMIPv6 over IEEE 802.16e

Handover Procedure (RFC5270), Predictive Mode 51

2.15 The Message Sequence Chart of FMIPv6 over IEEE 802.16e

Handover Procedure (RFC5270), Reactive Mode 52

2.16 The Message Sequence Chart of CLHS Handover Procedure 54

2.17 The Message Sequence Chart of FNEMO Handover Procedure 58

3.1 Overall Research Approach 63

Page 19: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xviii

3.2 OFHS Network Model 64

3.3 The Message Sequence Chart of OFHS Handover Procedure,

Predictive Mode 72

3.4 The Message Sequence Chart of OFHS Handover Procedure,

Semi-Predictive Modes 74

3.5 The Message Sequence Chart of OFHS Handover Procedure,

Reactive Mode 75

3.6 Probability of Predictive Mode Failure versus Handover Preparation Time 89

3.7 OFHS Simulation Flowchart 95

3.8 The OFHS Network Topology in QualNet Canvas 96

3.9 The Node Addresses of OFHS in QualNet Canvas 97

3.10 OFNEMO Network Model 98

3.11 The Message Sequence Chart of OFNEMO Handover Procedure,

Predictive Mode 105

3.12 The Message Sequence Chart of OFNEMO Handover Procedure,

Semi-Predictive Mode 106

3.13 The Message Sequence Chart of OFNEMO Handover Procedure,

Reactive Mode 107

3.14 The NEMO Topology in QualNet Canvas 117

3.15 The NEMO Node Addresses in QualNet Canvas 118

4.1 Total Handover Time of OFHS versus Frame Durations, Predictive Mode 120

4.2 Total Handover Time of OFHS versus Frame Durations

(Reactive and Semi-Predictive Mode) 121

4.3 Handover Latency of OFHS versus Frame Durations

(Predictive Mode) 122

4.4 Handover Latency of OFHS versus Frame Durations

(Reactive and Semi-Predictive Mode) 122

Page 20: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xix

4.5 Handover Latency of RFC5270 and OFHS versous MS Speed 125

4.6 Packet Sequence of RFC5270, Predictive Mode 126

4.7 Packet Sequence of RFC5270, Reactive Mode 126

4.8 Packet Sequence of OFHS, Predictive and Semi-Predictive Modes 127

4.9 The OFHS and RFC5270 Packet Loss versus MS Velocity 129

4.10 Probability of Predictive Mode Failure versus TH-Pre-Ov 130 4.11 Signaling Cost of RFC5270 and OFHS versus Handover

Preparation Time 132

4.12 The Signaling Cost of RFC5270 and OFHS versus Handover

Preparation Time Considering Probability of Predictive Mode Failure 134

4.13 Packet Delivery Cost of RFC5270 and OFHS versus Handover

Preparation Time 135

4.14 The Packet Delivery Cost of RFC 5270 and OFHS versus Handover

Preparation Time Considering Probability of Predictive Mode Failure 137

4.15 Total Cost of RFC5270 and OFHS versus Layer-2 Pending Time 138

4.16 Total Cost of RFC5270 and OFHS versus MS Velocity 139

4.17 Total Handover Time of NEMOBS and OFNEMO (Predictive,

Semi-Predictive and Reactive Modes) for Different Frame Duration 141

4.18 Handover Latency of NEMOBS and OFNEMO (Predictive,

Semi- Predictive and Reactive Modes) for Different Frame Duration 142

4.19 Handover Latency of NEMOBS and OFNEMO versus MS Speed 144

4.20 Packet Sequence of NEMOBS 145

4.21 Packet Sequence of NEMOBS Predictive, Semi-Predictive and

Reactive Modes 146

4.22 The NEMOBS and OFNEMO Packet Loss versus MS Velocity 147

4.23 Signaling Cost of NEMOBS and OFNEMO versus Handover

Preparation Time 149

Page 21: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xx

4.24 Packet Delivery Cost of NEMOBS and OFNEMO versus

Handover Preparation Time (TH-Pre) 150

4.25 Total Cost of NEMOBS and OFNEMO versus Pending Time 151

4.26 Total Cost of NEMOBS and OFNEMO versus MN velocity 152

4.27 Total Handover Time and Handover Latency of RFC5270 & OFHS 153

4.28 Signalling, Packet Delivery and Total Cost of RFC5270 and OFHS 155

4.29 Total Handover Time and Handover Latency of

NEMOBS and OFNEMO 156

4.30 Signalling , Packet Delivery and Total Cost of NEMOBS and OFNEMO 158

Page 22: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xxi

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

AP Access Point

AR Access Router

ASN Access Services Network

BPSK Binary Phase Shift Keying

BS Base Station

BSID Base Station Identifier

BSS Basic Service Set

BU/BA Binding Update & Acknowledgement

CBR Constant Bit Rate

CN Correspondent Node

CoA Care-of-Address

CSN Connectivity Services Network

DAD Duplicate Address Detection

DES Data Encryption Standard

ETSI European Telecommunications Standards Institute

FBU/FBAck Fast Binding Update & Acknowledgement

FDMA Frequency Division Multiple Access

FHMIPv6 Fast Handover for Hierarchical Mobile IPv6

FMIPv6 Fast Handover for Mobile IPv6

FNA Fast Neighbor Advertisement

HA Home Agent

Hack Handover Acknowledge

Page 23: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xxii

HI Handover Initiation

HI/HAck Handover Initiation & Acknowledgement

HIPERMAN High Performance Radio Metropolitan Area Network

HMIPv6 Hierarchical Mobile IPv6

HoA Home-of-Address

HARQ Hybrid Automatic Repeat Request

IEEE Institute of Electrical and Electronic Engineering

IETF Internet Engineering Task Force

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

ITU International Telecommunication Union

LHI Link Handover Impend

LSW Link Switch

LUP Link Up

LOS Line of Sight

MAC Media Access Control

MAG Mobile Access Gateway

MAP Mobility Anchor Point

MIH Media Independent Handover

MIMO Multiple-in Multiple-out

Mipshop Mobility for IP, services, handover, performance

MIPv6 Mobile Internet Protocol version 6

MN Mobile Node

MR Mobile Router

MS Mobile Station

Page 24: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xxiii

NAR New Access Router

NCoA New Care-of-Address

NEMO Network Mobility

NEMOBS Network Mobility Basic Support

NLD Link Detected

NLOS Non Line Of Sight

NRM Network Reference Model

NWG Network Working Group (WiMAX Forum)

OFDMA Orthogonal Frequency Division Multiple Access

OFNEMO Optimized Fast Network Mobility

PAR Previous Access Router

PDA Personal Digital Assistant

PDN Packet Data Network

PHY Physical Layer

PMIPv6 Proxy Mobile IPv6

PrRtAdv Proxy Router Advertisement

QAM Quadrate Amplitude Modulation

QPSK Quadrate Phase Shift Keying

QoS Quality of Service

RA Router Advertisements

RIPng Routing Information Protocol next generation Open

TDMA Time Division Multiple Access

UMTS Universal Mobile Telecommunication System

UNA Unsolicited Neighbor Advertisement

VoIP Voice over IP

Page 25: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

xxiv

WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Network

WPAN Wireless Personal Area Network

WWAN Wireless Wide Area Network

Page 26: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

1

CHAPTER 1

INTRODUCTION

1.1 Overview

The telecommunication infrastructures that were dependent on wires, fiber optic cable,

coaxial cable or twisted pair copper wire make movement limited for data users. Hence,

users do not able to roam around while using the twice. In past decades, wireless

communications technologies have developed very fast due to the increasing demands

for various multimedia applications, with varying quality services and mobility. Using

more mobile devices, such as sensors, smart phones, tablets and laptops, has driven

demand for novel wireless network with higher data rate services, higher efficiency,

lower cost and faster mobility support for anytime and anywhere this gives rise to

Broadband Wireless Access (BWA) systems.

Among many standards that are available, Worldwide Interoperability for Microwave

Access (WiMAX) is one of the utilized technologies for BWA. WiMAX Forum defines

the name "WiMAX" and network architecture of WiMAX which was created in 2001.

Consortiums of industrials make up the WiMAX Forum that was formed with an

objective to certify the WiMAX products.

WiMAX is based on an emerging broadband wireless standard which is called Wireless

Metropolitan Area Networks (WMAN) or 802.16 family of standards. It was started by

Page 27: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

2

Institute of Electrical and Electronic Engineers (IEEE) in 2001. The ease of application

and low cost of installation are the main attractive features of IEEE 802.16 (IEEE

802.16, 2001) which is particularly useful in the rural areas where there is not much

availability of wired infrastructure or in crowded metropolitan areas where development

of wired infrastructure would be complicated. The most attractive aspect of WiMAX is

the mobility capability that IEEE 802.16e (IEEE 802.16e, 2005) standard adds to the

previous standard. Upon mobility support was added to the standard, handover has

become one of the most important factors that influence the performance of IEEE

802.16e system. Handover is the process where the active sessions of the Mobile Station

(MS) are maintained as it changes its attachment point to the access network. When the

MS migrates from one Base Station (BS) to another, handover occurs in order for the

ongoing session to continue. However during hard handover, for a short time interval,

the MS cannot send or receive any packets. This time interval is called handover

latency. Handovers are broadly classified into two categories; hard handover and soft

handover. There are further two categories of the hard handover; the intra-domain and

inter-domain handover.

WiMAX supports several movement scenarios which need particular handover

procedures. When a MS changes its location, it changes the point of attachment to the

network in two difference scenarios. They are namely,

Micro-mobility, Access Services Network (ASN)-anchored, intra-domain or

layer-2 handover. This occurs when MS or Mobile Node (MN) changes its air

interface attachment between the BSs under the same ASN. The base station in

Page 28: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

3

the handover is located in the same IP subnet in the case of link layer handover.

The IP configurations are not changed when the terminal only requires re-

establishing a link layer connection with the new base station.

Macro-mobility, Connectivity Services Network (CSN)-anchored, inter-domain,

or layer-3 handover. This occurs when the MS changes its air interface

attachment between the BSs under different ASNs (different IP subnets). A MS

must establish both a new link layer connection in an IP configuration, with a

new IP configuration to maintain the connectivity.

The intra-domain handover procedure requires support from the physical and MAC

layers. Layer-3 handover algorithm is also required to support the IP addressing during

the inter-domain handover although; the IEEE 802.16 has its own MAC layer or layer-2

handover algorithm. Mobile IP is a typical protocol in network layer for mobile

terminals, which can be Mobile IPv4 (MIPv4) (Perkins, 2002) or Mobile IPv6 (MIPv6)

(Johnson, et al., 2004). These have been standardized by the Internet Engineering Task

Force (IETF) in 2002 and 2004, respectively.

Since MIPv6 is designed for supporting the mobility of single mobile hosts, the Network

Mobility (NEMO) Working Group of IETF extended it for supporting the mobility of

networks. The NEMO Working Group in IETF standardized NEMO Basic Support

(NEMOBS) protocol (Devarapalli, 2005), as an extension of the MIPv6 protocol. This is

concerned with the mobility of an entire network which dynamically changes its point of

Page 29: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

4

attachment to the Internet. The mobility functionality is moved from MS to a mobile

network’s router or Mobile Router (MR) by the NEMOBS protocol.

There are many problems with MIPv4, such as triangular routing, security and limitation

of address space which are now solved by using MIPv6. But there still remain some

problems, such as handover latency, packet loss and signaling overhead.

The handover latency problem is not solved by the MIPv6 and leads to a long latency

problem which cannot be neglected for real time application like Voice over IP (VoIP)

and video streaming. The solution to the problem of MIPv6 handover latency was

proposed through the use of Hierarchical Mobile IPv6 (HMIPv6) (Soliman, 2007),

Proxy Mobile IPv6 (PMIPv6) (Gundavelli, 2008) and Fast Mobile IPv6 (FMIPv6)

(Koodli, 2005 and Koodli, 2009).

The FMIPv6 was standardized in 2005 by MIPv6 Signaling and Handoff Optimization

(MIPSHOP) working group of IETF. FMIPv6 can reduce the handover latency and

packet loss by mobility detection, creating new address for the target network and

receiving data through tunneling in advance. It is a difficult task to design an effective

handover to handle all sorts of mobility with minimum latency owing to the IP

addressing and the complicated mobility pattern in WiMAX. WiMAX Forum also

seems interested in the aspect of deploying IPv6 over WiMAX. To effectively

coordinate the FMIPv6 handover algorithm in layer-3 with handover algorithm of the

IEEE 802.16 system in layer-2, many proposals have been introduced. The usage of

FMIPv6 to decrease latency of inter-domain handover for both the MS and MR in

Page 30: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

5

WiMAX network will be studied in detail in this thesis finding out methods for its

optimized usage. This chapter discusses the research problems and motivation,

establishes its objectives and defines its scope.

1.2 Research Motivation and Problem Statement

In the inter-domain handover, layer-3 prepares IP handover and the MAC and PHY

layers support the procedure by providing information and triggers. Support for the

inter-domain handover in the WiMAX can be provided through the usage of MIPv6

handover algorithm in the layer-3 with handover algorithm of the IEEE 802.16 in layer-

2. If these are performed serially (Figure 1.1), it causes a long latency problem which is

not negligible for real-time applications.

Figure 1.1. Handover Latency of Layer-2 and Layer-3

The layer-2 and layer-3 handover latency are involved in the overall handover delay in

MIPv6 and NEMO. The time spans when the MN/MR is disconnected from the link of

the current Access Router (AR) till the time it successfully accesses the link of the new

AR is called the layer-2 handover latency. The latencies that occur during the processes

Page 31: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

6

of Care of Address (CoA) configuration, IP layer movement detection, network re-

authentication, and Binding Update (BU) are all included in the category of layer-3

handover latency.

In FMIPv6, several techniques are employed to perform actions to exchange handover

information between two ARs in advance. The FMIPv6 reduces the handover latency by

executing those time consuming processes when MS is still present on the current link.

The proactive mechanism which was used in FMIPv6 can also be used to reduce latency

of the NEMO protocol. Using the FMIPv6 in IEEE 802.16e networks reduces overall

handover latency of IP handover. The application of FMIPv6 handover algorithm in the

IEEE 802.16e environments can be done through the various schemes which are

explained in the next section. One of the biggest challenges faced in the mobile

WiMAX includes the issue of reducing the handover latency in the IP layer for the high

speed MS, especially for real time application’s support. The handover latency and

packet loss can be reduced further by introducing more improvements in handover

procedure.

With the growing demand of using WiMAX as a broadband communication technology,

providing seamless communication for high speed movement users, preparing real-time

application services and supporting network mobility are the main motivations of this

research. This thesis presents an approach to further optimize the handover schemes.

The problem statements of this thesis can be stated as follows:

To achieve a high standard of real time quality, it is essential that continuous

network connectivity is provided. The voice quality in the VOIP applications and

Page 32: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

7

the video quality in the video streaming are affected by the continuous

disruptions or intermittent discontinuation of transmission due to the excessive

handover processing of current standard protocols. Handover latency in

consequence of duplicate address detection and handover messages exchange

increases service disruption time and packet loss. Hence, there are still issues in

the handover latency of current schemes in the IP layer handover in IEEE802.16

networks to support real-time applications, which in turn degrades the quality of

real time applications.

There are two ways in which the mobility is dealt by the current schemes that use

the FMIPv6 for layer-3 protocol in WiMAX handover. These are predictive and

reactive modes, respectively. Handover will proceed in the predictive mode

when a sequence of preparation messages has been received on time. The

handover procedure will be continued in the reactive mode when the messages

are delayed or lost which will lead to long delays. The probability of using

predictive mode is reduced when the MS moves at high speed which means the

handover is handled in a reactive mode and as a result latency cannot be

acceptable for real time applications.

When using NEMOBS for group mobility in WiMAX, long latencies are

induced due to serial handover execution of layer-2 and layer-3, therefore an

effective handover scheme is needed to support NEMO in WiMAX systems.

Page 33: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

8

In addition, the path to commercialization of WiMAX mobility framework is full of

research challenges. Potential handover-related research issues in the existing and future

WiMAX mobility framework has been described in (Ray, et al., 2010). The MWiMAX

Handover Research Issues classified by (Ray, et al., 2010) is shown in Figure 1.2.

Figure 1.2. Mobile WiMAX Handover Research Issues (Ray, et al., 2010)

1.3 Research Objectives

Page 34: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

9

This thesis proposes an effective handover scheme for the IP layers in WiMAX (IEEE

802.16) network. It focuses on issues such as handover latency, packet loss and

probability of predictive mode in WiMAX inter-domain handover for both mobile nodes

and mobile routers, thus objectives of this thesis can be stated as follows:

1. To design an optimized protocol for inter-domain handover in Mobile WiMAX

networks to reduce handover latency and achieve lower packet loss and higher

probability of predictive mode compared to the standard schemes by utilizing

pre-establish multi-tunnel, cross layer and cross function optimization.

2. To design a new protocol to support mobile router handover in Mobile WiMAX

networks. The protocol defines network mobility in IEEE 802.16 network to

reduce handover latency and packet loss compared to the standard schemes by

using pre-established multi-tunnel, cross layer concept and cross function of

layer-2 and layer-3 messages.

3. To develop a cost analysis for network overhead investigation that is caused by

newly proposed protocols compared with the standard schemes.

1.4 Research Scope

Page 35: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

10

The inter-domain hard handover which includes layer-2 and layer-3 handover will be

addressed in this thesis. Layer-2 handover procedure has been explained in IEEE

802.16. The FMIPv6 was however applied on layer-3 handover protocol. This thesis

primarily focuses on how FMIPv6 can be used as IP layer protocol to support macro-

mobility in the IEEE 802.16 networks. Introduction of the protocol to support group

mobility by defined handover procedure for mobile router will also be focused upon in

this thesis. Route optimization will not be included in this thesis and all traffic between

CN and the MS passes through the HA. Figure 1.3 depicts the scope of this thesis that

highlights the related field and outcome schemes.

Page 36: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

11

Broadband Wireless Communication

WPN WLAN WMAN WWAN

WiMAX

Mobility Security … IP Layer

MIPv4 MIPv6

Handover NEMO

Soft Hard

HIPv6 FMIPv6 PMIPv6

ASN- Anchored CSN-Anchored

(Intra-domain) (Inter-domain)

Optimized Fast Handover Scheme Optimized Fast NEMO

(OFHS) (OFNEMO)

Figure 1.3. Research Scope

1.5 Contributions

The main contributions of this thesis are as follows:

a. The integration of messages in layer-2 and layer-3 which helps to reduce traffic

overhead while performing the handover process.

Page 37: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

12

b. The omission of some control messages which are exchanged between wireless

parts and the introduction of new messages in the wired parts of network, which

helps to reduce delays further.

c. A method to pre-establish multi-tunnel mechanism to prepare tunnels in advance

to reduce the overall handover delay caused by the FMIPv6 Duplicated Address

Detection (DAD) test.

d. The use of predictive mechanism similar to FMIPv6 in NEMO in order to get the

channel ready while layer-2 and layer-3 handover are taking place.

e. The cross-layer scheme which incorporates handover procedures of layer-2 and

layer-3 and coincident the processes of both layers.

1.6 Organization of Thesis

The introduction to the study, research scopes, the problem statement, research

objectives, contributions and outline of thesis are presented in the first chapter. The

thesis is organized according to the chapters which are explained below:

The background about basic concepts of the MIPv6, FMIPv6, NEMO and IEEE802.16

is expressed in the Chapter 2. The literature review on the current and the past research

on the IP handover in WiMAX network are also included in this chapter.

Page 38: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

13

The methods proposed are stated in the Chapter 3. The optimized scheme of FMIPv6

over IEEE 802.16e standard is presented in this chapter. It will also explain the timing

model, cost analysis and simulation of proposed method (OFHS) and current standard

method in FMIPv6 over IEEE 802.16 (RFC5270). The second part will describe the

optimized scheme for NEMO in IEEE 802.16 that was designed using the same

concepts. Chapter 3 will also give details about aspects such as timing model, cost

analysis and simulation of proposed NEMO solution (OFNEMO) and current NEMO

protocol (RFC3963) in IEEE 802.16 network (NEMOBS).

Chapter 4 discusses the results of the analytical model and simulations. The performance

is evaluated by comparing the results of the current RFCs and the proposed optimized

schemes.

Chapter 5 gives the main conclusions of this thesis and states the recommendations for

future research.

Page 39: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

166

REFERENCES

Agis, E. et al. 2004. Global, Interoperable Broadband Wireless Networks: Extending

WiMAX Technology to Mobility. Intel Technology Journal, volume 8, number 3,

p173-187.

Al-Suhail, G.A. and Al-Hammedy H.J. 2012. Improving Inter-Domain Fast Handover

Using MIH Services in Mobile WiMAX, IJCNS, volume 5, number 11, p. 743-752

Becvar, Z. and Zelenka, J. 2006. Handover in the Mobile WiMAX,

http://fireworks.intranet.gr/fireworks_docspulic/Fireworks_6CTUPB008a.pdf

Carlos, J., Bernardos, Soto, I. and Calderón, M. 2007. IPv6 Network Mobility, Internet

Protocol Journal, volume 10, number 2, p16-27

Castelluccia, C. 2000. HMIPv6: A hierarchical mobile IPv6 proposal, ACM

SIGMOBILE Mobile Computing and Communications Review, volume 4, p.48-59.

Chen, Y. and Hsieh, F. 2007. A Cross Layer Design for Handoff in 802.16e Network

with IPv6 Mobility, IEEE Communications Society subject matter experts.

Devarapalli, V., Wakikawa, R., Petrescu, A. and Thubert, P. 2005. Network Mobility

(NEMO) Basic Support Protocol, RFC3963, NEMO Working Group of IETF.

Page 40: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

167

El Malki, K. 2007. Low Latency Handoffs in Mobile IPv4, RFC4881, Network Working

Group of IETF.

Etemad, K. 2008. Overview of Mobile WiMAX Technology and Evolution. IEEE

Communication Magazine, volume 46, number 10, p. 31-40.

Gelogo, Y. E. and Park, B. 2012. Reducing Packet Loss for Mobile IPv6 Fast Handover

(FMIPv6), International Journal of Software Engineering and Its Applications,

Volume 6, No. 1.

Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K. and Patil, B. 2008. Proxy

mobile IPv6, RFC5213, Network Working Group of IETF.

Han, Y., Jang, H., Choi, J., Park, B. and McNair, J. 2007. A Cross-Layering Design

forIPv6 Fast Handover Support in an IEEE 802.16e Wireless MAN, IEEE Network.

Hu, R.Q. et al. 2007. On the Evolution of Handoff Management and Network

Architecture in WiMAX. In Proc. IEEE Mobile WiMAX Symposium, Florida, USA,

p144-149.

Huynh, P., Jangyodsuk, P. and Moh, M. 2008. Supporting Video Streaming over

WiMAX Networks by Enhanced FMIPv6-Based Handover.

Page 41: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

168

IEEE 802.16, 2001. IEEE Standard for Local and Metropolitan area networks, Air

Interface for Fixed Broadband Wireless Access Systems.

IEEE 802.16a, 2003. Standard for Local and Metropolitan area networks, Air Interface

for Fixed Broadband Wireless Access Systems

IEEE 802.16e, 2005. IEEE Standard for Local and Metropolitan Area Networks, Air

Interface for Fixed and Mobile Broadband Wireless Access Systems

IEEE 802.16c, 2002. Standard for Local and Metropolitan area networks, Air Interface

for Fixed Broadband Wireless Access Systems

IEEE 802.21, 2009. IEEE Standard for Local and metropolitan area networks, Part 21:

Media Independent Handover.

Jang, H.J., Jee, J., Han, Y.H., Park, S.D. and Cha., J. 2008. Mobile IPv6 Fast Handovers

over IEEE 802.16e Networks, RFC5270, Network Working Group of IETF.

Jiao, W., Jiang, P. and Ma, Y. 2007. Fast Handover Scheme for Real-Time Applications

in Mobile WiMAX”, IEEE Communications Society.

Johnson, D., Perkins C. and Arkko, J. 2004. Mobility Support in IPv6, RFC3775,

Network Working Group of IETF.

Page 42: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

169

Kodaly, R. and Perkins, C. 2006. Mobile IPv4 Fast Handovers”, Internet Draft, Mobile

IPv4 Working Group of IETF.

Koodli, R. 2005, Fast Handovers for Mobile IPv6, RFC4068, Network Working Group

of IETF.

Koodli, R. 2009, Mobile IPv6 Fast Handovers, RFC5568, Network Working Group of

IETF.

Kwon, D.H., Kim, Y.S., Bae, K.J. and Suh, Y.J. 2005. Access router information

protocol with FMIPv6 for efficient handovers and their implementations, Globecom,

p3814-3819.

Lee, D.H., Kyamakya, K., Umondi, J.P. 2006. Fast handover algorithm for IEEE

802.16e Broadband Wireless Access System. In Wireless Pervasive Computing, 1st

International symposium.

Lee, J., Ernst, T. and Chung, T.M. 2010, Cost Analysis of IP Mobility Management

Protocols for Consumer Mobile Devices, IEEE Transactions on Consumer Electronics,

volume 56, number 2, p 1010-1017.

Page 43: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

170

Liu, J., Dou, J., Zou, H. and Gao, Y. 2008. Reducing Signalling cost with Simplifed

mSCTP in Fast Mobile IPv6, International Conference on Intelligent Information

Hiding and Multimedia Signal Processing, p130-133.

Lee, J.S., Choi, S.Y. and Eom, Y.I. 2009. Fast Handover Scheme Using Temporary CoA

in Mobile WiMAX Systems, In: 11th International Conference in Advanced

Communication Technology, ICACT 2009, p 1772–1776.

Makaya, C. and Pierre, S. 2008. An Analytical Framework for Performance Evaluation

of IPv6-Based Mobility Management Protocols. IEEE Transactions on Wireless

Communications, Volume 7, Number 3, p. 972-983.

Mobility for IPv4 (mip4) Charter, http://www.ietf.org/html.charters/mip4-charter.html

Mussabbir, Q.B., Yao, W., Niu, Z. and Fu, X. 2007. Optimized FMIPv6 using IEEE

802.21 MIH Services in Vehicular Networks. IEEE Transactions on Vehicular

Technology.

Narten, T., Nordmark, E., Simpson W. and Soliman, H. 2007. Neighbor Discovery for

IP version 6 (IPv6), RFC4861, Network Working Group of IETF.

NetLMM, Network-based Localized Mobility Management, Working Group of IETF.

http://tools.ietf.org/wg/netlmm/

Page 44: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

171

Nkansah-Gyekye Y. and Agbinya, J. 2007. Vertical Handoff Decision Algorithm for

UMTS-WLAN, http://ieeexplore.ieee.org/ie15/4299640/4299641/04299686.pdf

Pack, S. and Choi, Y. 2003. Performance Analysis of Hierarchical Mobile IPv6 in IP-

based Cellular Networks, IEEE PIMRC.

Park, J., Kwon. D. and Suh, Y. 2006. An Integrated Handover Scheme for Fast Mobile

IPv6 over IEEE 802.16e Systems. 64th IEEE Vehicular Technology Conference, p 1-5.

Perkins, C. 2002. IP Mobility Support for IPv4, RFC3344, Network Working Group of

IETF.

Perkins C. and Wang, K. 1999. Optimized Smooth Handoffs in Mobile IP, The Fourth

IEEE Symposium on Computers and Communications, p 340.

Ray, S.K., Pawlikowski K. and Sirisena, H. 2009. Handover in Mobile WiMAX

Networks: The State of Art and Research Issues, Ieee Communications Surveys &

Tutorials, volume 12, number 3, p 176-399.

Ryu, S. and Mun, Y. 2009. Performance Analysis for FMIPv6 considering Probability of

Predictive Mode Failure, International Conference on Computational Science and Its

Applications, p 34-38.

Page 45: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

172

Seamless and Secure Mobility Project. An IEEE 802.16 model for ns-2 by NIST,

“http://www.antd.nist.gov/seamlessandsecure”

Simulator QualNet v5.0 Available:

http://www.scalable-networks.com, http://www.qualnet.com

Singh, H., Beebee, W. and Nordmark, E. 2010, IPv6 Subnet Model: The Relationship

between Links and Subnet Prefixes, RFC5942, Network Working Group of IETF.

Skorepa, M. and Klügl, R. 2010. Analytical Method for L3 Handover Latency

Evaluation. Advances in Communications, Computers, Systems, Circuits and Devices,

World Scientific and Engineering Academy and Society Stevens Point, Wisconsin. p.

342-347.

Skorepal, M. and Klugl, R. 2011. Analytical Comparison of Mobile IPv6 Handover

Schemes. Elektrorevue, Volume 2, number 2, p. 22-26

Soliman, H., Castelluccia, C.E., El Malki, K., Bellier, L. 2005. Hierarchical Mobile

IPv6 Mobility Management, RFC 4140, Network Working Group of IETF.

Page 46: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/56202/1/FK 2013 139RR.pdf · digabungkan dan risalah relatif kedua-dua lapisan adalah disalingpintal dengan

© COPYRIG

HT UPM

173

Sultan, J., Misran, N., Ismail, M. And Islam, MT 2011. Topology-aware macro

diversity handover technique for IEEE 802.16j multi-hop cellular networks. IET

Communication, volume 1, number 5, p. 700–708.

Thomson, S., Narten, T. and Jinmei, T. 2007. IPv6 Stateless Address Autoconfiguration,

RFC4862, Network Working Group of IETF.

WiMAX Forum Ducuments, WiMAX Forum Architecture (Stage 2: Architecture Tenes,

Reference Model and Reference Points) part 1, Avelable in:

http://www.wimaxforum.org/technology/documents/

WiMAX Forum Network Architecture-Stage 2: Architecture Tenets, Reference Model

and Reference Points-Release 1, Version 1.2. WiMAX Forum Network Working Group,

WiMAX Forum, January 2008.

WiMAX Forum Organization, available in: http://www.wimaxforum.org/

Zhang, J. 2005. Analyze IPv4 handover performance, PhD. Thesis, Department of

Electronics, University of York.

Zhong, L., Liu, F., Wang X. and Ji, Y. 2007. Fast Handover Scheme for Supporting

Network Mobility in IEEE 802.16e BWA System. International Conference on

Wireless Communications, Networking and Mobile Computing, (WiCom 2007) . p

1757–1760.