probabilitas dan statistika bab 1

Upload: bram-revo

Post on 10-Jul-2015

503 views

Category:

Documents


7 download

TRANSCRIPT

Probabilitas dan Statistika BAB 1Pembahasan Ruang sampel Kejadian Menghitung titik sampel Peluang suatu kejadian Aturan penjumlahan Peluang bersyarat Aturan perkalian Aturan Bayes Ruang sampel Himpunan semua hasil yang mungkin dari suatu percobaan statistika disebut ruang sampel dan dinyatakan dengan lambang T. Contoh: Percobaan: Pelemparan sebuah dadu dan mencatat angka yang muncul Ruang sampel sebuah dadu adalah: T = { 1, 2, 3, 4, 5, 6 } Titik sampel =1, 2, 3, 4, 5, 6 Kejadian Suatu kejadian adalah himpunan bagian dari ruang sampel. Contoh:Kejadian A adalah hasil lemparan suatu dadu yang dapat dibagi tiga. Maka hasilnya adalah A = { 3, 6 } B = Kejadian munculnya angka genap B = {2, 4, 6} C = Kejadian munculnya angka 5 atau lebih C = {5, 6} Komplemen Komplemen suatu kejadian A terhadap T ialah himpunan semua unsur T yang tidak termasuk A. Komplemen A dinyatakan dengan lambang A. Contoh :Komplemen dari A = { 3, 6 } pada lemparan sebuah dadu adalahA = { 1, 2, 4, 5 } Irisan Irisan dua kejadian A dan B, dinyatakan dengan lambang A B, ialah kejadian yang unsurnya termasuk dalam A dan B. Contoh: Pada lemparan sebuah dadu, misalkan A kejadian bahwa bilangan genap yang muncul dan B kejadian bahwa bilangan lebih besar dari 3 yang muncul. Maka A = {2,4,6} dan B = {4,5,6} sehingga A B = {4,6} Gabungan Gabungan dua kejadian A dan B, dinyatakan dengan lambang A U B, ialah kejadian yang mengandung semua unsur yang termasuk A atau B atau keduanya. Contoh: A = { a,b,c } dan B = { b,c,d,e} maka A U B = { a,b,c,d,e } Contoh kejadian bebas Percobaan:Pelemparansebuahdadudanmencatat angka yang muncul Ruang sampel S = {1, 2, 3, 4, 5, 6} Kejadian munculnya angka genap, A A = {2, 4, 6} Kejadian munculnya angka ganjil, B B = {1, 3, 5} Kejadian A dan B saling terpisah A B = Contoh kejadian tidak bebas Percobaan: Pelemparan dua buah dadu bersamaan dan mencatat angka yang muncul Ruang sampel S = {(1, 1), (1, 2), (1, 3), ..., (6, 6)} A=Kejadianmunculnyaangkayangsamapadakedua dadu A = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} B = Kejadian munculnya jumlah angka 10 atau lebih B = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6) } Menghitung Titik sampel Bila suatu operasi dapat dilakukan dengan cara, dan bila untuk tiap cara ini operasi kedua dapat dikerjakan dengan cara, dan seterusnya, maka deretan k operasi dapat dikerjakan bersama-sama dengancara 1n2nkn n n ...2 1Penghitungan titik sampel Tiga buah koin (uang logam) dilemparkan sekali. Banyaknya titik sampel dalam ruang sampel ? Jawab: Koin I dapat menghasilkan 2 hasil yang mungkin, muka (M) atau belakang (B) Untuk tiap hasil, Koin II dapat menghasilkan 2 hasil yang mungkin, M atau B Untuk tiap hasil, Koin III dapat menghasilkan 2 hasil yang mungkin, M atau B Jumlah titik sampel yang dihasilkan = (2)(2)(2) = 8 Permutasi dan Kombinasi Intinya keduanya adalah banyak cara untuk membuat susunan objek yang terdiri dari beberapa unsur. Permutasi ialah susunan dari himpunan yang dibentuk dengan memperhatikan urutan. Kombinasi yaitu susunan dari himpunan yang dibentuk dengan tidak memperhatikan urutan. Permutasi Suatu permutasi adalah urutan yang berbeda-beda yang dapat dibentuk dari sekumpulan benda. Contoh: Dari tiga huruf a, b, c, permutasi yang dapat dibuat adalah abc, acb, bac, bca, cab, dan cba. Banyaknya permutasi n benda yang berlainan adalah n! Seperti contoh diatas, permutasi tiga huruf adalah 3! = (3)(2)(1) = 6 PERMUTASI Misal : Tentukan permutasi-3 dari 5 huruf yang berbeda, misalnya ABCDE Banyaknya permutasi r dari n unsurberbeda adalah Jadi banyaknya permutasi 3 dari 5 unsur berbeda adalah 60 Dengan kata lain. Banyak cara untuk menyusun 3 huruf dari 5 huruf ABCDE DENGAN MEMPERHATIKAN URUTAN adalah 60 ABC ABD ABE ACB ACD ACE ADB ADC ADE AEB AEC AED BAC BAD BAE BCA BCD BCE BDA BDC BDE BEA BEC BED CAB CAD CAE CBA CBD CBE CDA CDB CDE CEA CEB CED DAB DAC DAE DBA DBC DBE DCA DCB DCE DEA DEB DEC EAB EAC EAD EBA EBC EBD ECA ECB ECD EDA EDB EDC permutasi Banyaknya permutasi n benda berlainan bila diambil r sekaligus adalah Contoh: Dari 20 lotere, dua diambil untuk hadiah pertama dan kedua. Banyak titik sampel = = (20)(19) = 380 )! (!r nn! 18! 20Contoh Banyak cara menyusun pengurus yang terdiri dari Ketua, Sekretaris, dan Bendahara yang diambil dari 5 orang calon adalah. Penyelesaian 18 banyak calon pengurus 5 n = 5 banyak pengurus yang akan dipilih 3 r = 3

nPr ==

5P3 = = = 60 cara )! r n (! n)! 3 5 (! 5! 2! 5! 25 . 4 . 3 !. 2Contoh19 Banyak bilangan yang terdiri dari tiga angka yang dibentuk dari angka-angka 3, 4, 5, 6, 7, dan 8,di mana setiap angka hanya bolehdigunakan satu kali adalah.

Penyelesaian 20 banyak angka =6 n = 6 bilangan terdiri dari 3 angka r = 3

nPr ==

6P3 == = 120 cara )! r n (! n)! 3 6 (! 6! 3! 6! 36 . 5 . 4 !. 3Permutasi Banyaknya permutasi n benda berlainan yang disusun melingkar adalah ( n - 1 )! Banyaknya permutasi yang berlainan dari n benda bila diantaranya berjenis pertama,berjenis kedua, .,berjenis ke k adalah Contoh: Ada berapa cara menyusun 9 lampu pohon Natal bila 3 diantaranya berwarna merah, 4 kuning, dan 2 biru? Banyaknya susunan yang berlainan adalah= 1260 cara 1n2nkn! !... !!2 1 kn n nn! 2 ! 4 ! 3! 9Kombinasi Pemilihan r benda dari sejumlah n tanpa memperdulikan urutannya disebut kombinasi. Contoh: Jika ada 4 kimiawan dan 3 fisikawan, banyaknya cara memilih kelompok yang terdiri 2 kimiawan dan 1 fisikawan adalah: )! ( !!r n rnrn=||.|

\|18 3 6! 2 ! 1! 3! 2 ! 2! 41324= = =||.|

\|||.|

\|Contoh 23 Seorang siswa diharuskan mengerjakan 6 dari 8 soal,tetapi nomor 1 sampai 4wajib dikerjakan .Banyak pilihan yangdapat diambil olehsiswa adalah. Penyelesaian 24 mengerjakan 6 dari 8 soal, tetapi nomor 1 sampai 4 wajibdikerjakan berarti tinggal memilih 2 soal lagi dari soal nomor 5 sampai 8 r = 2 dan n = 4 4C2 = =2!.2!4!=

2)! (4 2!4!6 pilihan Peluang Suatu Kejadian Peluang suatu kejadian A adalah jumlah bobot semua titik sampel yang termasuk A. Jadi 0 P(A) 1, P() = 0, dan P(T) = 1 Contoh: Sebuah mata uang dilempar dua kali. Berapa peluang paling sedikit muncul muka sekali?

Ruang sampelnya adalah T = { MM, MB, BM, BB } maka tiap titik sampel memiliki bobot = Bila A menyatakan kejadian bahwa paling sedikit satu muka muncul, maka A = { MM, MB, BM } P(A)= + + = 3/4 Jadi peluangnya paling sedikit muncul muka sekali adalah Peluang suatu kejadian A adalah jumlah bobot semua titik sampel yang termasuk A. Bila suatu percobaan dapat menghasilkan N macam hasil yang berkemungkinan Sama, dan bila tepat sebanyak n dari hasil berkaitan dengan kejadian A, maka Peluang kejadian A adalah P(A) = n/N PELUANG SUATU KEJADIAN Contoh : tiga keping uang logam dilantunkan satu kali. Berapa peluang kejadianmuncul ketiga bagian mata uang yang sama? Jawab: Ruang sampel percobaan ini adalah: (MMM, MMB, MBM, BMM, MBB, BBB, BBM, BMB, MBB )ada 9 Maka peluang kejadiannya : 2/9 Aturan penjumlahan Aturan penjumlahan Contoh bila A dan B kejadian sembarang Teori : P(A U B) = P(A) + P(B) P(A B) Hasil : P(A U B) Aturan Penjumlahan Bila A dan B dua kejadian sembarang, makaP(A U B) = P(A) + P(B) P(A B) Bila A dan B kejadian yang terpisah, makaP(A U B) = P(A) + P(B) Untuk tiga kejadian A, B, dan CP(A U B U C) = P(A) + P(B) + P(C) P(A B) - P(A C) - P(B C) + P(A B C) Untuk tiga kejadian A, B, dan C sembarang P(A U B U C) = P(A) + P(B) + P(C) P(A B) P(A C) - P(B C) + P(A B C) Contoh Peluang seorang mahasiswa lulus matematika 2/3 dan peluangnya lulus biologi 4/9. Bila peluangnya lulus kedua mata kuliah , berapakah peluangnya lulus paling sedikit satu mata kuliah? Jawab: Bila M menyatakan kejadian lulus matematika dan B lulus biologi maka P(M U B) = P(M) + P(B) P(M B) = 2/3 + 4/9 = 31/36 CONTOH Peluangmahaiswat.elektroUGMyangmengambilmata kuliahprobStatdanpeluangmahasiswayang mengambil mata kuliah Matek 1/8. Bila peluang mahasiswa minimalmemilihsalahsatumatakuliahadalah. Berapakahpeluangmahasiswamengambilkeduamata kuliah tersebut? Jawab:misalApeluangmengambilProbStat,Bpeluang mengambil PenguIns.P(A U B) = P(A) + P(B) P(A B) = + 1/8 - P(A B) P(A B)= 7/8 P(A B)= 3/8 Contoh untuk 3 kejadian 3pembalapPico,Tegar,Aryamasingmasingmemiliki peluang kecelakaan 0,15 0,32 dan 0,23. Berapakah peluang pembalap yang celaka ? JawabP(AUBUC)=P(A)+P(B)+P(C)=0,25+0,32+0,23= 0,85 Teori : P(A U B U C) =P(A) +P(B) +P(C) P(A B) P(A C) P(B C) +P(A B C) Teorema 2 : bila A dan B kejadian yang terpisah, maka: P(A U B) = P(A) + P(B) Contoh : Berapakah peluang mendapatkan jumlah kedua angka dadu7 atau 11 bila dua dadu dilantunkan. Jawab : Misal A = kejadian jumlah 7 muncul & B = kejadian jumlah 11 muncul. kejadian A dan B saling terpisah karena jumlah 7 dan 11 tidak dapatterjadi pada lantunan yang sama. Kemungkinan muncul dua dadu dengan jumlah tujuh ada 6 dan kemungkinan Jumlah 11 ada 2 cara. Kemungkinan seluruhnya ada 36. jadi : P(A) = 6/36 & P(B) = 2/36

P(A U B) = P(A) + P(B) P(A U B) = 6/36 + 2/36 P(A U B) = 8/36 atau 2/9 Aturan penjumlahan Peluang jika A dan A kejadian yang berkomplementer Hasil P(A) + P(A) = T(A U A) = TP(T) = 1 Teori : P(A) + P(A) = 1 Teorema 3 : Bila A dan A adalah kejadian yang berkomplementer, maka: P(A) + P(A) = 1 Contoh: Syukri mengayun dadu sekali. berapa peluang muncul angka prima dan peluang muncul angka bukan bilangan prima? Jawab: misal kejadian muncul bilangan prima adalah A maka kejadian munculbukan bilangan prima adalah A. Bilangan prima pada dadu ada dua (2 dan 5), jadi P(A) = 2/6. P(A) + P(A) = 1 2/6 + P(A) = 1 P(A) = 1 2/6 P(A) = 2/3 Jadi peluang muncul angka bukan bilangan prima adalah 2/3. Peluang Bersyarat Peluang terjadinya suatu kejadian B bila diketahui bahwa kejadian A telah terjadi disebut peluang bersyarat dan dinyatakan dengan P(B|A). P(B|A) = bila P(A) >0 ) () (A PB A P Contoh Peluang suatu penerbangan yang telah terjadwal teratur berangkat tepat waktu P(B) = 0,83; peluang sampai tepat waktu P(S) = 0,82 dan peluang berangkat dan sampai tepat waktu P(B S) = 0,78. Peluang pesawat sampai tepat waktu jika diketahui berangkat tepat waktuP(S|B)=== 0,94 ) () (B PB S P 83 , 078 , 0Contoh :Dalam suatu kelas terdapat 29 mahasiswa/i, enam diantaranya perempuan/mahasiswi. Pada saat selesai kuliah dua orang mahasiswa/i keluar satu demi satu secara acakyang mana mahasiswa yang telah keluar dari kelas tidak boleh masuk kembali. Berapa peluang mahasiswa yang keluar kedua-duanya perempuan/mahasiswi? jawab : misal A kejadian yang keluar pertama adalah mahasiswi dan B kejadian yang keluar kedua juga mahasiswi. Kemudian A B ditafsirkan sebagai kejadianA terjadi dan kemudian B terjadi setelah A. maka: P(A) = 1/6 dan P(B I A) = 6/30 P(A B) = P(A) P(B I A) P(A B) = 1/6 x 6/28 P(A B) = 1/28 Kejadian Bebas P(A|B) = P(A) Terjadinya B sama sekali tidak mempengaruhi terjadinya A. Dua kejadian A dan B bebas jika dan hanya jikaP(B|A) = P(B) dan P(A|B) = P(A) jika tidak demikian, A dan B tak bebas. Contoh Kejadian Bebas Pengambilan dua kartu yang diambil berturutan dari sekotak kartu dengan pengembalian. A = kartu pertama yang terambil as B = kartu kedua sebuah skop Karena kartu pertama dikembalikan, ruang sampel untuk kedua pengambilan terdiri atas 52 kartu. P(B|A) = 13/52 = P(B)= 13/52 = Jadi, P(B|A) = P(B) Kejadian A dan B dikatakan bebas. Aturan Perkalian Bila kejadian A dan B dapat terjadi pada suatu percobaan, makaP(AB) = P(A) P(B|A) Jadi peluang A dan B terjadi serentak sama dengan peluang A terjadi dikalikan dengan peluang terjadinya B bila A terjadi. Karena kejadian AB dan BA ekivalen maka tidaklah menjadi soal kejadian mana yang disebut A dan yang disebut B. Contoh Jika kita memiliki kotak berisi 20 sekering, 5 diantaranya cacat. Bila 2 sekering dikeluarkan dari kotak satu demi satu secara acak (tanpa mengembalikan yang pertama ke dalam kotak), berapakah peluang kedua sekering itu cacat? Jawab A = kejadian bahwa sekering pertama cacat B = kejadian bahwa yang kedua cacat AB = kejadian bahwa A terjadi dan kemudian B terjadi setelah A terjadi. P(A) = 5/20 = P(B|A) = 4/19P(AB) = (1/4) (4/19) = 1/19 Aturan Perkalian Khusus Dua kejadian A dan B bebas jika dan hanya jikaP(AB) = P(A) P(B) P(A B C) = P(A) P(B) P(C) P(A B C. ..n) = P(A) P(B) P(C).P(n) Contoh : Suatu kota memiliki 1 mobil pemadam kebakaran dan 1 ambulans. Peluang mobil pemadam kebakaran siap waktu diperlukan 0,98, peluang ambulans siap waktu dipanggil 0,92. Peluang keduanya siap adalah P(AB) = P(A) P(B) = (0,98) (0,92) = 0,9016 Contoh : 3 kartu bridge diambil tanpa pengembalian dari sekotak kartu (52), Cari peluangjika : A1 = kartu ke-1 AS berwarna merah A2 = kartu ke-2 suatu 10 atau Jack A3 = kartu ke-3 lebih besar dari 3 tapi lebih kecil dari 7 Jawab : P(A1) = 2/52, P(A2A1) = 8/51, P(A3(A1 A2) = 12/50 P(A1 A2 A3) = P(A1) P(A2A1) P(A3(A1 A2)= (2/52)(8/51)(12/50) = 8/5525 Contoh : Tiga buah dadu dilantunkan dua kali. Dengan menganggap hasil di antara masing-masing dadu bebas secara total, tentukanlah nilai kemungkinan bahwa jumlah angka yang muncul pertama adalah 5 dan kedua adalah 4. Jawab : ada enam kemungkinan untuk dapat jumlah 5 yaitu :(1,1,3) (1,2,2) (1,3,1) (1,2,2) (2,1,2) (2,1,2) (2,2,1), dan ada 3 kemungkinan untuk dapat jumalh 4 yaitu : (1,1,2) (1,2,1) (2,1,1). Maka P(A) = 6/126 = 1/36 dan P(B) = 3/126 = 1/72 P(A B) = P(A) P(B) P(A B) = 1/36 x 1/72 P(A B) = 2592 Bila dalam suatu percobaan, kejadian A1, A2, A3,..Ak dapat terjadi, maka P(A1 A2 A3 . Ak) = P (A1) P(A2 I A1) P (A3 I A1 A2) . P(Ak I A1 A2 . Ak-1) Contoh : dalam satu kotak terdapat 4 kelereng warna merah, 6 kelereng warna hitam,dan 7 kelereng warna kuning. Apabila kelereng diambil satu per satu tanpapengembalian,Cari peluang kejadian terambil pertama kerereng earna merah, terambil kedua kelereng warna hitam dan terambil ketiga kelereng warna merah

P(A1) = 4/17, P(A2 I A1) = 6/16, dan P (A3 I A1 A2) = 3/15 P(A1 A2 A3) =P (A1) P(A2 I A1) P (A3 I A1 A2)P(A1 A2 A3) = 4/17 x 6/16 x 3/15 P(A1 A2 A3) = 3/170 Aturan Bayes A merupakan 2 kejadian yang terpisah EA dan EA dapat ditulis A = (EA) U (EA)Sehingga P(A) = P [(EA) U (EA)] = P (EA) + P (EA) = P(E) P(A\E) P(E) P(A\E) EE A E A E A Aturan Bayes Misalkan kejadianmerupakan suatu sekatan (partisi) dari ruang sampel T dengan P(Bi) 0untuk i = 1,2,,k, Maka untuk setiap kejadian A, anggota T

k k P(A) = P(BiA) = P(Bi) P(A\Bi) I = 1I = 1 kB B B ,..., ,2 1 Misalkan kejadian B1, B2, Bk

merupakan suatu sekatan (partisi) dari ruang sampel T dengan untuk i = 1,2,,k, Misalkan A suatu kejadian sembarang dalam T dengan maka untuk r = 1,2,.,k = ===kii ir rkiirrB A P B PB A P B PA B PA B PA B P1 1) | ( ) () | ( ) () () () | (0 ) ( = A PContoh Tiga anggota koperasi dicalonkan menjadi ketua. Peluang Ali terpilih 0,3, peluang Badu terpilih 0,5, sedangkan peluang Cokro 0,2. Kalau Ali terpilih maka peluang kenaikan iuran koperasi adalah 0,8. Bila Badu atau Cokro yang terpilih maka peluang kenaikan iuran adalah masing-masing 0,1 dan 0,4.Bila seseorang merencanakan masuk jadi anggota koperasi tersebut tapi menundanya beberapa minggu dan kemudian mengetahui bahwa iuran telah naik, berapakah peluang Cokro terpilih jadi ketua? Jawab Kejadian: A: Orang yang terpilih menaikkan iuran : Ali yang terpilih: Badu yang terpilih : Cokro yang terpilih 1B2B3B24 , 0 ) 8 , 0 )( 3 , 0 ( ) | ( ) (1 1= = B A P B P05 , 0 ) 1 , 0 )( 5 , 0 ( ) | ( ) (2 2= = B A P B P08 , 0 ) 4 , 0 )( 2 , 0 ( ) | ( ) (3 3= = B A P B P) | ( ) ( ) | ( ) ( ) | ( ) () | ( ) () | (3 3 2 2 1 13 33B A P B P B A P B P B A P B PB A P B PA B P+ +=37808 , 0 05 , 0 24 , 008 , 0) | (3=+ += A B PContoh Dua orang dicalonkan menjadi Presiden. Probabilitas SBY terpilih adalah 0,6; P(A1) = 0,6. Probabilitas Megawaty terpilih adalah 0,4; P(A2) = 0,4. JikaSBYterpilih,probabilitaskenaikanBBMadalah0,8; P(B1|A1) = 0,8. Jika Megawatie terpilih, probabilitas kenaikan BBM adalah 0,1; P(B1|A2) = 0,1. JikaternyatadiketahuiterjadikenaikanBBM,probabilitas bahwa Megawty yang terpilih, P(A2|B1) Bukti !!! A1P(A1) = 0,6 A2P(A2) = 0,4 B1P(B1 A1) = 0,8 B2P(B2 A1) = 0,2 B1 P(B1 A2) = 0,1 B2P(B2 A2) = 0,9 P(A1 B1) = (0,8)(0,6) = 0,48 P(A1 B2) = (0,2)(0,6) = 0,12 P(A2 B1) = (0,1)(0,4) = 0,04 P(A2 B2) = (0,9)(0,4) = 0,36 Contoh Kita ingin menguji ketetapan suatu detektor, untuk menyelidiki apakah orang yang masuk pelabuhan membawa emas atau tidak. Dari semua orang yang membawa emas, ternyata oleh detektor itu dibenarkan 90 % membawa emas, tetapi 10 % yang lain tidak. Sedangkan dari semua orang yang tidak membawa emas, hasil pemeriksaan detektor mengatakan bahwa 99 % tidak membawa emas, namun 1 % dinyatakan membawa emas. Dari populasi yang besar dimana yang membawa emas hanya 1 % dipilih seorang. Orang yang terpilih itu diperiksa dengan detektor ini dan menunjukan bahwa ia membawa emas. Berapa nilai kemungkinan bahwa ia benar-benar membawa emas ? Jawaban : Misalkan E1 kejadian yang menyatakan bahwa seorang benar-benar membawa emas, dan E adalah kejadian bahwa orang yang diperiksa dengan detektor menunjukan membawa emas,P(E1)=0,001; P(E1)=0,999; P(E l E1)=0,90; P(E l E1)=0,01. P(E) = P(E1). P(E l E1)+ P(E1). P(E l E1) = (0,001)(0,90)+(0,999)(0,01) = 0,01089