patofisiologi leiomioma

Upload: asrul-rahim

Post on 02-Mar-2016

138 views

Category:

Documents


2 download

DESCRIPTION

leiomioma

TRANSCRIPT

JOURNAL READING JARINGAN KOMPLEKS DARI BEBERAPA FAKTOR DALAM PATOGENESIS LEIOMIOMA UTERI

KEPANITERAAN KLINIK ILMU KEBIDANAN DAN KANDUNGAN FAKULTAS KEDOKTERAN UKRIDARUMAH SAKIT UMUM DAERAH TARAKAN

Nama Mahasiswa: Mohd Asrul B. Che RahimNIM: 112012059Nama Pembimbing : Dr Harianto Wijaya, Sp.OG

Jaringan yang Kompleks dari beberapa faktor dalam Patogenesis Leiomioma UteriPendahuluanLeiomioma uteri(fibroids atau myomas) adalah satu-satunya tumor jinak uterus yang paling sering diindikasikan untuk di operasi hysterectomy. Leiomioma uteri secara klinikal timbul pada 25% dari wanita dalam umur reproduktif dan menyebabkan morbiti seperti perdarahaan berat atau memanjang pada menstruasi,nyeri pada pelvic dan disfungsi reproduksi. Tatalaksana yang definitif untuk tumor fibroid adalah operasi, dan beberapa teknik invasif yang minimal. Estrogen dan Progesteron merupakan promoter pertumbuhan fibroid. Namun growth factor, cytokines dan chemokines juga diduga effektor yang potensial terhadap estrogen dan progestron. Tambahan pula perubahan genetik,mekanisme epigenetic dan komponen matriks extraselular diduga penting dalam inisiasi dan perumbuhan tumor ini.

Tumor uterus fibroid dan prevelensi ras.Prevelensi leimioma uteri adalah 3 kali lipat pada wanita berkulit hitam dari wanita berkulit putih.Faktor lain seperti menarche yang awal,umur(usia reproduktif yang telat),keturunan,nulliparitas,obesitas,sindrom polikistik ovari,diabetis,hipertensi dan konsumsi alkohol mempunyai faktor meningkatkan risiko berkembangnya leiomioma uteri. Faktor genetikLeiomioma uteri adalah tumor yang indipenden dan monoclonal;pertumbuhan tumor berasal dari 1 sel miometrial yang mutasi. Defek keturunan dari gene fumarate hydratase (FH),Birt-Hogg-Dube (BHD) dan tuberous sclerosis complex 2 akan mengkontribusi terhadap perkembangan tumor ini.Penelitian menunjukkan perbedaan pada perubahan genetik pada leimioma seperti delesi kromosom trisomy, translokasi kromosom dan monosomi kromosom . Tambahan El Gharib et al menemukan kelainan kromosom klonal pada lima kromosom berbeda (2,7,8,12 dan 22) . Baru-baru ini Cha et al telah mengidentifikasi tiga loci pada kromosom 10q24.33,22q13.1, dan 11p15.5 yang berasosiasi dengan kerentanan terhadap uterine fibroid.Dengan konsistensi alterasi genetik kromosom dengan tempat yang tertentu,beberapa kandidat gene telah diidentifikasi HMGA2 sering diekspresi pada leiomioma uteri, dengan penyusunan kembali kromosom 12q15 ,yang mana target gene nya let -7 famili (microRNAs) (miRNAs) dan ditemukan disupresi oleh let-7 secara in-vitro. Tambahan pula RAD1L1, adalah kandidat pasangan translokasi HMGA2 pada leiomioma . Baru-baru ini ekspresi mRNA HMGA1 lebih tinggi telah diobservasi berbanding dengan tumor normal secara sitogenetik dengan alterasi 6p21. Beberapa gene kandidat, seperti PCOLCE,ORC5L dan LHFPL3,telah dipetakan pada interval kritikal pada kromosom 7q22. Baru baru ini penjelasan secara komprehensif terhadap alterasi genetik (mutasi MED12) pada leiomioma uteri telah dilaporkan oleh berbeda-beda kumpulan 45,46,47,48,49,50. Mediator Complex subunit 12 (MED12) adalah komponen mediator kompleks yang mempunyai peran regulator pada aktiviti RNA polimerase II. MED12 mempunyai prean pada aktivasi transkripsi dab represi dan terlibat pada banyak proses pekembangan. Makinen dan teman-teman menemukan bahwa gene MED12 telah bermutasi pada frekuensi tinggi (70%) pada leiomioma uteri didapat pada pasien yang berasal dari Finland (Caucasian). Semua mutasi ini berkluster pada exon 2, dengan lapan mutasi yang men codon 44. Pola yang sama mutasi MED12 exon 2 juga ditemukan pada pasien berasal dari Afrika Selatan.Baru-baru ini Je et al. menemukan studi tentang MED 12 pada 1862 sampel termasuk leiomioma,pelbagai carcinoma leukemia sarkoma dan tumor stromal lain-lain,yang mana ditemukan kadar frekuensi tinggi MED 12 tetapi hanya 1 pada tumor maligna. Temuan ini dan temuan sebelumnya menyarankan bahwa mutasi MED12 exon 2 mungkin tisu spesifik terhadap leiomioma uteri.Namun baru-baru ini studi lain merekomendasi kan bahwa mutasi ini tidak hanya pada tumor jinak, pengkaji menemukan bahwa 11% tumor otot yang bepotensi maligna dan 20% leiomiosarkoma uteri ada mutasi MED12..Markawski et al . Mendemonstasikan bahwa mutasi MED 12 pada leiomioma uteri kebanyakan diasosiasikan dengan karyotipe normal tumor. Kumpulan ini juga menemukan bahwa tumor dengan mutasi MED12 mengekspresikan mRNA WNT 4 pada kadar lebih tinggi,menunjukkan bahwa mutasi MED 12 mungkin terlibat dengan aktivasi jalur Wnt. Namun hasil imunohistokimia menunjukkan bahwa tidak ada asosiasi antara status MED 12 dan B-catenin nuclear/ lokalisasi sitoplasmikFaktor epigenetikEpigenetik adalah semua perubahan diturunkan dalam ekpresi gen yang tidak dikodekan dalam urutan DNADNA MethylationDeoxyribonucleci acid methylation berlaku pada karbon ke -5 cytosine,Metilasi ini berlaku dipelbagai proses perkembangan dengan menghilangkan,mengalih dan menstabilkan gen.Ketidakseimbangan ekspresi DNA Metil transferase dijumpai pada leimioma uteri berbanding di miometrium yang sehat.

Modifikasi histoneModifikasi histone adalah faktor epigenetik kedua terpenting dalam peran meregulasi ekspresi gene. Protein histone bisa dimodifikasi dalam pelbagai cara pada N terminal,termasuk asetilasi,fosforilasi metilasi,deaminasi isomerisasi proline dan adenosinosine difosfat ribosilasi. Histone deasetilasi 6(HDAC6) adalah faktor regulator dalam jaringan pengangkutan endokrin dan mempunyai aktiviti deasetilasi histone. Menurut penelitian Wei et al. menguji ekspresi HDCA6 dan peran patologi nya terhadap leiomioma uteri. Mereka menemukan pola peningkatan HDAC6 dan ekspresi ER- dalam sampel leiomioma. Dapat dikenalpasti bahawa modifikasi epigenetik diperlukan semasa perkembangan dan memainkan peran penting dalam diferensiasi selular dan tissue normal perkembangan menjadi dewasa. Namun sewaktu stadium penting dalam perkembangan,eksposur lingkungan boleh merubah keadaan genom yang terkait dengan program deferensiasi sel atau organ,dengan itu mengalakkan kerentanan terhadap penyakit ini diwaktu kemudian kehidupan. Penelitian melaporkan melalui efek nongenomik terhadap program ulang pembentukan uterus,estrogen dari linkungan merekrut regulator epigenetik EZH2 dan mengurangkan kadar histone represif dalam kromatin dan mempromosikan tumorigenesis di uteri.Micro RNAMicro RNA adalah non protein coding yang meregulasi banyak proses biologi dengan merencanakan miRNA untuk pembelahan atau represi translasi . Penelitian menunjukkan beberapa mRNA termasuk let7,miR-21,miR-93,miR 106b dan miR 200 dan target gene mereka secara signifikan di disregulasi pada leiomioma uteri berbanding miometrium normal. Pan et al. melaporkan bahawa miR-21 di ekspresikan berlebihan pada leiomioma, dengan peningkatan spesifik waktu fase sekretorik pada siklus menstruasi pada wanita yang menggunakan kontrasepsi oral. Zavadil et al meneliti korelasi pola global antara ekspresi miRNA yang diubah dengan predicted target genes pada leiomioma uteri dan miometria. Mereka menemukan jumlah miRNA didisregulasi secara korelasi terbalik dengan targetnya pada tingkat protein. Pola asosiasi terbalik miRNA dengan ekspresi mRNA pada leiomioma uteri menunjukkan penglibatan pelbagai kandidat jalur,termasuk jalur extensive transcriptional reprogramming,cell proliferation control,mitogen activated protein kinase MAPK transforming growth factor (TGF)-,WNT, Janus Kinase/signal trasnduser dan activator of transcription signalling, remodelling perlekatan sel dan sel-sel dan sel-matrix contacts.EstrogenEstrogen mengeluarkan efek fisiologis terhadap target sel nya dengan mengikat ke Estrogen receptor (ER-)dan Estrogen receptor (ER-). Estrogen dan reseptornya memainkan peran penting dalam fisiologi miometrium dan pertumbuhan leiomioma uteri. Beberapa kumpulan peneliti menemukan mRNA dan protein expression level of ER ( diekspresi lebih tinggi) dan ER- adalah lebih tinggi pada leiomima uteri berbanding miometrium normal. Penelitian terbaru menunjukkan estrogen boleh mempertahankan kadar Progestron receptor (PR) dan dengan demikian progestron melalui reseptornya dapat menggalakkan pertumbuhan leiomioma. Estrogen secara signifikan mengurangkan ekspresi p53 ( protein supresor tumor). Estrogen dapat meransang proliferasi sel leiomioma dengan meregulasi ekspresi faktor pertumbuhan dan dengan mengaktivasi jalur sinyal. Estrogen juga mencetuskan pengaktifan cepat dan sementara jalur MAPK pada sel leiomioma. Estrogen juga menghasilkan fosforilasi protein tyrosine pada protein intraselular

ProgesteroneProgesteron bekerja dengan berinteraksi dengan reseptor progesterone dan reseptor reseptor (PR) Progesterene dan reseptornya memainkan peran dalam proses biologi leiomyoma dan miometrium. Penelitian menunjukkan kadar progesterone dan mRNA pada leiomioma lebih tinggi dari miometrium. Fujimoto et al. menemukan ekspresi mRNA PR relatif lebih pada permukaan leiomyoma.Ini menunjukkan ekspresi predominan PR-B pada bagian ini adalah fenotip aktif untuk proliferasi progestasi yang berkaitan dengan pertumbuhan leiomioma. Progesterone dapat menstimulasi pertumbuhan sel leiomioma dan ketahanan hidup sel dengan meningkatkan regulasi sel limfoma B ekspresi (Bcl)-2 protein dan menurunkan regulasi ekspresi tumor necrosis factor (TNF)

Growth factorsGrowth factor adalah protein atau peptida yang diproduksi oleh sel otot polos dan fibroblas yang turut berperan dalam beberapa aktivitas selelur seperti proliferasi, sintesis ECM dan angiogenesis yang penting untuk pertumbuhan leiomioma. Beberapa growth factors seperti EGF,Heparin binding EGF,PDGF,IGF, TGF- ,TGF- vascular endothelial growth factor (VEGF) , acidic firbroblast growth factor(FGF) dan reseptor masing-masing growth factors,dilaporkan memainkan peran dalam pertumbuhan leiomioma. Activin dan miostatin adalah protein yang diindentifikasi pada leiomioma dan miometrium.SitokinSitokin adalah protein yang dilepaskan oleh sel sistem imun . Sitokin menghantar sinyal intraselular dengan mengikat specific cell-surface receptor 151,152.Beberapa interleukin (IL) telah diidentifikasi dalam patofisiologi miometrium. Termasuk IL-1,IL-, IL 11, dan IL 13,kerna ekspresi berlebihan sitokin berikut bertindak sebagai kunci regulator kepada subepithelial airway fibrosis. Terutama melalui interaksi dengan TGF- 156,157,158,159. Ekspresi sitokin tersebut lebih pada leiomioma berbanding miometrium. ILs menambah ekspresi TNF- yang ditemukan pada leiomioma relatif pada miometrium normal dan diturunkan regulasi oleh progesteron.ChemokinesChemokines adalah protein yang di ekspresi kan oleh hampir semua sel yang bernukleas. Chemokines adalah mediator angiogenesis,hematopoiesis dan fibrosis. Monocyte chemoattractant protein 1 memainkan peran dalam respon inflamasi monosit dan makrofag. Sozen et al. menemukan chemokine lebih tinggi pada miometrium berbanding leiomioma. Apabila sel leiomioma diterapi dengan anti-MCP-1 neutralizing antibody,didapati berlaku proliferasi.Tambahan lagi pada sel leiomioma E2 dan progestin sendiri dan pada kombinasi mengurangkan kadar MCP-1. Hasil ini menunjukkan MCP-1 mempunyai sifat antineoplastik pada leiomioma. IL-8 dan reseptor IL-8 tipe A telah diidentifikasi dengan peningkatan ekspresi pada miometrium berbanding leiomioma dan inhibisi proliferasi sel diobservasi apabila IL-8 diblok oleh antibodi neutral,ini menunjukkan potensi peran IL-8 dalam pertumbuhan tisu miometrium. Tambahan pula beberapa chemokines dan reseptor chemokines termasuk macrophage inflammatory protein (MIP)-1, MIP-1, RANTES, eotaxin, eotaxin-2, IL-8, chemokine (cc-motif) receptor 1 (CCR1), CCR3, CCR5, chemokine (cxc-motif) receptor 1 (CXCR1), and CXCR2 mRNA, telah diidentifikasi pada miometrium dan tisu leiomioma,lebih rendah daripada miometrium.Komponen ECM Leiomioma uteri dikarakterisasi oleh kuantiti dan kualitas abnomaliti pada komponen ECM, terutama kolagen, fibronectin, and proteoglycans. Leiomioma mengandungi 50% lebih daripada miometrium bersamaan dan berfungsi sebagai reservoir untuk growth factors,sitokin chemokines angiogenic dan mediator respon inflamasi dan proteases yang diproduksi oleh sel tumor. Kolagen adalah komponen major pada ECM yang berkontribusi kepada stabilisasi dan mempertahankan integriti struktur tisu. Namun struktur dan orientasi fibrin kolagen yang abnormal ditemukan pada leiomioma. Disamping itu ekpresi relatif berlebihan pada mRNA kolagen tipe I dan III pada leiomioma berbanding miometrium disebelahnya. Tambahan pula peningkatan ekspresi kolagen tipe I dan V pada tingkat protein ditemukan pada leiomioma berbanding miometrium yang normal. Malik et al. menguji beberapa seri kolagen subtipe COL1A1, 4A2, 6A1, 6A2, 7A1, dan 16A1 diekspresikan lebih banyak pada leiomioma berbanding pada miometrium. Leiomioma uteri pada manusia yang berasal dari fibroblas dapat menstimulisasi proliferasi sel leiomioma uteri dengan peningkatan produksi kolagen tipe type I, IGFBP-3, VEGF, EGF, bFGF, PDGF-A and B, TGF-1, and TGF-3 dan dapat juga mengaktifkan reseptor tyrosine kinase dan reseptor sinyal TGF-. Penemuan ini menunjukkan bahawa pertumbuhan leiomioma dapat dimediasi oleh mekanisme autokrin atau parakrin. Tumor yang berasal dari fibroblas dan atau sel leiomioma uteri dapat menggalakkan sintesis growth factors dan mengaktif kan jalur sinyalnya yang penting dalam menstimulasi proliferasi sel tumor dan produksi komponen ECM. Penelitian menunjukkan perubahan pada ECM dapat memodifikasi stress mekanikel pada sel yang menyebabkan aktivasi internal mechanical signaling dan menyumbang pada pertumbuhan leiomioma. Telah dilaporkan sel leiomioma yang terpajan pada beban mekanikal dan menunjukkan fitur struktural dan biokimia yang konsisten dengan aktivasi solid state signalling.Walaupun fitur leiomioma meningkatkan stress mekanikal sel leiomioma menunjukkan respons melemah pada isyarat mekanikal berbanding pada sel miometrium. Berdasarkan persoalan ini, Malik et al. mengkarakterisasi integrin dan laminin kepada sinyal pada sel leimioma.Hasil eksperimen mereka menunjukkan hasil bahwa sinyal mekanikal yang dilemahkan pada sel leiomioma diikuti oleh peningkatan ekspresi dan ketergantungan pada sinyal integrin 1 pada sel leiomioma berbanding daripada sel miometrium.Dermatopontin, protein ekstraselular yang mengikat kepada molekul kecil demantan sulfate dan decorin, diekspresikan pada leiomioma,namum kadar ekspresi berkurang pada leiomioma berbanding daripada miometrium.Mengingat Leiomioma dan keloid adalah penyakit fibrotik dan berkongsi kesamaan epidemiologik, kaitan molekular telah dibina antara kedua kondisi patologik dengan melihat berkurangnya ekspresi dermatopontin (kolagen pengikat protein) dan struktur fibril kolagen. Disamping itu beberapa analisa mikroarray menunjukkan penurunan regulasi dermtopontin pada leiomioma berbanding dengan miometrium.Proteoglikan adalah protein glikosilasi yang terikat secara kovalen pada glikoaminoglikan sulfat dan bagian penting kepada struktur leiomioma. David et al. menemukan kadar glikoaminglikan dan versican ( proteoglikan ECM besar) yang tinggi pada fibroid uteri,namun kadar dekorin yang relatif rendah pada fibroid uteri dan keloid berbanding tisu normal. Penemuan ini konsisten dengan penemuan sebelumnya yang berkaitan dengan ikatan molekular antara kedua jenis penyakit fibrotik ini. Tambahan pula beberapa penelitian menunjukkan kadar ekspresi versican adalah lebih tinggi pada leiomioma berbanding daripada miometrium. Pelbagai ekspreis glikosaminoglikan dan proteoglikan juga ditemukan pada leiomioma dan miometrium.Fibronectin adalah glikoprotein ECM yang mengikat kolagen kepada integrin.Terdapat Kadar ekspresi mRNA fibronectin pada pelbagai patofisiologi miometrium. Stewart etal. menemukan tidak ada perbedaan yang signifikan atara leiomioma dan miometrium pada apa pun tahap pada siklus menstruasi.Namun Arici and Sozen menemukan peningkatan kadar ekspresi fibronectin pada leiomioma berbanding daripada autologous miometrium. Menariknya, kumpulan ini turut melaporkan bahwa TGF-3 menginduksi ekspresi fibronectin pada leiomioma dan secara lansung menstimulasi sel miometrium dan leiomioma pada kultur berpoliferasi.Tissue remodelling yang melibatkan ECM turnover memainkan peran penting pada pertumbuhan dan regresi leiomioma,dimana diregulasi oleh kombinasi aksi oleh matriks metalloproteinase (MMP) (protein yang memecahkan ECM) dan tissue inhibitor of MMPs (TIMPs). Khususnya beberapa bentuk dari mRNA MMPs dan TIMPs dan protein telah ditemukan diekspresikan secara berbeda pada miometrium dan leiomioma. Baru-baru ini analisis mikroarray menunjukkan perubahan pada array secara meluas pada MMP pada tisu leiomioma.Sel Kandidat untuk perkembangan dan pertumbuhan fibroid Dengan mempertimbangkan bahwa fibroid uteri adalah sangat lazim dan mempengaruhi wanita pada usia reproduksi (adanya siklus menstruasi) menambahkan lagi kepercayaan bahwa cedera yang berhubungan dengan dengan mens dapat menyebabkan respon inflasmasi yang tidak benar, ini membawa kepada pembentukan fibroid uteri. Kontraksi miometrium pada akhir perdarahan menstruasi dapat menginduksi cedera iskemi atau cedera iskemi-reperfusi pada otot polos miometrium yang mungkin menjadi kandidat untuk sel progenitor dari fibroid uteri. Untuk mendukung hipotesis ini, sel apoptotik positif , sel positif p53 dan sel positif 21 telah ditemukan hanya pada fase folikuler pada siklus menstruasi. Namum sel positif Ki-67 yang dilihat terutama pada fase luteal siklus menstruasi. Hasil ini memberi kesan bahwa majoriti dari sel yang rusak kelihatan dieliminasi pada fase folikuler siklus menstruasi, dieliminasi sebagai sel apoptotik , tetapi beberapa sel yang rusak bisa bertahan hidup dengan menerima mekanisme pertahanan terhadap stress oxidatif dan apoptosis. Sel ini mungkin adalah progenitor kepada fibroid uteri. Bahkan sel leiomioma uteri menpunyai mekanisme proteksi terhadap stress mekanisme yang mengekspresi manganase superoxide dismutase (MnSOD) dan terhadap apoptosi Bcl-2, PEP-19(protein sel Purkinje 4 PCP4) dan secreted frizzled related protein1 (sFRP1)Telah dipersetujui bahwa menstruasi ovulasi dan parturitas menyebabkan kecederaan fisiologi yang mencetuskan reaksi inflamasi pada uterus. Sel Miofibroblas diaktifkan oleh inflamasi dan transformasi selular inilah yang menjadi peristiwa penting untuk pemulihan homeostasis tisu dan proses penyembuhan luka. Miofibroblas dikarekterisasi oleh pertambahan proliferasi,kebolehan bermigrasi, produksi sitokin dan kapasitas untuk menghasilkan matriks interstitial. Namun fungsi miofiblas yang tidak tepat telah ditunjukkan dapat menyebabkan fibrosis,oleh kerana memiliki sifat ketidakmampuan regenerasi tisu,selalu menghasilkan kolagen kolagen dan parut kaku.. Transformasi miofibroblas dapat berlaku dari sel berbeda tipe,kerna miometrium mengandungi sel otot polos , jaringan ikat fibroblas,stem sel,sel vascular dan progenitor sel berasal dari sumsum tulang. Baru- baru ini penelitian mengenai stem sel telah membuka kemungkinan baru untuk memahami pertumbuhan uterine fibroid.Kesimpulan dan perspektif masa hadapan.Uterine fibroid umumnya berhubungan dengan perdarahan menstruasi yang memanjang, berat dan nyeri pelvis. Namun tumor ini juga mempunyai efek negatif terhadap fertilitas dan hasil kehamilan untuk pasien yang ingin mengikuti assisted reproductive technology (ART). Namun literatur berkaitan dengan leiomioma uteri dan kesan nya kepada ART adalah membingungkan. Tambahan pula prevelensi tinggi leiomioma uteri dan pengaruh potensinya yang merugikan terhadap ART dan fungsi reproduksi. Ini menjamin penelitian yang dirancang teliti diteruskan untuk memastikan etiologi,terapi optimal dan terapi baru yang kurang morbiditasnya.Perbedaan ras dan faktor risiko lain,faktor genetik,mekanisme epigenetik, estrogen, progesteron, growth factors,sitokin,chemokines. Dan komponen ECM telah dikenalpasti memberi kesan kepada biologi miometium dan leiomioma. Beberapa dari faktor tersebut boleh dipertimbangkan untuk membina strategi terapi untuk menghalang transformasi miometium dan/ atau pertumbuhan miometrium. Sehingga sekarang terapi yang mungkin telah diuji secara klinikal dan beberapa masih sedang dikaji pada biologi leiomioma. Untuk menimbang perubahan genetik pada leiomioma berbanding miometrium,terapi gene dapat menjanjikan target untuk menghentikan pembentukan leiomioma.Laporan telah menunjukkan terapi dengan adenovirus mediated herpes simplex virus thymidine kinase/ganciclovir menginhibisi proliferasi petumbuhan leiomioma pada manusia dan tikus dan mengurangkan volume fibroid uteri pada model tikus Eker. Tambahan pula, Ad- mediated delivery of a DNER (dominant negative E receptor) gene juga mengecilkan tumor leiomioma uteri pada tikus Eker.Selain faktor genetik,pemahaman tentang status metilasi DNA dan modifikasi histone pada patogenesis leiomioma uteri adalah kritikal dalam mengembangkan terapi epigenetik yang akan memulihkan modifikasi reguler pola epigenetik dengan menginhibisi enzim epigenetik modifier ( DNA methltransferases, demethylases, and histone deacetylases). Dengan munculnya miRNA sebagai kunci regulator kepada kestabilan ekspesi gene,ini akan lebih menarik untuk diselidiki tentang potensi peran regulasi miRNAs terhadap target gene terpilih.yang dimana produknya dapat mempengaruhi pertumbuhan leiomioma.Dengan mempertimbangkan peran paling penting hormon seks steroid pada pertumbuhan leiomioma, GnRH agonis telah diluluskan oleh US Food and Drug Administration kerana mengurangkan volume fibroid dan simptom yang terkait. US Food and Drug Administration juga telah meluluskan alat intrauterine levenorgestrel-releasing intrauterine system (Mirena) (Bayer Schering Pharma, Germany) sebagai tambahan untuk merawat perdarahan berat pada pengguna alat sahaja.Tambahan lagi beberapa terapi yang mungkin terutama antiprogestin (mifepristone) dan selective Progesterone receptor modulators (asoprisnil, CDB-2914, and CDB-4124) telah menunjukkan hasil teraputik yang efesien dan sekarang diuji klinis (www.fda.gov).Karena sistesis estrogen aromatase dan diekspresi berlebihan pada leiomioma berbanding miometrium pada African American relatif kepada Caucasian American dan wanita jepang beberapa aromatase inhibitors (letrozole, anastrozole, and fadrozole)telah diuji terhadap leiomioma. Sehingga sekarang, trial klinik (fase 1) terhadap letrozole telah ditarik. Namun trial klinikal fase III terhadap anastrozole telah direkrut. Namun beberapa terapi medikal (GnRH antagonists, raloxifene, cabergoline, danazol gestrinone, and lanreotide) telah gagal dalam mencapai efektifitasnya terhadap regresi fiboid dan simptom yang berkatian dengan firboid. Terbukti bahwa growth factor, sitokin dan kemokin dipertimbangkan sebagai efektor potensial estrogen dan progesteron terhadap pertumbuhan leiomioma. Growth factor, sitokin dan kemokin mengawal beberapa proses biologi seperti proliferasi sel,remodelling ECM,angiogenesis dan apoptosis,yang mana merupakan penting dalam pertumbuhan leiomioma. Oleh itu adalah jelas bahwa growth factor, sitokin dan kemokin boleh dipetimbangkan sebagai target major dalam mengawal pertumbuhan leiomioma, Karena EGF telah ditunjukkan dapat memediasi kerja estrogen dan memainkan peran dalam meregulasi pertumbuhan leiomioma. AG1478 dan TKS050 (EGFR blocker) telah ditunjukkan efektif dalam memhentikan pertumbuhan sel leiomioma.TGF-B juga mempunyai peran kritikal terhadap pertumbuhan sel leiomioma. Bukti dari model hewan coba yang rentan secaa genetik juga menunjukkan bahwa Sinyal TGF-B adalah kritikal untuk mempertahankan penyakit ini. Oleh kerna itu telah ditemukan bahwan inhibitor selektif terhadap TGF-RI menurunkan jumlah insidens dan saiz dari tumor ini.Dengan mempertimbangkan bahwa leiomioma dikarekterisasi oleh pertambahan proliferasi sel dan tisu fibrosi, antiproliferasi dan atau agen anti fibrotik boleh menjadi target untuk terapi leiomioma. Awalnya beberapa campuran termasuk pirfenidone (235), CP8947 (236), rosiglitazone (237), ciglitizone (238), halofuginone (239), tranilast semua-trans retinoic acid 242, 243, heparin (244), isoliquiritigenin (245), curcumin 246, 247 dan vitamin D 248, 249, 250,telah menunjukkan efek antiproliferatif dan efek antifibrotik terhadap sel leiomioma. Dari semua ini trial klinik fase 2 terhadap perfenidone telah selesai. Vitamin D menunjukkan hasil yang baik terhadap efektifitas terapi. Vitamin D menginhibisi proliferasi sel leiomioma melalui supresi terhadap COMT. Polimorfisme COMT dan asosiasinya terhadap uterine fibroid adalah lebih tinggi pada African American berbanding wanita berkulit putih atau wanita hispanik Tambah3an lagi defisiensi vitamin D adalah lebih banyak pada African American berbanding European American. Vitamin D juga mengurangkan ekspresi gene TGF3 induced fibrosis related pada sel leiomioma. Tambahan lagi vitamin D mengecilkan saiz tumor pada model tikus Eker. Epigallocatechin gallate yang ditemukan pada teh hijau (Camellia sinensis),secara invitro menunjukkan berlaku apoptosis dan efek inhibisi terhadap proliferasi sel leiomioma. Eksperimen in vivo menunjukkan bahwa epigallocatechin gallate mengurangkan volume dan berat tumor pada tikus percobaan. Trial klinik rehadap epigallocatechin gallate juga telah selesai.Masih didalam investigasi bahwa leiomioma adalah hasil daripada respon inflamasi yang tidak benar,oleh itu anti-inflamasi (alami atau sintetik) adalah agen efektif untuk tumor jinak ini.

Referensi

StewartEA. Uterine fibroids. Lancet. 2001;357:293298View In ArticleAbstractFull Text Full-Text PDF (841 KB) CrossRefDay BairdD, DunsonDB, HillMC, CousinsD, SchectmanJM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188:100107View In ArticleAbstractFull Text Full-Text PDF (324 KB) CrossRefButtramVC, ReiterRC. Uterine leiomyomata: etiology, symptomatology, and management. Fertil Steril. 1981;36:433445View In ArticleMEDLINEMarshallLM, SpiegelmanD, BarbieriRL, GoldmanMB, MansonJE, ColditzGA, etal.Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol. 1997;90:967973View In ArticleMEDLINECrossRefWiseLA, PalmerJR, HarlowBL, SpiegelmanD, StewartEA, Adams-CampbellLL, etal.Risk of uterine leiomyomata in relation to tobacco, alcohol and caffeine consumption in the Black Womens Health Study. Hum Reprod. 2004;19:17461754View In ArticleMEDLINECrossRefWalkerCL, StewartEA. Uterine fibroids: the elephant in the room. Science. 2005;308:15891592View In ArticleCrossRefFlakeGP, AndersenJ, DixonD. Etiology and pathogenesis of uterine leiomyomas: a review. Environ Health Perspect. 2003;111:10371054View In ArticleMEDLINECrossRefOkoloS. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22:571588View In ArticleAbstractFull Text Full-Text PDF (221 KB) CrossRefWiseLA, PalmerJR, SpiegelmanD, HarlowBL, StewartEA, Adams-CampbellLL, etal.Influence of body size and body fat distribution on risk of uterine leiomyomata in US black women. Epidemiology. 2005;16:346354View In ArticleMEDLINECrossRefYeY, ChengX, LuoHB, LiuL, LiYB, HouYP. CYP1A1 and CYP1B1 genetic polymorphisms and uterine leiomyoma risk in Chinese women. J Assist Reprod Genet. 2008;25:389394View In ArticleCrossRefBaroMA, OliveiraE, Vieira GomesMT, Cotrim Guerreiro da SilvaID, Ferreira SartoriMG, Batista Castello GiroMJ, etal.The role of MSP I CYP1A1 gene polymorphism in the development of uterine fibroids. Fertil Steril. 2010;94:27832785View In ArticleAbstractFull Text Full-Text PDF (72 KB) CrossRefCongRJ, HuangZY, CongL, YeY, WangZ, ZhaL, etal.Polymorphisms in genes HSD17B1 and HSD17B2 and uterine leiomyoma risk in Chinese women. Arch Gynecol Obstet. 2012;286:701705View In ArticleCrossRefIshikawaH, ReierstadS, DemuraM, RademakerAW, KasaiT, InoueM, etal.High aromatase expression in uterine leiomyoma tissues of African-American women. J Clin Endocrinol Metab. 2009;94:17521756View In ArticleCrossRefOlmos GringsA, LoraV, Dias FerreiraG, Simoni BrumI, von Eye CorletaH, CappE. Protein expression of estrogen receptors and and aromatase in myometrium and uterine leiomyoma. Gynecol Obstet Invest. 2012;73:113117View In ArticleCrossRefAl-HendyA, SalamaSA. Ethnic distribution of estrogen receptor- polymorphism is associated with a higher prevalence of uterine leiomyomas in black Americans. Fertil Steril. 2006;86:686693View In ArticleAbstractFull Text Full-Text PDF (134 KB) CrossRefAl-HendyA, SalamaSA. Catechol-O-methyltransferase polymorphism is associated with increased uterine leiomyoma risk in different ethnic groups. J Soc Gynecol Investig. 2006;13:136144View In ArticleCrossRefOthmanEER, Al-HendyA. Molecular genetics and racial disparities of uterine leiomyomas. Best Pract Res Clin Obstet Gynaecol. 2008;22:589601View In ArticleAbstractFull Text Full-Text PDF (292 KB) CrossRefSalamaSA, HoSL, WangHQ, TenhunenJ, TilgmannC, Al-HendyA. Hormonal regulation of catechol-O-methyl transferase activity in women with uterine leiomyomas. Fertil Steril. 2006;86:259262View In ArticleAbstractFull Text Full-Text PDF (177 KB) CrossRefGoodenKM, SchroederJC, NorthKE, GammonMD, HartmannKE, TaylorJ, etal.Val153Met polymorphism of catechol-O-methyltransferase and prevalence of uterine leiomyomata. Reprod Sci. 2007;14:117120View In ArticleCrossRefTownsendDE, SparkesRS, BaludaMC, McClellandG. Unicellular histogenesis of uterine leiomyomas as determined by electrophoresis by glucose-6-phosphate dehydrogenase. Am J Obstet Gynecol. 1970;107:11681173View In ArticleMEDLINEMashalRD, FejzoMLS, FriedmanAJ, MitchnerN, NowakRA, ReinMS, etal.Analysis of androgen receptor DNA reveals the independent clonal origins of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata. Genes Chromosomes Cancer. 1994;11:16View In ArticleMEDLINECrossRefLinderD, GartlerSM. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science. 1965;150:6769View In ArticleMEDLINEWalkerCL, HunterD, EverittJI. Uterine leiomyoma in the Eker rat: a unique model for important diseases of women. Genes Chromosomes Cancer. 2003;38:349356View In ArticleMEDLINECrossRefCookJD, WalkerCL. The Eker rat: establishing a genetic paradigm linking renal cell carcinoma and uterine leiomyoma. Curr Mol Med. 2004;4:813824View In ArticleMEDLINECrossRefKiechle-SchwarzM, SreekantaiahC, BergerCS, PedronS, MedchillMT, SurtiU, etal.Nonrandom cytogenetic changes in leiomyomas of the female genitourinary tract. A report of 35 cases. Cancer Genet Cytogenet. 1991;53:125136View In ArticleMEDLINECrossRefReinMS, FriedmanAJ, BarbieriRL, PavelkaK, FletcherJA, MortonCC. Cytogenetic abnormalities in uterine leiomyomata. Obstet Gynecol. 1991;77:923926View In ArticleMEDLINEMeloniAM, SurtiU, ContentoAM, DavareJ, SandbergAA. Uterine leiomyomas: cytogenetic and histologic profile. Obstet Gynecol. 1992;80:209217View In ArticleMEDLINESandbergAA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer Genet Cytogenet. 2005;158:126View In ArticleFull Text Full-Text PDF (825 KB) CrossRefPandisN, HeimS, BardiG, FloderusUM, WillenH, MandahlN, etal.Chromosome analysis of 96 uterine leiomyomas. Cancer Genet Cytogenet. 1991;55:1118View In ArticleMEDLINECrossRefDal CinP, MoermanP, DeprestJ, BrosensI, Van den BergheH. A new cytogenetic subgroup in uterine leiomyoma is characterized by a deletion of the long arm of chromosome 3. Genes Chromosomes Cancer. 1995;13:219220View In ArticleMEDLINECrossRefNibertM, HeimS. Uterine leiomyoma cytogenetics. Genes Chromosomes Cancer. 1990;2:313View In ArticleMEDLINECrossRefEl-GharibMN, ElsobkyES. Cytogenetic aberrations and the development of uterine leiomyomata. J Obstet Gynaecol Res. 2010;36:101107View In ArticleCrossRefChaPC, TakahashiA, HosonoN, LowSK, KamataniN, KuboM, etal.A genome-wide association study identifies three loci associated with susceptibility to uterine fibroids. Nat Genet. 2011;43:447450View In ArticleCrossRefGrossKL, NeskeyDM, ManchandaN, WeremowiczS, KleinmanMS, NowakRA, etal.HMGA2 expression in uterine leiomyomata and myometrium: quantitative analysis and tissue culture studies. Genes Chromosomes Cancer. 2003;38:6879View In ArticleMEDLINECrossRefVelagaletiGV, TonkVS, HakimNM, WangX, ZhangH, Erickson-JohnsonMR, etal.Fusion of HMGA2 to COG5 in uterine leiomyoma. Cancer Genet Cytogenet. 2011;202:1116View In ArticleAbstractFull Text Full-Text PDF (647 KB) CrossRefHunterDS, KlotzbcherM, KugohH, CaiSL, MullenJP, ManfiolettiG, etal.Aberrant expression of HMGA2 in uterine leiomyoma associated with loss of TSC2 tumor suppressor gene function. Cancer Res. 2002;62:37663772View In ArticleMEDLINEPengY, LaserJ, ShiG, MittalK, MelamedJ, LeeP, etal.Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res. 2008;6:663673View In ArticleCrossRefWangT, ZhangX, ObijuruL, LaserJ, ArisV, LeeP, etal.A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007;46:336347View In ArticleMEDLINECrossRefIngrahamSE, LynchRA, KathiresanS, BucklerAJ, MenonAG. hREC2, a RAD51-like gene, is disrupted by t(12;14) (q15;q24.1) in a uterine leiomyoma. Cancer Genet Cytogenet. 1999;115:5661View In ArticleAbstractFull Text Full-Text PDF (539 KB) CrossRefTakahashiT, NagaiN, OdaH, OhamaK, KamadaN, MiyagawaK. Evidence for RAD51L1/HMGIC fusion in the pathogenesis of uterine leiomyoma. Genes Chromosomes Cancer. 2001;30:196201View In ArticleMEDLINECrossRefSchoenmakersEF, HuysmansC, Van de VenWJ. Allelic knockout of novel splice variants of human recombination repair gene RAD51B in t(12;14) uterine leiomyomas. Cancer Res. 1999;59:1923View In ArticleMEDLINENezhadMH, DrieschnerN, HelmsS, MeyerA, TadayyonM, KlemkeM, etal.6p21 rearrangements in uterine leiomyomas targeting HMGA1. Cancer Genet Cytogenet. 2010;203:247252View In ArticleAbstractFull Text Full-Text PDF (567 KB) CrossRefLigonAH, ScottIC, TakaharaK, GreenspanDS, MortonCC. PCOLCE deletion and expression analyses in uterine leiomyomata. Cancer Genet Cytogenet. 2002;137:133137View In ArticleAbstractFull Text Full-Text PDF (360 KB) CrossRefPtacekT, SongC, WalkerCL, SellSM. Physical mapping of distinct 7q22 deletions in uterine leiomyoma and analysis of a recently annotated 7q22 candidate gene. Cancer Genet Cytogenet. 2007;174:116120View In ArticleAbstractFull Text Full-Text PDF (291 KB) CrossRefMkinenN, HeinonenHR, MooreS, TomlinsonIPM, van der SpuyZM, AaltonenLA. MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget. 2011;2:966969View In ArticleMkinenN, MehineM, TolvanenJ, KaasinenE, LiY, LehtonenHJ, etal.MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252255View In ArticleCrossRefJeEM, KimMR, MinKO, YooNJ, LeeSH. Mutational analysis of MED12 exon 2 in uterine leiomyoma and other common tumors. Int J Cancer. 2012;131:E1044E1047View In ArticleCrossRefMarkowskiDN, BartnitzkeS, LningT, DrieschnerN, HelmkeBM, BullerdiekJ. MED12 mutations in uterine fibroids-their relationship to cytogenetic subgroups. Int J Cancer. 2012;131:15281536View In ArticleCrossRefMcGuireMM, YatsenkoA, HoffnerL, JonesM, SurtiU, RajkovicA. Whole exome sequencing in a random sample of North American women with leiomyomas identifies MED12 mutations in majority of uterine leiomyomas. PloS One. 2012;7:e33251View In ArticleCrossRefProtG, CroceS, RibeiroA, LagardeP, VelascoV, NeuvilleA, etal.MED12 alterations in both human benign and malignant uterine soft tissue tumors. PloS One. 2012;7:e40015View In ArticleCrossRefThompsonCM, KoleskeAJ, ChaoDM, YoungRA. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell. 1993;73:13611375View In ArticleMEDLINECrossRefTaatjesDJ. The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends Biochem Sci. 2010;35:315322View In ArticleCrossRefEggerG, LiangG, AparicioA, JonesPA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429:457463View In ArticleCrossRefTostJ. DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Mol Biotechnol. 2010;44:7181View In ArticleCrossRefLiE, BestorTH, JaenischR. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915926View In ArticleMEDLINECrossRefShiotaK. DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res. 2004;105:325334View In ArticleCrossRefShiotaK, YanagimachiR. Epigenetics by DNA methylation for development of normal and cloned animals. Differentiation. 2002;69:162166View In ArticleMEDLINECrossRefLiS, ChiangT, Richard-DavisG, BarrettJC, McLachlanJA. DNA hypomethylation and imbalanced expression of DNA methyltransferases (DNMT1, 3A, and 3B) in human uterine leiomyoma. Gynecol Oncol. 2003;90:123130View In ArticleMEDLINECrossRefAsadaH, YamagataY, TaketaniT, MatsuokaA, TamuraH, HattoriN, etal.Potential link between estrogen receptor- gene hypomethylation and uterine fibroid formation. Mol Hum Reprod. 2008;14:539545View In ArticleCrossRefYamagataY, MaekawaR, AsadaH, TaketaniT, TamuraI, TamuraH, etal.Aberrant DNA methylation status in human uterine leiomyoma. Mol Hum Reprod. 2009;15:259267View In ArticleCrossRefMaekawaR, YagiS, OhganeJ, YamagataY, AsadaH, TamuraI, etal.Disease-dependent differently methylated regions (D-DMRs) of DNA are enriched on the X chromosome in uterine leiomyoma. J Reprod Dev. 2011;57:604612View In ArticleCrossRefNavarroA, YinP, MonsivaisD, LinSM, DuP, WeiJJ, etal.Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PloS One. 2012;7:e33284View In ArticleCrossRefKouzaridesT. Chromatin modifications and their function. Cell. 2007;128:693705View In ArticleMEDLINECrossRefWeiLH, TorngPL, HsiaoSM, JengYM, ChenMW, ChenCA. Histone deacetylase 6 regulates estrogen receptor in uterine leiomyoma. Reprod Sci. 2011;18:755762View In ArticleCrossRefWalkerCL. Epigenomic reprogramming of the developing reproductive tract and disease susceptibility in adulthood. Birth Defects Res A Clin Mol Teratol. 2011;91:666671View In ArticleCrossRefGreathouseKL, BredfeldtT, EverittJI, LinK, BerryT, KannanK, etal.Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis. Mol Cancer Res. 2012;10:546557View In ArticleCrossRefBartelDP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281297View In ArticleMEDLINECrossRefMiskaEA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15:563568View In ArticleCrossRefMarshEE, LinZ, YinP, MiladM, ChakravartiD, BulunSE. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril. 2008;89:17711776View In ArticleAbstractFull Text Full-Text PDF (337 KB) CrossRefPanQ, LuoX, CheginiN. Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med. 2008;12:227240View In ArticleCrossRefGeorgievaB, MilevI, MinkovI, DimitrovaI, BradfordAP, BaevV. Characterization of the uterine leiomyoma microRNAome by deep sequencing. Genomics. 2012;93:275281View In ArticleChuangTD, PandaH, LuoX, CheginiN. miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocr Relat Cancer. 2012;19:541556View In ArticleCrossRefChuangTD, LuoX, PandaH, CheginiN. miR-93/106b and their host gene, MCM7, are differentially expressed in leiomyomas and functionally target F3 and IL-8. Mol Endocrinol. 2012;26:10281042View In ArticleCrossRefPanQ, LuoX, CheginiN. microRNA 21: response to hormonal therapies and regulatory function in leiomyoma, transformed leiomyoma and leiomyosarcoma cells. Mol Hum Reprod. 2010;16:215227View In ArticleCrossRefZavadilJ, YeH, LiuZ, WuJJ, LeeP, HernandoE, etal.Profiling and functional analyses of microRNAs and their target gene products in human uterine leiomyomas. PloS One. 2010;5:e12362View In ArticleCrossRefFitzgeraldJB, ChennathukuzhiV, KoohestaniF, NowakRA, ChristensonLK. Role of microRNA-21 and programmed cell death 4 in the pathogenesis of human uterine leiomyomas. Fertil Steril. 2012;98:726734.e2View In ArticleAbstractFull Text Full-Text PDF (884 KB) CrossRefNilssonS, MakelaS, TreuterE, TujagueM, ThomsenJ, AnderssonG, etal.Mechanisms of estrogen action. Physiol Rev. 2001;81:15351565View In ArticleMEDLINEAndersenJ, BarbieriRL. Abnormal gene expression in uterine leiomyomas. J Soc Gynecol Investig. 1995;2:663672View In ArticleMEDLINECrossRefMaruoT, OharaN, WangJ, MatsuoH. Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update. 2004;10:207220View In ArticleMEDLINECrossRefBenassayagC, LeroyMJ, RigourdV, RobertB, HonoreJC, MignotTM, etal.Estrogen receptors (ER/ER) in normal and pathological growth of the human myometrium: pregnancy and leiomyoma. Am J Physiol Endocrinol Metab. 1999;276:E1112E1118View In ArticleKovacsKA, OszterA, GoczePM, KornyeiJL, SzaboI. Comparative analysis of cyclin D1 and oestrogen receptor (alpha and beta) levels in human leiomyoma and adjacent myometrium. Mol Hum Reprod. 2001;7:10851091View In ArticleMEDLINECrossRefOtsukaH, ShinoharaM, KashimuraM, YoshidaK, OkamuraY. A comparative study of the estrogen receptor ratio in myometrium and uterine leiomyomas. Int J Gynaecol Obstet. 1989;29:189194View In ArticleAbstract Full-Text PDF (1539 KB) CrossRefSadanO, Van IddekingeB, Van GelderenCJ, SavageN, BeckerPJ, Van Der WaltLA, etal.Oestrogen and progesterone receptor concentrations in leiomyoma and normal myometrium. Ann Clin Biochem. 1987;24:263267View In ArticleIshikawaH, IshiK, SernaVA, KakazuR, BulunSE, KuritaT. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151:24332442View In ArticleCrossRefGaoZ, MatsuoH, NakagoS, KurachiO, MaruoT. p53 Tumor suppressor protein content in human uterine leiomyomas and its down-regulation by 17 beta-estradiol. J Clin Endocrinol Metab. 2002;87:39153920View In ArticleCrossRefGustavssonI, EnglundK, FaxenM, SjoblomP, LindblomB, BlanckA. Tissue differences but limited sex steroid responsiveness of c-fos and c-jun in human fibroids and myometrium. Mol Hum Reprod. 2000;6:5559View In ArticleMEDLINECrossRefAndersenJ, GrineE, EngCL, ZhaoK, BarbieriRL, ChumasJC, etal.Expression of connexin-43 in human myometrium and leiomyoma. Am J Obstet Gynecol. 1993;169:12661276View In ArticleAbstract Full-Text PDF (3605 KB) CrossRefLeeEJ, BajracharyaP, LeeDM, ChoKH, KimKJ, BaeYK, etal.Gene expression profiles of uterine normal myometrium and leiomyoma and their estrogen responsiveness invitro. Korean J Pathol. 2010;44:272283View In ArticleSwartzCD, AfshariCA, YuL, HallKE, DixonD. Estrogen-induced changes in IGF-I, Myb family and MAP kinase pathway genes in human uterine leiomyoma and normal uterine smooth muscle cell lines. Mol Hum Reprod. 2005;11:441450View In ArticleMEDLINECrossRefBarbarisiA, PetilloO, Di LietoA, MeloneMA, MargarucciS, CannasM, etal.17-beta estradiol elicits an autocrine leiomyoma cell proliferation: evidence for a stimulation of protein kinase-dependent pathway. J Cell Physiol. 2001;186:414424View In ArticleMEDLINECrossRefCiarmelaP, BloiseE, GrayPC, CarrarelliP, IslamMS, De PascalisF, etal.Activin-A and myostatin response and steroid regulation in human myometrium: disruption of their signalling in uterine fibroid. J Clin Endocrinol Metab. 2011;96:755765View In ArticleCrossRefShimomuraY, MatsuoH, SamotoT, MaruoT. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab. 1998;83:21922198View In ArticleCrossRefMatsuoH, KurachiO, ShimomuraY, SamotoT, MaruoT. Molecular bases for the actions of ovarian sex steroids in the regulation of proliferation and apoptosis of human uterine leiomyoma. Oncology. 1999;57:4958View In ArticleCrossRefNierth-SimpsonEN, MartinMM, ChiangTC, MelnikLI, RhodesLV, MuirSE, etal.Human uterine smooth muscle and leiomyoma cells differ in their rapid 17beta-estradiol signaling: implications for proliferation. Endocrinology. 2009;150:24362445View In ArticleCrossRefHermonTL, MooreAB, YuL, KisslingGE, CastoraFJ, DixonD. Estrogen receptor alpha (ER) phospho-serine-118 is highly expressed in human uterine leiomyomas compared to matched myometrium. Virchows Arch. 2008;453:557569View In ArticleCrossRefParkSH, RamachandranS, KwonSH, ChaSD, SeoEW, BaeI, etal.Upregulation of ATP-sensitive potassium channels for estrogen-mediated cell proliferation in human uterine leiomyoma cells. Gynecol Endocrinol. 2008;24:250256View In ArticleCrossRefKastnerP, KrustA, TurcotteB, StroppU, ToraL, GronemeyerH, etal.Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 1990;9:16031614View In ArticleMEDLINEKimJJ, SeftonEC. The role of progesterone signaling in the pathogenesis of uterine leiomyoma. Mol Cell Endocrinol. 2011;358:223231View In ArticleCrossRefBrandonDD, BetheaCL, StrawnEY, NovyMJ, BurryKA, HarringtonMS, etal.Progesterone receptor messenger ribonucleic acid and protein are overexpressed in human uterine leiomyomas. Am J Obstet Gynecol. 1993;169:7885View In ArticleAbstract Full-Text PDF (2394 KB) CrossRefMarelliG, CodegoniAM, BizziA. Estrogen and progesterone receptors in leiomyomas and normal uterine tissues during reproductive life. Acta Eur Fertil. 1989;20:1922View In ArticleMEDLINEVivilleB, Charnock-JonesDS, SharkeyAM, WetzkaB, SmithSK. Distribution of the A and B forms of the progesterone receptor messenger ribonucleic acid and protein in uterine leiomyomata and adjacent myometrium. Hum Reprod. 1997;12:815822View In ArticleMEDLINECrossRefYingZ, WeiyuanZ. Dual actions of progesterone on uterine leiomyoma correlate with the ratio of progesterone receptor A: B. Gynecol Endocrinol. 2009;25:520523View In ArticleCrossRefFujimotoJ, HiroseR, IchigoS, SakaguchiH, LiY, TamayaT. Expression of progesterone receptor form A and B mRNAs in uterine leiomyoma. Tumour Biol. 1998;19:126131View In ArticleMEDLINECrossRefAriciA, SozenI. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73:10061011View In ArticleAbstractFull Text Full-Text PDF (265 KB) CrossRefMaruoT, MatsuoH, ShimomuraY, KurachiO, GaoZ, NakagoS, etal.Effects of progesterone on growth factor expression in human uterine leiomyoma. Steroids. 2003;68:817824View In ArticleCrossRefYamadaT, NakagoS, KurachiO, WangJ, TakekidaS, MatsuoH, etal.Progesterone down-regulates insulin-like growth factor-I expression in cultured human uterine leiomyoma cells. Hum Reprod. 2004;19:815821View In ArticleMEDLINECrossRefMatsuoH, MaruoT, SamotoT. Increased expression of Bcl-2 protein in human uterine leiomyoma and its up-regulation by progesterone. J Clin Endocrinol Metab. 1997;82:293299View In ArticleCrossRefKurachiO, MatsuoH, SamotoT, MaruoT. Tumor necrosis factor- expression in human uterine leiomyoma and its down-regulation by progesterone. J Clin Endocrinol Metab. 2001;86:22752280View In ArticleCrossRefYinP, LinZ, ChengYH, MarshEE, UtsunomiyaH, IshikawaH, etal.Progesterone receptor regulates Bcl-2 gene expression through direct binding to its promoter region in uterine leiomyoma cells. J Clin Endocrinol Metab. 2007;92:44594466View In ArticleCrossRefHoekstraAV, SeftonEC, BerryE, LuZ, HardtJ, MarshE, etal.Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab. 2009;94:17681774View In ArticleCrossRefLuoX, YinP, ReierstadS, IshikawaH, LinZ, PavoneME, etal.Progesterone and mifepristone regulate L-type amino acid transporter 2 and 4F2 heavy chain expression in uterine leiomyoma cells. J Clin Endocrinol Metab. 2009;94:45334539View In ArticleCrossRefYinP, LinZ, ReierstadS, WuJ, IshikawaH, MarshEE, etal.Transcription factor KLF11 integrates progesterone receptor signaling and proliferation in uterine leiomyoma cells. Cancer Res. 2010;70:17221730View In ArticleCrossRefSozenI, AriciA. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Fertil Steril. 2002;78:112View In ArticleAbstractFull Text Full-Text PDF (126 KB) CrossRefCiarmelaP, WiaterE, ValeW. Activin-A in myometrium: characterization of the actions on myometrial cells. Endocrinology. 2008;149:25062516View In ArticleCrossRefCiarmelaP, WiaterE, SmithSM, ValeW. Presence, actions, and regulation of myostatin in rat uterus and myometrial cells. Endocrinology. 2009;150:906914View In ArticleCrossRefRenY, YinH, TianR, CuiL, ZhuY, LinW, etal.Different effects of epidermal growth factor on smooth muscle cells derived from human myometrium and from leiomyoma. Fertil Steril. 2011;96:10151020View In ArticleAbstractFull Text Full-Text PDF (615 KB) CrossRefRossiMJ, CheginiN, MastersonBJ. Presence of epidermal growth factor, platelet-derived growth factor, and their receptors in human myometrial tissue and smooth muscle cells: their action in smooth muscle cells invitro. Endocrinology. 1992;130:17161727View In ArticleMEDLINECrossRefFayedYM, TsibrisJC, LangenbergPW, RobertsonAL. Human uterine leiomyoma cells: binding and growth responses to epidermal growth factor, platelet-derived growth factor, and insulin. Lab Invest. 1989;60:3037View In ArticleMEDLINELiangM, WangH, ZhangY, LuS, WangZ. Expression and functional analysis of platelet-derived growth factor in uterine leiomyomata. Cancer Biol Ther. 2006;5:2833View In ArticleMEDLINECrossRefAriciA, SozenI. Expression, menstrual cycle-dependent activation, and bimodal mitogenic effect of transforming growth factor-beta1 in human myometrium and leiomyoma. Am J Obstet Gynecol. 2003;188:7683View In ArticleAbstractFull Text Full-Text PDF (1031 KB) CrossRefSuoG, JiangY, CowanB, WangJY. Platelet-derived growth factor C is upregulated in human uterine fibroids and regulates uterine smooth muscle cell growth. Biol Reprod. 2009;81:749758View In ArticleCrossRefMesquitaFS, DyerSN, HeinrichDA, BulunSE, MarshEE, NowakRA. Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. Biol Reprod. 2010;82:341351View In ArticleCrossRefTangXM, DouQ, ZhaoY, McLeanF, DavisJ, CheginiN. The expression of transforming growth factor-beta s and TGF-beta receptor mRNA and protein and the effect of TGF-beta s on human myometrial smooth muscle cells invitro. Mol Hum Reprod. 1997;3:233240View In ArticleMEDLINECrossRefLeeBS, NowakRA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001;86:913920View In ArticleCrossRefBattegayEJ, RainesEW, SeifertRA, Bowen-PopeDF, RossR. TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell. 1990;63:515524View In ArticleMEDLINECrossRefJosephDS, MalikM, NurudeenS, CatherinoWH. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3. Fertil Steril. 2010;93:15001508View In ArticleAbstractFull Text Full-Text PDF (501 KB) CrossRefWolanskaM, BankowskiE. Transforming growth factor beta and platelet-derived growth factor in human myometrium and in uterine leiomyomas at various stages of tumour growth. Eur J Obstet Gynecol Reprod Biol. 2007;130:238244View In ArticleAbstractFull Text Full-Text PDF (548 KB) CrossRefDingL, XuJ, LuoX, CheginiN. Gonadotropin releasing hormone and transforming growth factor beta activate mitogen-activated protein kinase/extracellularly regulated kinase and differentially regulate fibronectin, type I collagen, and plasminogen activator inhibitor-1 expression in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 2004;89:55495557View In ArticleCrossRefLevensE, LuoX, DingL, WilliamsRS, CheginiN. Fibromodulin is expressed in leiomyoma and myometrium and regulated by gonadotropin-releasing hormone analogue therapy and TGF-beta through Smad and MAPK-mediated signalling. Mol Hum Reprod. 2005;11:489494View In ArticleMEDLINECrossRefLuoX, DingL, CheginiN. CCNs, fibulin-1C and S100A4 expression in leiomyoma and myometrium: inverse association with TGF-beta and regulation by TGF-beta in leiomyoma and myometrial smooth muscle cells. Mol Hum Reprod. 2006;12:245256View In ArticleMEDLINECiarmelaP, IslamMS, ReisFM, GrayPC, BloiseE, PetragliaF, etal.Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications. Hum Reprod Update. 2011;17:772790View In ArticleCrossRefLuoX, DingL, XuJ, CheginiN. Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology. 2005;146:10971118View In ArticleMEDLINECrossRefStrawnEY, NovyMJ, BurryKA, BetheaCL. Insulin-like growth factor I promotes leiomyoma cell growth invitro. Am J Obstet Gynecol. 1995;172:18371843discussion 18434View In ArticleAbstract Full-Text PDF (740 KB) CrossRefVan Der VenL, GloudemansT, RohollPJM, Van Buul-OffersSC, BladergroenBA, WeltersMJP, etal.Growth advantage of human leiomyoma cells compared to normal smooth-muscle cells due to enhanced sensitivity toward insulin-like growth factor I. Int J Cancer. 1994;59:427434View In ArticleMEDLINECrossRefGaoZ, MatsuoH, WangY, NakagoS, MaruoT. Up-regulation by IGF-I of proliferating cell nuclear antigen and Bcl-2 protein expression in human uterine leiomyoma cells. J Clin Endocrinol Metab. 2001;86:55935599View In ArticleCrossRefYuL, SaileK, SwartzCD, HeH, ZhengX, KisslingGE, etal.Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas. Mol Med. 2008;14:264275View In ArticlePengL, WenY, HanY, WeiA, ShiG, MizuguchiM, etal.Expression of insulin-like growth factors (IGFs) and IGF signaling: molecular complexity in uterine leiomyomas. Fertil Steril. 2009;91:26642675View In ArticleAbstractFull Text Full-Text PDF (696 KB) CrossRefRaukPN, SurtiU, RobertsJM, MichalopoulosG. Mitogenic effect of basic fibroblast growth factor and estradiol on cultured human myometrial and leiomyoma cells. Am J Obstet Gynecol. 1995;173:571577View In ArticleAbstract Full-Text PDF (708 KB) CrossRefAnaniaCA, StewartEA, QuadeBJ, HillJA, NowakRA. Expression of the fibroblast growth factor receptor in women with leiomyomas and abnormal uterine bleeding. Mol Hum Reprod. 1997;3:685691View In ArticleMEDLINECrossRefHongT, ShimadaY, UchidaS, ItamiA, LiZ, DingY, etal.Expression of angiogenic factors and apoptotic factors in leiomyosarcoma and leiomyoma. Int J Mol Med. 2001;8:141148View In ArticleMEDLINEAritaS, KikkawaF, KajiyamaH, ShibataK, KawaiM, MizunoK, etal.Prognostic importance of vascular endothelial growth factor and its receptors in the uterine sarcoma. Int J Gynecol Cancer. 2005;15:329336View In ArticleCrossRefYoshidaM, OhtsuruA, SamejimaT, OkazakiM, FujishitaA, ItoM, etal.Involvement of parathyroid hormone-related peptide in cell proliferation activity of human uterine leiomyomas. Endocr J. 1999;46:8190View In ArticleMEDLINECrossRefWeirEC, GoadDL, DaifotisAG, BurtisWJ, DreyerBE, NowakRA. Relative overexpression of the parathyroid hormone-related protein gene in human leiomyomas. J Clin Endocrinol Metab. 1994;78:784789View In ArticleCrossRefAustinDJ, NowakRA, StewartEA. Onapristone suppresses prolactin production in explant cultures of leiomyoma. Gynecol Obstet Invest. 1999;47:268271View In ArticleMEDLINECrossRefGellersenB, BonhoffA, HuntN, BohnetHG. Decidual-type prolactin expression by the human myometrium. Endocrinology. 1991;129:158168View In ArticleMEDLINECrossRefSozenI, OliveDL, AriciA. Expression and hormonal regulation of monocyte chemotactic protein-1 in myometrium and leiomyomata. Fertil Steril. 1998;69:10951102View In ArticleAbstractFull Text Full-Text PDF (3284 KB) CrossRefPekonenF, NymanT, RutanenEM. Differential expression of mRNAs for endothelin-related proteins in human endometrium, myometrium and leiomyoma. Mol Cell Endocrinol. 1994;103:165170View In ArticleMEDLINECrossRefRobinP, ChouayekhS, Bole-FeysotC, LeiberD, TanfinZ. Contribution of phospholipase D in endothelin-1-mediated extracellular signal-regulated kinase activation and proliferation in rat uterine leiomyoma cells. Biol Reprod. 2005;72:6977View In ArticleMEDLINECrossRefHoriuchiA, NikaidoT, YoshizawaT, ItohK, KobayashiY, TokiT, etal.HCG promotes proliferation of uterine leiomyomal cells more strongly than thatof myometrial smooth muscle cells invitro. Mol Hum Reprod. 2000;6:523528View In ArticleMEDLINECrossRefTsaiSJ, LinSJ, ChengYM, ChenHM, WingLYC. Expression and functional analysis of pituitary tumor transforming growth factor-1 in uterine leiomyomas. J Clin Endocrinol Metab. 2005;90:37153723View In ArticleCrossRefParkinJ, CohenB. An overview of the immune system. Lancet. 2001;357:17771789View In ArticleAbstractFull Text Full-Text PDF (1185 KB) CrossRefDinarelloCA. Historical insights into cytokines. Eur J Immunol. 2007;37:S34S45View In ArticleCrossRefHatthachoteP, GillespieJI. Complex interactions between sex steroids and cytokines in the human pregnant myometrium: evidence for an autocrine signaling system at term. Endocrinology. 1999;140:25332540View In ArticleMEDLINECrossRefLitovkinKV, DomenyukVP, BubnovVV, ZaporozhanVN. Interleukin-6-174G/C polymorphism in breast cancer and uterine leiomyoma patients: a population-based case control study. Exp Oncol. 2007;29:295298View In ArticleDingL, LuoX, CheginiN. The expression of IL-13 and IL-15 in leiomyoma and myometrium and their influence on TGF- and proteases expression in leiomyoma and myometrial smooth muscle cells and SKLM, leiomyosarcoma cell line. J Soc Gynecol Invest. 2004;11:319AView In ArticleZhengT, OhMH, OhSY, SchroederJT, GlickAB, ZhuZ. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol. 2008;129:742751View In ArticleSugimotoR, EnjojiM, NakamutaM, OhtaS, KohjimaM, FukushimaM, etal.Effect of IL-4 and IL-13 on collagen production in cultured LI90 human hepatic stellate cells. Liver Int. 2005;25:420428View In ArticleMEDLINEFichtner-FeiglS, StroberW, KawakamiK, PuriRK, KitaniA. IL-13 signaling through the IL-132 receptor is involved in induction of TGF-1 production and fibrosis. Nat Med. 2005;12:99106View In ArticleMEDLINECrossRefChenQ, RabachL, NobleP, ZhengT, LeeCG, HomerRJ, etal.IL-11 receptor in the pathogenesis of IL-13-induced inflammation and remodeling. J Immunol. 2005;174:23052313View In ArticleMEDLINENairS, Al-HendyA. Adipocytes enhance the proliferation of human leiomyoma cells via TNF- proinflammatory cytokine. Reprod Sci. 2011;18:11861192View In ArticleCrossRefHsiehYY, ChangCC, TsaiFJ, LinCC, YehLS, TsaiCH. Tumor necrosis factor-[alpha]-308 promoter and p53 codon 72 gene polymorphisms in women with leiomyomas. Fertil Steril. 2004;82:11771181View In ArticleAbstractFull Text Full-Text PDF (81 KB) CrossRefHsiehYY, ChangCC, TsaiCH, LinCC, TsaiFJ. Interleukin (IL)-12 receptor 1 codon 378 G homozygote and allele, but not IL-1 (-511 promoter, 3953 exon 5, receptor antagonist), IL-2 114, IL-4-590 intron 3, IL-8 3-UTR 2767, and IL-18 105, are associated with higher susceptibility to leiomyoma. Fertil Steril. 2007;87:886895View In ArticleAbstractFull Text Full-Text PDF (156 KB) CrossRefPietrowskiD, ThewesR, SatorM, DenschlagD, KeckC, TempferC. Uterine leiomyoma is associated with a polymorphism in the interleukin 1-beta gene. Am J Reprod Immunol. 2009;62:112117View In ArticleSosnaO, KolesarL, SlavcevA, SkibovaJ, FaitT, MaraM, etal.Th1/Th2 cytokine gene polymorphisms in patients with uterine fibroid. Folia Biol (Praha). 2010;56:206210View In ArticleXingZ, GauldieJ, TremblayGM, HewlettBR, AddisonC. Intradermal transgenic expression of granulocyte-macrophage colony-stimulating factor induces neutrophilia, epidermal hyperplasia, Langerhans cell/macrophage accumulation, and dermal fibrosis. Lab Invest. 1997;77:615622View In ArticleMEDLINEXingZ, TremblayGM, SimePJ, GauldieJ. Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor-beta 1 and myofibroblast accumulation. Am J Pathol. 1997;150:59View In ArticleMEDLINEXingZ, OhkawaraY, JordanaM, GrahamF, GauldieJ. Transfer of granulocyte-macrophage colony-stimulating factor gene to rat lung induces eosinophilia, monocytosis, and fibrotic reactions. J Clin Invest. 1996;97:11021110View In ArticleMEDLINECrossRefAndreuttiD, GabbianiG, NeuvilleP. Early granulocyte-macrophage colony-stimulating factor expression by alveolar inflammatory cells during bleomycin-induced rat lung fibrosis. Laboratory investigation. 1998;78:14931502View In ArticleCheginiN, TangXM, MaC. Regulation of transforming growth factor-beta1 expression by granulocyte macrophage-colony-stimulating factor in leiomyoma and myometrial smooth muscle cells. J Clin Endocrinol Metab. 1999;84:41384143View In ArticleCrossRefSuzukiM, TakamizawaS, NomaguchiK, SuzuS, YamadaM, IgarashiT, etal.Erythropoietin synthesis by tumour tissues in a patient with uterine myoma and erythrocytosis. Br J Haematol. 2001;113:4951View In ArticleMEDLINECrossRefYokoyamaY, ShinoharaA, HirokawaM, MaedaN. Erythrocytosis due to an erythropoietin-producing large uterine leiomyoma. Gynecol Obstet Invest. 2003;56:179183View In ArticleMEDLINECrossRefMehradB, KeaneMP, StrieterRM. Chemokines as mediators of angiogenesis. Thromb Haemost. 2007;97:755762View In ArticleMEDLINEBroxmeyerHE. Chemokines in hematopoiesis. Curr Opin Hematol. 2008;15:4958View In ArticleCrossRefBonfieldTL, PanuskaJR, KonstanMW, HilliardKA, HilliardJB, GhnaimH, etal.Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med. 1995;152:21112118View In ArticleCrossRefSenturkLM, SozenI, GutierrezL, AriciA. Interleukin 8 production and interleukin 8 receptor expression in human myometrium and leiomyoma. Am J Obstet Gynecol. 2001;184:559566View In ArticleAbstractFull Text Full-Text PDF (213 KB) CrossRefSyssoevKA, KulaginaNV, ChukhlovinAB, MorozovaEB, TotolianAA. Expression of mRNA for chemokines and chemokine receptors in tissues of the myometrium and uterine leiomyoma. Bull Exp Biol Med. 2008;145:8489View In ArticleCrossRefStewartEA, FriedmanAJ, PeckK, NowakRA. Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab. 1994;79:900906View In ArticleCrossRefWolanskaM, SobolewskiK, DrodewiczM, BakowskiE. Extracellular matrix components in uterine leiomyoma and their alteration during the tumour growth. Mol Cell Biochem. 1998;189:145152View In ArticleMEDLINECrossRefNorianJM, MalikM, ParkerCY, JosephD, LeppertPC, SegarsJH, etal.Transforming growth factor beta3 regulates the versican variants in theextracellular matrix-rich uterine leiomyomas. Reprod Sci. 2009;16:11531164View In ArticleCrossRefMalikM, NorianJ, McCarthy-KeithD, BrittenJ, CatherinoWH. Why leiomyomas are called fibroids: the central role of extracellular matrix in symptomatic women. Semin Reprod Med. 2010;28:169179View In ArticleCrossRefIwahashiM, MuragakiY. Increased type I and V collagen expression in uterine leiomyomas during the menstrual cycle. Fertil Steril. 2011;95:21372139View In ArticleAbstractFull Text Full-Text PDF (147 KB) CrossRefMooreAB, YuL, SwartzCD, ZhengX, WangL, CastroL, etal.Human uterine leiomyoma-derived fibroblasts stimulate uterine leiomyoma cell proliferation and collagen type I production, and activate RTKs and TGF beta receptor signaling in coculture. Cell Commun Signal. 2010;8:10View In ArticleLeppertPC, BaginskiT, PrupasC, CatherinoWH, PletcherS, SegarsJH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril. 2004;82(Suppl 3):11821187View In ArticleAbstractFull Text Full-Text PDF (504 KB) CrossRefMitropoulouTN, TheocharisAD, StagiannisKD, KaramanosNK. Identification, quantification and fine structural characterization of glycosaminoglycans from uterine leiomyoma and normal myometrium. Biochimie. 2001;83:529536View In ArticleMEDLINECrossRefBertoAGA, SampaioLO, FrancoCRC, CesarRM, MichelacciYM. A comparative analysis of structure and spatial distribution of decorin in human leiomyoma and normal myometrium. Biochim Biophys Acta. 2003;1619:98112View In ArticleMEDLINECatherinoWH, LeppertPC, StenmarkMH, PaysonM, Potlog-NahariC, NiemanLK, etal.Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer. 2004;40:204217View In ArticleMEDLINECrossRefFujitaM. Histological and biochemical studies of collagen in human uterine leiomyomas. Hokkaido Igaku Zasshi. 1985;60:602615View In ArticleMEDLINEHulboyDL, RudolphLA, MatrisianLM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod. 1997;3:2745View In ArticleMEDLINECrossRefCheginiN. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med. 2010;28:180203View In ArticleCrossRefOharaN. Sex steroidal modulation of collagen metabolism in uterine leiomyomas. Clin Exp Obstet Gynecol. 2009;36:1011View In ArticleGelseK, PschlE, AignerT. Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55:15311546View In ArticleCrossRefWangH, MahadevappaM, YamamotoK, WenY, ChenB, WarringtonJA, etal.Distinctive proliferative phase differences in gene expression in human myometrium and leiomyomata. Fertil Steril. 2003;80:266276View In ArticleFull Text Full-Text PDF (43 KB) CrossRefIwahashiM, MuragakiY, IkomaM, MabuchiY, KobayashiAYA, TanizakiY, etal.Immunohistochemical analysis of collagen expression in uterine leiomyomata during the menstrual cycle. Exp Ther Med. 2010;2:287290View In ArticleRogersR, NorianJ, MalikM, ChristmanG, Abu-AsabM, ChenF, etal.Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol. 2008;198:474.e1474.e11View In ArticleAbstractFull Text Full-Text PDF (1859 KB) Summary PDF (201 KB) CrossRefNorianJM, OwenCM, TaboasJ, KoreckiC, TuanR, MalikM, etal.Characterization of tissue biomechanics and mechanical signaling in uterine leiomyoma. Matrix Biol. 2012;31:5765View In ArticleCrossRefMalikM, SegarsJ, CatherinoWH. Integrin 1 regulates leiomyoma cytoskeletal integrity and growth. Matrix Biol. 2012;31:389397View In ArticleCrossRefTsibrisJ, SegarsJ, CoppolaD, ManeS, WilbanksGD, OBrienWF, etal.Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril. 2002;78:114121View In ArticleAbstractFull Text Full-Text PDF (102 KB) CrossRefArslanAA, GoldLI, MittalK, SuenTC, Belitskaya-LevyI, TangMS, etal.Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: new evidence and a systematic review. Hum Reprod. 2005;20:852863View In ArticleMEDLINECrossRefAhnWS, KimKW, BaeSM, YoonJH, LeeJM, NamkoongSE, etal.Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis. Int J Exp Pathol. 2003;84:267279View In ArticleMEDLINECrossRefCatherinoW, SalamaA, Potlog-NahariC, LeppertP, TsibrisJ, SegarsJ. Gene expression studies in leiomyomata: new directions for research. Semin Reprod Med. 2004;22:8390View In ArticleMEDLINECrossRefMalikM, CatherinoWH. Novel method to characterize primary cultures of leiomyoma and myometrium with the use of confirmatory biomarker gene arrays. Fertil Steril. 2007;87:11661172View In ArticleAbstractFull Text Full-Text PDF (1374 KB) CrossRefDavidAC, SamM, NicholeMB, WilliamWH, ArnoldIC. Proteoglycans of uterine fibroids and keloid scars: similarity in their proteoglycan composition. Biochem J. 2012;443:361368View In ArticleCrossRefLeppertPC, CatherinoWH, SegarsJH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol. 2006;195:415420View In ArticleAbstractFull Text Full-Text PDF (384 KB) CrossRefBertoAGA, ObaSM, MichelacciYM, SampaioLO. Galactosaminoglycans from normal myometrium and leiomyoma. Braz J Med Biol Res. 2001;34:633637View In ArticleReinMS, BarbieriRL, WelchW, GleasonRE, CaulfieldJP, FriedmanAJ. The concentrations of collagen-associated amino acids are higher in GnRH agonist-treated uterine myomas. Obstet Gynecol. 1993;82:901905View In ArticleMEDLINEHjelmA, Ekman-OrdebergG, BarchanK, MalmstrmA. Identification of the major proteoglycans from human myometrium. Acta Obstet Gynecol Scand. 2001;80:10841090View In ArticleMEDLINECrossRefDouQ, TarnuzzerRW, WilliamsRS, SchultzGS, CheginiN. Differential expression of matrix metalloproteinases and their tissue inhibitors in leiomyomata: a mechanism for gonadotrophin releasing hormone agonist-induced tumour regression. Mol Hum Reprod. 1997;3:10051014View In ArticleMEDLINECrossRefBodner-AdlerB, BodnerK, KimbergerO, CzerwenkaK, LeodolterS, MayerhoferK. Expression of matrix metalloproteinases in patients with uterine smooth muscle tumors: an immunohistochemical analysis of MMP-1 and MMP-2 protein expression in leiomyoma, uterine smooth muscle tumor of uncertain malignant potential, and leiomyosarcoma. J Soc Gynecol Investig. 2004;11:182186View In ArticleMEDLINECrossRefWolanskaM, SobolewskiK, BakowskiE, JaworskiS. Matrix metalloproteinases of human leiomyoma in various stages of tumor growth. Gynecol Obstet Invest. 2004;58:1418View In ArticleMEDLINECrossRefBogusiewiczM, Stryjecka-ZimmerM, PostawskiK, JakimiukAJ, RechbergerT. Activity of matrix metalloproteinase-2 and-9 and contents of their tissue inhibitors in uterine leiomyoma and corresponding myometrium. Gynecol Endocrinol. 2007;23:541546View In ArticleCrossRefMaybinJA, CritchleyHOD, JabbourHN. Inflammatory pathways in endometrial disorders. Mol Cell Endocrinol. 2011;335:4251View In ArticleCrossRefFujiiS, SuzukiA, MatsumuraN, KanamoriT, ShimeH, FukuharaK, etal.Fibroids: basic science and etiology. International Congress Series. Amsterdam: Elsevier; 2004;View In ArticleKanamoriT, TakakuraK, MandaiM, KariyaM, FukuharaK, KusakariT, etal.PEP-19 overexpression in human uterine leiomyoma. Mol Hum Reprod. 2003;9:709717View In ArticleMEDLINECrossRefFukuharaK, KariyaM, KitaM, ShimeH, KanamoriT, KosakaC, etal.Secreted frizzled related protein 1 is overexpressed in uterine leiomyomas, associated with a high estrogenic environment and unrelated to proliferative activity. J Clin Endocrinol Metab. 2002;87:17291736View In ArticleCrossRefJabbourHN, SalesKJ, CatalanoRD, NormanJE. Inflammatory pathways in female reproductive health and disease. Reproduction. 2009;138:903919View In ArticleEckesB, Colucci-GuyonE, SmolaH, NodderS, BabinetC, KriegT, etal.Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci. 2000;113:24552462View In ArticleWynnTA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2007;214:199210View In ArticleCrossRefDesmouliereA, DarbyIA, GabbianiG. Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest. 2003;83:16891707View In ArticleMEDLINECrossRefGuarinoM, TosoniA, NebuloniM. Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition. Hum Pathol. 2009;40:13651376View In ArticleAbstractFull Text Full-Text PDF (2737 KB) CrossRefSchillerM, JavelaudD, MauvielA. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci. 2004;35:8392View In ArticleAbstractFull Text Full-Text PDF (318 KB) CrossRefHinzB. Tissue stiffness, latent TGF-1 Activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep. 2009;11:120126View In ArticleOnoM, MaruyamaT, MasudaH, KajitaniT, NagashimaT, AraseT, etal.Side population in human uterine myometrium displays phenotypic andfunctional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007;104:1870018705View In ArticleCrossRefChangHL, SenaratneTN, ZhangLH, SzotekPP, StewartE, DombkowskiD, etal.Uterine leiomyomas exhibit fewer stem/progenitor cell characteristics when compared with corresponding normal myometrium. Reprod Sci. 2010;17:158167View In ArticleCrossRefOnoM, QiangW, SernaVA, YinP, CoonJS, NavarroA, etal.Role of stem cells in human uterine leiomyoma growth. PloS one. 2012;7:e36935View In ArticleMasA, CervellI, Gil-SanchisC, FausA, FerroJ, PellicerA, etal.Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertil Steril. 2012;98:741751.e6View In ArticleAbstractFull Text Full-Text PDF (1787 KB) CrossRefFeinbergEC, LarsenFW, CatherinoWH, ZhangJ, ArmstrongAY. Comparison of assisted reproductive technology utilization and outcomes between Caucasian and African American patients in an equal-access-to-care setting. Fertil Steril. 2006;85:888894View In ArticleAbstractFull Text Full-Text PDF (111 KB) CrossRefEzzatiM, NorianJM, SegarsJH. Management of uterine fibroids in the patient pursuing assisted reproductive technologies. Womens Health. 2009;5:413421View In ArticleLevyG, HillMJ, BeallS, ZarekSM, SegarsJH, CatherinoWH. Leiomyoma: genetics, assisted reproduction, pregnancy and therapeutic advances. J Assist Reprod Genet. 2012;29:703712View In ArticleCrossRefSalamaSA, KamelM, ChristmanG, WangHQ, FouadHM, Al-HendyA. Gene therapy of uterine leiomyoma: adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir treatment inhibits growth of human and rat leiomyoma cells invitro and in a nude mouse model. Gynecol Obstet Invest. 2007;63:6170View In ArticleMEDLINECrossRefHassanM, ZhangD, SalamaS, HamadaF, ArafaH, FouadH, etal.Towards fibroid gene therapy: adenovirus-mediated delivery of herpes simplex virus 1 thymidine kinase gene/ganciclovir shrinks uterine leiomyoma in the Eker rat model. Gynecol Obstet Invest. 2009;68:1932View In ArticleCrossRefHassanMH, SalamaSA, ZhangD, ArafaHMM, HamadaF, FouadH, etal.Gene therapy targeting leiomyoma: adenovirus-mediated delivery of dominant-negative estrogen receptor gene shrinks uterine tumors in Eker rat model. Fertil Steril. 2010;93:239250View In ArticleAbstractFull Text Full-Text PDF (1238 KB) CrossRefShushanA, RojanskyN, LauferN, KleinBY, ShlomaiZ, LevitzkiR, etal.The AG1478 tyrosine kinase inhibitor is an effective suppressor of leiomyoma cell growth. Hum Reprod. 2004;19:19571967View In ArticleMEDLINECrossRefShushanA, Ben-BassatH, MishaniE, LauferN, KleinBY, RojanskyN. Inhibition of leiomyoma cell proliferation invitro by genistein and the protein tyrosine kinase inhibitor TKS050. Fertil Steril. 2007;87:127135View In ArticleAbstractFull Text Full-Text PDF (900 KB) CrossRefLapingNJ, EverittJI, FrazierKS, BurgertM, PortisMJ, CadacioC, etal.Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats. Clin Cancer Res. 2007;13:30873099View In ArticleMEDLINECrossRefLeeBS, MargolinSB, NowakRA. Pirfenidone: a novel pharmacological agent that inhibits leiomyoma cell proliferation and collagen production. J Clin Endocrinol Metab. 1998;83:219223View In ArticleCrossRefCatherinoWH, MalikM, DriggersP, ChappelS, SegarsJ, DavisJ. Novel, orally active selective progesterone receptor modulator CP8947 inhibits leiomyoma cell proliferation without adversely affecting endometrium or myometrium. J Steroid Biochem Mol Biol. 2010;122:279286View In ArticleCrossRefZhangC, WenZ, LiJ, LiC, ShiM, YangG, etal.Inhibition of proliferation and transforming growth factor ss3 protein expression by peroxisome proliferators-activated receptor gamma ligands in human uterine leiomyoma cells. Chin Med J (Engl). 2008;121:166171View In ArticleKimBY, ChoCH, SongDK, MunKC, SuhSI, KimSP, etal.Ciglitizone inhibits cell proliferation in human uterine leiomyoma via activation of store-operated Ca2+ channels. Am J Physiol Cell Physiol. 2005;288:C389C395View In ArticleMEDLINECrossRefGrudzienMM, LowPS, ManningPC, ArredondoM, BeltonRJ, NowakRA. The antifibrotic drug halofuginone inhibits proliferation and collagen production by human leiomyoma and myometrial smooth muscle cells. Fertil Steril. 2010;93:12901298View In ArticleAbstractFull Text Full-Text PDF (810 KB) CrossRefShimeH, KariyaM, OriiA, MommaC, KanamoriT, FukuharaK, etal.Tranilast inhibits the proliferation of uterine leiomyoma cells invitro through G1 arrest associated with the induction of p21waf1 and p53. J Clin Endocrinol Metab. 2002;87:56105617View In ArticleCrossRefIslamMS, ProticO, StortoniP, GiannubiloS, CiavattiniA, LamannaP, etal.Antiproliferative effect of tranilast on human myometrial and leiomyoma cells. Biol Biomed Rep. 2012;2:321327View In ArticleBoettger-TongHL, StancelGM. Retinoic acid inhibits estrogen-induced uterine stromal and myometrial cell proliferation. Endocrinology. 1995;136:29752983View In ArticleMEDLINECrossRefMalikM, WebbJ, CatherinoWH. Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol (Oxf). 2008;69:462470View In ArticleCrossRefMasonHR, NowakRA, MortonCC, CastellotJJ. Heparin inhibits the motility and proliferation of human myometrial and leiomyoma smooth muscle cells. Am J Pathol. 2003;162:18951904View In ArticleAbstractFull Text Full-Text PDF (819 KB) CrossRefKimD, RamachandranS, BaekS, KwonSH, KwonKY, ChaSD, etal.Induction of growth inhibition and apoptosis in human uterine leiomyoma cells by isoliquiritigenin. Reprod Sci. 2008;15:552558View In ArticleCrossRefMalikM, BrittenJ, DriggersP, PaysonM, SegarsJH, CatherinoWH. Curcumin, a nutritional supplement with antineoplastic activity, selectively inhibits leiomyoma growth. Fertil Steril. 2007;88:S217View In ArticleFull Text Full-Text PDF (44 KB) CrossRefTsuijiK, TakedaT, LiB, WakabayashiA, KondoA, KimuraT, etal.Inhibitory effect of curcumin on uterine leiomyoma cell proliferation. Gynecol Endocrinol. 2011;27:512517View In ArticleCrossRefBluerM, RovioPH, YlikomiT, HeinonenPK. Vitamin D inhibits myometrial and leiomyoma cell proliferation invitro. Fertil Steril. 2009;91:19191925View In ArticleAbstractFull Text Full-Text PDF (311 KB) CrossRefSharanC, HalderSK, ThotaC, JaleelT, NairS, Al-HendyA. Vitamin D inhibits proliferation of human uterine leiomyoma cells via catechol-O-methyltransferase. Fertil Steril. 2011;95:247253View In ArticleAbstractFull Text Full-Text PDF (661 KB) CrossRefHalderSK, SharanC, Al-HendyA. 1,25-dihydroxyvitamin D3 treatment shrinks uterine leiomyoma tumors in the Eker rat model. Biol Reprod. 2012;86:116View In ArticleCrossRefNesby-ODellS, ScanlonKS, CogswellME, GillespieC, HollisBW, LookerAC, etal.Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 19881994. Am J Clin Nutr. 2002;76:187192View In ArticleMEDLINEHalderSK, GoodwinJS, Al-HendyA. 1,25-Dihydroxyvitamin D reduces TGF-3-induced fibrosis-related gene expression in human uterine leiomyoma cells. J Clin Endocrinol Metab. 2011;96:E754E762View In ArticleCrossRefZhangD, Al-HendyM, Richard-DavisG, Montgomery-RiceV, RajaratnamV, Al-HendyA. Antiproliferative and proapoptotic effects of epigallocatechin gallate on human leiomyoma cells. Fertil Steril. 2010;94:18871893View In ArticleAbstractFull Text Full-Text PDF (1007 KB) CrossRefZhangD, Al-HendyM, Richard-DavisG, Montgomery-RiceV, SharanC, RajaratnamV, etal.Green tea extract inhibits proliferation of uterine leiomyoma cells invitro and in nude mice. Am J Obstet Gynecol. 2010;202:289.e1289.e9