dasar ilmu ta ah€¦ · • penyusun utama asam amino yang digunakan untuk sintesa peptida dan...

90
DASAR ILMU TAAH Materi 08: Sifat Biologi Tanah & Proses Materi 08: Sifat Biologi Tanah & Proses

Upload: others

Post on 30-Apr-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

DASAR ILMU TA�AH

Materi 08: Sifat Biologi Tanah & ProsesMateri 08: Sifat Biologi Tanah & Proses

Komposisi Bahan Organik TanahBiomasa Hidup

(4%)

Bahan Organik

Makro (16%)

Senyawa �on Humik

Senyawa Humik (50%)Senyawa �on Humik

(30%)

Komposisi Biomasa Tanah

Mikroorganisme

Makrofauna

(22%)

Akar

(8%)

Mikroorganisme

(70%)

Habitat tanah yang

mengandung partikel tanah

mineral (pasir-Sa, debu-Si,

liat-C), bahan organik

(OM), air (W), akar

tanaman dengan ramut

akar (R), dan organisme akar (R), dan organisme

tanah (bakteri-B,

aktinomisetes-A, spora

mikoriza dan hifa-My; hifa

jamur saprofit-H;

nematoda-N, protozoa

ciliata-CP, protozoa

flagelata-FP, dan mite-M)

(Sylvia et al., 1998)

Skema agregat tanah (Sylvia et al., 1998)

debu

liat

pasir

Aktinomisetes

Bahan Organik

Bakteri

Organisme

• prokariot (dari kata ‘pro’ yang berarti ‘sebelum’ dan ‘karion’ yang berarti nukleus)�Bakteri (termasuk sianobakteri dan aktinomisetes) dan Arhaea adalah prokariot, sedangkan semua organisme yang lainnya adalah eukariot

• eukariot (dari kata ‘eu’ yang berarti ’benar’).• eukariot (dari kata ‘eu’ yang berarti ’benar’).– Perbedaan.

• Nukleus eukariot adalah sitoplasma yang diselimuti oleh memban nukleus dan mengandung berbagai molekul DNA. Daerah nukleus prokariot tidak diselimuti oleh membran dan mengandung molekul DNA sirkular tunggal (kromosom). Pembelahan sel pada prokariot biasanya melalui pembelahan ganda (yakni nonmitotik).

• Eukariot mengalami pembelahan melalui proses yang disebut ‘mitosis’.

Arsitektur sel Prokariot dan Eukariot

Struktur Sel Prokariot

Organisme tanah

• mikroflora atau mikroorganisme tanah– bakteri (bacteria)

– aktinomisetes (actinomycetes)

– ganggang (algae)

– jamur (fungi)

– virus– virus

• fauna tanah– Mikrofauna

– Mesofauna

– Makrofauna• Bersama-sama akar tanaman, mikroorganisme dan fauna tanah membentuk komponen biota yang berperan penting dalam proses biogeokimia dalam tanah

Gambar 2.1. Koloni bakteri (hasil scanning electron micrograph) (Sylvia et al., 1998).

Koloni bakteri (hasil scanning electron

micrograph) (Sylvia et al., 1998). A�ABAE�AGambar 2.1. Koloni bakteri (hasil scanning electron micrograph) (Sylvia et al., 1998).

Aktinomisetes tanah (Kilham, 1994)

CYA�OBACTERIA

Flagelata Amoeba Ciliata�ematoda Tanah

Cacing tanahMilipida Tungau (mite)

RayapSemut Collembola (springtail)

Fungsi organisme tanah

• Aliran energi dan dekomposisi bahan organik

– Aliran energi terkait erat dengan proses akumulasi

dan dekomposisi bahan organik

– Jumlah bahan organik yang diperoleh dalam suatu

ekosistem dapat digunakan sebagai ukuran

produktivitas ekosistem tsbproduktivitas ekosistem tsb

– Proses dekomposisi sangat dipengaruhi oleh faktor

lingkungan; mikroba paling dominan cendawan dan

bakteri

• Siklus Hara: pertukaran unsur kimia antara bagian

ekosistem yang mati ke bagian yang hidup disebut

siklus hara, pada skala global disebut biogeokimia

Soil is alive! Ekologi Tanah, gabungan:

• Ekologi (orientasi organisma)

• Ilmu Tanah: klasifikasi, genesis, fisika, kimia, biologi

� Overlap ke dua ilmu

GOOD SOIL, MORE DIVERSITY !

TANAH :

a. Bahan inorganik (liat, debu, pasir)

b. Bahan organik

•Hidup (biomas)

•Mati (nekromas)

c. Air

d. Udara

BiologyFertility

Organisms (BIOTA) ~ involve in

chemical & physical processes

Soil as energy & nutrient

source of biota except:

�Plants & mikrobia photo-

autotroph ~ sun light

energy source

Soil

energy source

�Microbial

chemoautotroph ~

inorganic; CO2 from the

atmosfer

�Symbiont ~plant roots ~

fixed N from the air

Fase 1

Air bebas

Collembola

& kutu

Uap air

KR =

Migrasi

Collembola

Fase 2

BIOTA pada berbagai kondisi AIR TANAH

2.5>pF>0

KR = 100%

Tt = T0= 100C

4.7>pF>2.5

100%

Air

kapiler

Proses Biologi Tanah

• Trasformasi Karbon

• Transformasi �itrogen

• Fiksasi �itrogen• Fiksasi �itrogen

TRANSFORMASI KARBONTRANSFORMASI KARBON

Bagian 1

Siklus C

• Sebagian besar kabon di bumi ini dalam bentuk

terikat (terutama dalam bentuk karbonat), baik

dalam batuan induk maupun karbon fosil.

• bahan organik tanah (BOT) merupakan cadangan • bahan organik tanah (BOT) merupakan cadangan

karbon global yang jumlahnya bisa mencapai 2

kali di atmosfer.

• perubahan pada pool BOT akan sangat

mempengaruhi kadar CO2 global.

Siklus C: fotosintesis menyebabkan asimilasi CO2 atmosfer yang diimbangi oleh dekomposisi sisa tanaman dan seresah, dan bahan organik tanah

Sumber C dalam Tanah

• Sumber utama: CO2 atmosfer yang difiksasi oleh tanaman dan organisme fotoautotrof lainnya. – CO2 atmosfer difiksasi menjadi bentuk karbon organik penyusun jaringan tanaman melalui reaksi: CO2+H2O � CH O+O . � CH2O+O2.

– Jaringan tanaman kemudian dikonsumsi oleh herbivora.

– Sisa tanaman merupakan sumber karbon langsung untuk tanah, sedangkan tubuh hewan herbivora dan limbahnya merupakan sumber karbon yang tidak langsung.

Sumber C dalam Tanah

• Sumber lain:

– bentuk hidrokarbon aromatik polisiklik dari pembakaran bahan bakar fosil

– bentuk produk industri seperti pestisida.

• Pada ekosistem yang produktif, pergantian (turnover) • Pada ekosistem yang produktif, pergantian (turnover) karbon umumnya berjalan cepat. Misalnya, hutan tropika basah mempunyai pool karbon tanah lima kali lebih besar daripada ekosistem pertanian.

• Semakin tidak produktif suatu ekosistem semakin rendah kecepatan turnover karbon dalam tanah.

Bentuk Karbon Organik dalam

Tanah

• 50% karbon organik dalam tanah berada dalam bentuk aromatik

• 20% berasosiasi dengan nitrogen

• sekitar 30% berada dalam bentuk karbon • sekitar 30% berada dalam bentuk karbon karbohidrat, asam lemak, dan karbon alkan.

• Secara sederhana karbon organik tanah dapat dikelompokkan menjadi 3 pool, – karbon tidak larut (insoluble),

– karbon larut (soluble),

– karbon biomasa.

Dekomposisi Berbagai Bentuk

Karbon Organik dalam Tanah

• tiga proses yang berkaitan

– Pencucian / pelindian (leaching) senyawa

mudah larutmudah larut

– katabolisme (catabolisms) organisme perombak

– pelumatan (comminution) bahan oleh fauna

tanah.

Faktor-faktor yang

Mempengaruhi Dekomposisi

• Kualitas Bahan Organik

– Komposisi kimia: N, C/N, P, C/P, Lignin, Polifenol,

Asam organik (fulvat, humat)

– Fisik: kekerasan, kelenturan– Fisik: kekerasan, kelenturan

• Kondisi lingkungan

– Iklim: curah hujan & kelembaban

• Organisme perombak (decomposers)

– Jenis, diversitas

– Asesibilitas

Bahan Organik Tanah

• BOT merupakan salah satu komponen tanah

yang sangat penting bagi ekosistem tanah

• BOT merupakan sumber (source) dan • BOT merupakan sumber (source) dan

pengikat (sink) hara dan sebagai substrat

bagi mikroba tanah.

Bahan Organik Tanah

• BOT kunci keberhasilan sistim pertanian berkelanjutan

• Idealnya 2% BOT, tetapi umumnya < 2% (karena cepatnya proses dekomposisi).

• Fungsi BOT• Fungsi BOT

– penyedia unsur hara (via dekomposisi dan mineralisasi),

– pemacu aktivitas organisme tanah � memperbaiki agregasi tanah dan mengurangi resiko erosi,

– pengikat unsur beracun pada tanah masam ( misal Al) meningkatkan kapasitas penyangga tanah; kaitannya dengan efisiensi penggunaan unsur hara (termasuk pupuk)

functional pool BOT

• bahan organik tanah mudah dilapuk/labil (decomposable or labile),

• bahan organik tanah sukar dilapuk • bahan organik tanah sukar dilapuk (resistant),

decomposable BOT• bahan organik tanah mudah dilapuk/labil (decomposable or labile),

– bahan yang paling labil: sel tanaman seperti karbohidrat, asam amino, peptida, gula amino, dan lipida, karbohidrat, asam amino, peptida, gula amino, dan lipida,

– bahan yang agak lambat didekomposisi: malam (waxes), lemak, resin, lignin dan hemiselulosa

– biomass dan bahan metabolis dari mikroba (microbial biomass ) dan bahan rekalsitran lainnya.

Resistant BOT• bahan organik tanah sukar dilapuk (resistant),

– ‘pool aktif’ (waktu turnover <1 tahun)

– ‘pool rekalsitran’ yang dicirikan dengan sangat lambat waktu turnover nya. lambat waktu turnover nya.

• ‘pool lambat’ (slow pool) dengan waktu turnover 8-50 tahun,

• ‘pool pasif’ (passive pool) yang dapat tinggal dalam tanah selama ribuan tahun.

Pool fungsi Waktuturnover (th.)

Komposisi Nama lain

metabolic litter

0.1 – 0.5 • isi sel (cellular contents), selulose

• sisa tanaman atau hewan

structural litter

0.3 – 2.1 • lignin, polifenolik • sisa tanaman

Active pool 0.2 – 1.4 • biomass microbia, • fraksi labil

Klasifikasi bahan organik tanah berdasarkan pool fungsi, waktu

turnover dan komposisinya

Active pool 0.2 – 1.4 • biomass microbia, karbohidrat dapat larut, enzim eksoselular

• fraksi labil

Slow pool 8 – 50 • BO berukuran partikel (Particulate organic matter, berukuran 50 µm -2.0 mm)

Passive pool 400 – 2200 • asam-asam humik, fulvik, kompleks organo-mineral

• substansi humus

Kualitas Bahan Organik

Kompartemen BO

Cepat terdekomposisi

(a) penyedia hara tanaman, segera

(b) kontribusi ke BOT kurang

Lambat terdekomposisi

(a) Kontribusi BOT

(b) Cadangan hara jangka panjang

• Parameter Kualitas (mudah terdekomposisi)

– C/N � < 20

– N � > 1,6%

– Lignin < 9%

– Polifenol � < 4%

• Protein binding capacity

(b) Cadangan hara jangka panjang

Karakterisasi BOT

• Karakterisasi bahan organik tanah dapat dilakukan melalui berbagai cara, di antaranya

– analisis kimia: total C dan total N (metode – analisis kimia: total C dan total N (metode termudah),

– fraksionasi fisik: berdasar ukuran dan berat jenis,

– penggunaan isotop: 13C (isotop stabil, bukan radioaktif) dan 14C (radioaktif).

Karakterisasi BOT: Metode

Kimia• dapat mendeteksi asam humik dan fulvik, tetapi kurang

akurat.

• analisis secara kimia, kandungan aromatik dalam humat dinyatakan sekitar 50%,

• NMR (nuclear magnetic resonance) dan pirolisis gas • NMR (nuclear magnetic resonance) dan pirolisis gas kromatografi-spektroskopi masa, kandungan aromatik tersebut < 50%.

• bahan organik tanah harus dipisahkan dari matrik koloid mineral (liat) dan seskuioksida, serta didispersi dalam larutan (dengan NaOH atau Na4P2O7).

• Bahan yang terdispersi dipresipitasi pada nilai pH masam disebut asam humik, sedangkan bahan yang tetap dalam larutan disebut asam fulvik.

Karakterisasi BOT: Metode Fisik

(fraksionasi fisik)• Pada prinsipnya pemisahan bahan organik dengan partikel

tanah.

• berdasarkan berat jenis partikel: dilakukan dengan menggunakan bahan suspensi silikat LUDOX yang mempunyai berat jenis (BJ) 1,8 g/cm3 dan dapat dibedakan mempunyai berat jenis (BJ) 1,8 g/cm3 dan dapat dibedakan menjadi:– fraksi ringan, merupakan bahan yang telah atau hanya sebagian

terdekomposisi, BJ <1,13 g/cm3

– fraksi sedang: sebagian terdiri dari humus, BJ 1,13-1,37 g/cm3

– fraksi berat: bahan organik yang terjerap oleh partikel liat dalam bentuk organo mineral, bersifat amorf, BJ >1,37 g/cm3.

Karakterisasi BOT: Metode Fisik

(fraksionasi fisik)

• berdasarkan ukuran partikel

– menentukan jumlah absolut dan proporsi relatif C dan

N dari partikel organik dalam tanah.

– Fraksi bahan organik tanah berukuran pasir (50 µm-2,0 – Fraksi bahan organik tanah berukuran pasir (50 µm-2,0

mm) biasanya lebih labil daripada bahan organik tanah

berukuran liat atau debu

– Bahan organik tanah yang mempunyai ukuran pasir

disebut dengan bahan organik berukuran partikel

(Particulate Organic Matter = POM).

Karakterisasi BOT:Teknik

radioisotop

• dengan radioisotop 14C, dapat merunut (tracing)

umur bahan organik tanah

• dengan isotop stabil 13C dapat membedakan asal

bahan organik tanah, dari tanaman bertipe C3 atau bahan organik tanah, dari tanaman bertipe C3 atau

C4 (rantai fotosintesis):

– contoh tipe C3 adalah tanaman hutan, pohon

leguminosa; tipe C4: tebu, jagung.

Tranformasi Nitrogen

• penyusun utama asam amino yang digunakan untuk sintesa peptida dan protein, serta berbagai komponen biologi seperti khitin dan mokupeptida.

• merupakan bagian integral dari bahan genetik sel yaitu asam nukleat� unsur esensial bagi semua bentuk

Peran �itrogen

asam nukleat� unsur esensial bagi semua bentuk kehidupan.

• Pada sistem pertanian, pemahaman siklus nitrogen sangat diperlukan jika diinginkan penggunaan pupuk dan kandungan N tanah yang maksimum untuk produksi tanaman

Siklus Nitrogen

• Nitrogen berada dalam bentuk gas dinitrogen (N2), nitrogen organik (dalam tanaman, hewan, biomasa mikroba, dan bahan organik tanah), ion amonium (NH4

+) dan nitrat (NO3-)

• Organisme tanah merubah satu bentuk nitrogen ke • Organisme tanah merubah satu bentuk nitrogen ke bentuk nitrogen lainnya melalui berbagai proses.

– N2 dirubah menjadi NH4+ melalui proses penambatan

nitrogen, kemudian nitrogen yang ditambat tersebut diubah menjadi bentuk nitrogen lainnya melalui proses amonifikasi, imobilisasi, nitrifikasi dan denitrifikasi.

Ukuran pool Nitrogen tanah pada

kedalaman 1 mPool Kisaran ukuran

(g N/m2)Keterangan

N2 (dinitrogen) 1.150 (230-27.500) • Minimum berdasarkan 0,25 m3 ruang pori yang terisi udara; maksimum berdasarkan udara tanah ditambah silinder udara 30 m di atas permukaan tanahtanah

N organik 725 (100-3.000) • Nilai rata-rata kandungan N

N tanaman 25 (1-240) • Minimum berdasarkan daerah padang pasir; maksimum berdasarkan tanaman pertanian dan sistem hutan

NH4+ (amonium) 1 (0,1-10) • Asumsi 1 m3 tanah pada BJI

1,25g/cm3, dan konsentrasi amonium pada ekstrak tanah

NO3- (Nitrat) 5 (0,1-30) • Asumsi 1 m3 tanah pada BJI

1,25g/cm3, dan konsentrasi nitrat pada ekstrak tanah

Siklus N

Bentuk Nitrogen: N Organik Bentuk Nitrogen Definisi dan Metode Kisaran

(% N tanah)

N –tidak larut asam • Sebagian besar N aromatik. N yang tertinggal dalam tanah setelah hidrolisa asam (6 M HCl)

10-20

N-amonia • NH4+ dapat ditukar plus N amida. Amonia

yang ada dalam hidrolisat melalui destilasi 20-35

yang ada dalam hidrolisat melalui destilasi uap dengan MgO

N-asam amino • N protein, N peptida, dan N amino bebas. Ditetapkan melalui reaksi ninhidrin pada hidrolisat

30-45

N- gula amino • Dinding sel mkroba. Amonia yang diperoleh dari hidrolisat dengan destilasi uap menggunakan fosfat-borat pada pH 11.2 dikurangi fraksi N amonia

5-10

N-tidak dikenal yang dapat dihidrolisa

• Tidak diketahui tetapi mengandung N α-amino N dari arginine, tryptophan, lusin dan prolin. N yang dapat dihidrolisa yang bukan amonia, asam amino atau gula amino

10-20

Bentuk Nitrogen: N Anorganik

Senyawa Formula Bentuk dalam tanah

Ciri utama

Amonium NH 4+ Dijerap liat,

larut, NH3

• Kation, agak tidak mobil, menguap dalam bentuk NH3 pada pH tinggi, diasimilasi tanaman dan mikroba, substrat untuk nitrifikasi autotrof (oksidasi NH3 )

Hidroksilamina NH2OH Tidak diketahui • Hasil antara dalam oksidasi NH3

Dinitrogen N2 Gas • Pool N terbesar, tidak larut, substrat untuk penamabatan N2, produk akhir nitrifikasipenamabatan N2, produk akhir nitrifikasi

Nitro Oksida N2O Gas, terlarut • Gas rumah kaca dan menyebabkan kerusakan ozon, sangat larut, hasil antara denitrifikasi, hasil samping nitrifikasi

Nitrik Oksida NO Gas • Reaktif secara kimia, hasil antara denitrifikasi, hasil samping nitrifikasi

Nitrit NO2- Terlarut • Biasanya dijumpai pada konsentrasi

rendah, beracun, hasil oksidasi NH3 , substrat oksidasi NO2

-, hasil antara denitrifikasi

Nitrat NO3 - Terlarut • Anion, mobil, mudah tercuci, diasimilasi

tanaman dan mikroba. Hasil akhir nitrifikasi, substrat denitrifikasi

Mineralisasi �itrogen

(Amonifikasi/imobilisasi)• Mineralisasi = produksi nitrogen anorganik, baik amonium dan nitrat, tetapi kadang-kadang dinyatakan untuk amonium saja.

• Peningkatan (atau kadang penurunan) nitrogen anorganik seringkali disebut net nitrogen mineralizationkarena mencerminkan jumlah proses produksi dan konsumsi amonium. konsumsi amonium.

• Istilah yang lebih benar untuk menyatakan proses transformasi nitrogen organik menjadi amonium adalah amonifikasi atau gross nitrogen mineralization.

• Imobilisasi menggambarkan konversi amonium menjadi nitrogen organik, sebagai akibat dari asimilasi amonium oleh biomasa mikroba. – Imobilisasi kadang-kadang juga digunakan untuk menyatakan asimilasi amonium dan nitrat

Amonifikasi

• Konversi senyawa nitrogen organik menjadi amonium dipacu oleh enzim yang dihasilkan oleh organisme tanah.

• Produksi amonium melalui berberapa langkah.

1. Enzim-enzim ekstraseluler memecah polimer nitrogen organik menghasilkan monomer yang dapat lolos membran sel untuk menghasilkan monomer yang dapat lolos membran sel untuk kemudian dimetabolisme lebih lanjut dengan hasil akhir amonium yang dilepaskan ke larutan tanah.

2. Enzim ekstraseluler yang dihasilkan oleh mikroorganisme mendegradasi protein, aminopolisakarida (dinding sel mikroorganisme), dan asam nukleat serta menghidrolisa urea

Enzim ekstraseluler yang terlibat dalam mineralisasi

nitrogen

Substrat Enzim Produk

Protein Proteinase, protease Peptida, asam amino

Peptida Peptidase Asam amino

Khitin Khitinase ChitobioseKhitin Khitinase Chitobiose

Khitobiose Khitobiase N-acetylglucosamine

Peptidoglikan Lisozim N-acetylglucosamine dan N-asam acetylmuramic

DNA dan RNA Endonuklease dan Eksonuklease

Nukleotida

Urea Urease NH3 dan CO 2

Imobilisasi (Asimilasi)

• Mikroorganisme mengasimilasi amonium melalui dua rantai (pathway),yakni

– glutamat dehidrogenase

• Apabila amonium berada dalam konsentrasi tinggi (> 0,1 mM atau sekitar 0,5 mgN/kg tanah), glutamat dehidrogenase bersama-sama dengan NADPH2 sebagai ko-enzim, dapat menambahkan amonium ke α-NADPH2 sebagai ko-enzim, dapat menambahkan amonium ke α-ketoglutarat membentuk glutamat.

• memerlukan ATP untuk menambahkan amonium ke glutamat membentuk glutamin.

– glumatin sinthetase-glutamat sinthase.

• Pada kondisi ini konsentrasi amonium rendah

• mentransfer amonium dari glutamin ke α-ketoglutarat membentuk dua glutamat.

• amonium tersebut kemudian ditransfer ke skeleton karbon lainnya oleh reaksi transaminase untuk membentuk asam-asam amino tambahan.

Dinamika Amonium dalam tanah

• Selain siklus mineralisasi/imobilisasi, amonium juga dapat diikat pada kisi pertukaran kation dalam mineral liat seperti illit dan vermikulit.

• Amonium juga dapat bereaksi dengan senyawa • Amonium juga dapat bereaksi dengan senyawa organik seperti quinon, atau dapat juga mengalami votalisisasi pada pH tinggi.

• Dinamika biologi yang utama adalah serapan tanaman, asimilasi mikroba, atau oksidasi menjadi nitrat oleh mikroorganisme nitrifikasi

�itrifikasi

• Nitrifikasi adalah oksidasi senyawa nitrogen tereduksi yang dilakukan oleh organisme tanah.

• Proses nitrifikasi berlangsung dalam dua tahap yang dilakukan oleh dua organisme tanah yang mengoksidasi amonium menjadi nitrat, dimana nitrogen anorganik berperan sebagai sumber energi nitrogen anorganik berperan sebagai sumber energi untuk bakteri nitrifikasi.

– Tahap pertama proses nitrifikasi adalah oksidasi amonium, konversi amoium menjadi nitrit dilakukan oleh bakteri pengoksidasi amoinum dari genus “Nitroso”

– Kemudian nitrit dioksidasi menjadi nitrat oleh bakteri

pengoksidasi nitrit dari genus “Nitro”.

Bakteri Nitrifikasi Khemoautotrof

Genus Spesies Genus Spesies

Pengoksidasi NH3 Pengoksidasi NO2-

Nitrosomonas europeae Nitrobacter urinogradskyi

eutropus bamburgensis

marina vulgarismarina vulgaris

Nitrosococus nitrosus Nitrospina gracilis

mobilis Nitrococcus mobilis

oceanus Nitrospira marina

Nitrosospira briensis

Nitrosolabus multiformis

Nitrosovibro tenuis

Oksidasi Amonium

• Bakteri pengoksidasi amonium yang terkenal

adalah itrosomonas; pada tanah masam bakteri

pengoksidasi amonium yang dominan adalah

itrosospira itrosospira

• reaksi konversi amonium menjadi nitrit adalah

– NH3- + 1.5 O2 � NO2

- + H+ + H2O

– Oksidasi ini mentransfer 6e- yang menghasilkan 271 kj

(65 kcal) /mol NH3.

Oksidasi Amonium• Langkah pertama dalam reaksi tersebut

adalah konversi NH3 menjadi NH2OH

(hidroksilamin) oleh enzim amonia

monooksigenase yang terikat pada monooksigenase yang terikat pada

membran, yakni

– NH3+O2+2H+ + 2 e-� NH2OH + H2O

• Hidroksilamin kemudian dikonversi

menjadi nitrit dengan reaksi,

– NH2OH + H2O � NO2 + 5H+ + 4 e-

Oksidasi Nitrit• Bakteri pengoksidasi nitrit yang terkenal adalah itrobacter

spp.

• Oksidasi nitrit menjadi nitrat merupakan reaksi satu langkah:

– NO2- + 1,5O2 � NO3

-2 2 3

• Nitrit dioksidasi menjadi nitrat oleh nitrit oksidoreduktase yang terikat pada membran, yang memindahkan oksigen dari air dan memindahkan sepasang elektron ke rantai transpor elektron untuk menghasilkan ATP melalui fosforilasi oksidatif,

– NO2- +H2O � NO3

- + 2H+ + 2 e-

Faktor yang mempengaruhi �itrifikasi

• Populasi Bakteri Nitrifikasi

– Harus ada bakteri nitrifikasi autotrof atau heterotrof

– Pada kondisi optimum, diperlukan 3 x 105 bakteri nitrifikasi per gram tanah untuk kecepatan nitrifikasi 1 mg N/kg tanah per hari

• Aerasi tanah• Aerasi tanah

– nitrifikasi berjalan optimum jika tanah pada kondisi kapasitas lapangan atau 60% pori-pori terisi air

• Ketersediaan substrat

– ketersediaan substrat, terutama ketersediaan amonium

• pH tanah

– Nitrifikasi berjalan lambat pada pH di bawah 4,5, terutama pada tanah pertanian

Dinamika �itrat dalam Tanah

• Nitrat mudah tercuci dari tanah karena bermuatan negatif,

• Jika nitrat tercuci, biasanya disertai dengan sejumlah kation kation basa seperti K+ dan Ca 2+ dan meningkatkan kemasaman tanah.

• Nitrat yang tercuci akan memasuki air tanah dan air permukaan yang menyebabkan pencemaran lingkungan. permukaan yang menyebabkan pencemaran lingkungan.

– Konsentrasi nitrat yang tinggi pada air permukaan dapat menyebabkan ’eutrofikasi’ (pengkayaan air dengan hara yang berlebihan menyebabkan pertumbuhan gangang dan vegetasi lainnya).

• Nitrat dapat diasimilasi oleh tanaman dan mikroorganisme.

Denitrifikasi• Denitrifikasi adalah proses reduksi nitrat menjadi gas nitrogen,

terutama dalam bentuk dinitrogen dan nitro oksida.

• Reaksi denitrifikasi adalah,

– 2NO3- + 5 H2 + 2 H

+ � N2 + 6 H2O

• Denitrifikasi dilakukan oleh bakteri denitrifikasi didominasi • Denitrifikasi dilakukan oleh bakteri denitrifikasi didominasi oleh genus Pseudomonas dengan spesies Alcaligenes, Flavobacterium, dan juga genus Bacillus, tetapi sulit untuk diketahui mana yang aktif.

• Bakteri tersebut dapat juga berasosiasi dengan transformator nitrogen lainnya (misalnya Azospirillum, itrosomonas dan Rhizobium) pada kondisi tertentu

PE�AMBATA� �ITROGE�

&

MIKORIZAMIKORIZA

Penambatan Nitrogen

• Semua organisme memerlukan nitrogen agar supaya tetap hidup.

• Sebagian besar organisme hanya dapat menggunakan combined nitrogen, NH4+ atau nitrat NO3-combined nitrogen, NH4+ atau nitrat NO3-

• Konsentrasi nitrogen yang terbesar di bumi adalah N2; �gas yang sangat stabil yang menyusun hampir 80% atmosfer.

• Penambatan nitrogen merupakan proses biologi kedua terbesar setelah fotosintensis

Definisi

• Penambatan N adalah reduksi N2 atmosfer

menjadi bentuk combined amonia yang

bermanfaat untuk proses biologi. bermanfaat untuk proses biologi.

• N2 atmosfer sangat stabil, maka reaksi

penambatan N sangat mahal jika ditinjau

dari tingginya energi yang diperlukan

Organisme penambat nitrogen

• dapat hidup bebas (tidak bersimbiosis)

• dapat bersimbiosis dengan organisme, tanaman

dan hewan.

– Organisme yang dapat menggunakan N2 atmosfer

sebagai satu-satunya sumber nitrogen untuk

tumbuhnya disebut diazotrof (diazo – dinitrogen).

Enzim Nitrogenase

• Penambatan N secara biologi dilakukan oleh komplek enzim nitrogenase, yang seringkali disebut sebagai komplek nitrogenase.

• Komplek enzim ini terdiri atas dua komponen protein,

• Komplek enzim ini terdiri atas dua komponen protein, – protein molibdenum-besi (MoFe protein) yang disebut dinitrogenase, � sisi aktif dimana N2 direduksi,

– protein besi (Fe protein) yang disebut dinitrogen reduktase � menyediakan elektron untuk MeFe protein untuk mereduksi N2

Reaksinya • Dinitrogen reduktase (Fe protein) menerima elektron dari donor yang

mempunyai redoks rendah seperti feredoksin tereduksi atau flavodoksin dan mengikat dua MgATP; dinitrogen reduktase mentransfer elektron sekali saja ke nitrogenase (MoFe protein).

• Dinitrogen reduktase dan dinitrogenase membentuk komplek, elektronnya ditransfer, dan dua MgATP dihidrolisa menjadi dua Ma ADP + Pi (fosfat).ADP + Pi (fosfat).

• Dinitrogen reduktase dan dinitrogenase berdisosiasi, dan prosesnya kemudian diulang lagi.

• Jika dinitrogenase telah mengumpulkan cukup elektron, dinitrogenase mengikat molekul dinitrogen, mereduksinya, dan melepaskan amonium.

• Dinitrogenase kemudian menerima tambahan elektron dari dinitrogen reduktase untuk mengulangi siklus di atas.

Substrat untuk �itrogenase

• Substrat utama nitrogenase adalah dinitrogen

• nitrogenase juga mereduksi gas acetylene menjadi ethylene

• nitrogenase juga mereduksi gas acetylene menjadi ethylene

– karena acetylene dan ethylene dapat dengan mudah diamati dengan gas kromatografi.

– cara sederhana, peka dan cepat, yaitu acetylene reduction assay (ARA) untuk pengamatan aktivitas nitrogenase

Beberapa Organisme Hidup Bebas

Penambat �2Genus atau Tipe Contoh Spesies

Aerob Azotobacter A. chroococcum1 A. vinelandiiAzomonas A. macrocytogenesBeijerinckia B. indica, B.fluminisPseudomonas R stutzeri, F saccbaropbila

Anaerob Clostridium Cpasteuilanum, C butyricumDesulfovibrio D. vulgails, D. desu0curicansMetbanosarcina M barkenMetbanosarcina M barken

Sianobakteri Fototrof Anabaena A. cylindrica, A. inaequalis(aerob) Nostoc N. muscorum

Gloeothece G. alpicolaSianobakteri Fototrof Plectonema P. boryanum(mikroaerofil) Lyngbya L. aestuariiBakteri Fototrof Rbodosphillum R. rubrum(fakultatif) Rbodopseudomonas R. palustrisBakteri Fototrof Cbromatimn C vinosum(anaerob) Cb1orobium C limicola

Ectotbiospira E. sbapovnikovii

Penambatan �2 secara simbiosis

Rbizobium R. leguminosarum

R. loti

R. tropici

R. galegae

R. ciceriR. ciceri

R. mediterraneum

Sinorbizobium S. meliloti

S. fredii

S. sabeli

S. teranga

Bradyrbizobium B.japonicum

B. elkanii

B. flaoningense

Azorbizobium A. cautinodans

Pembentukan �odul Akar

• Kelompok organisme (bakteri) yang menambat N2 dengan akar tanaman (terutama legum) secara kolektif disebut ‘rhizobia’.

• Rhizobia termasuk dalam suatu famili bakteri • Rhizobia termasuk dalam suatu famili bakteri yang disebut Rhizobiaceae.

• Pembentuan nodul akar merupakan rangkaian proses dimana rhizobia berinteraksi dengan akar tanaman legum untuk membentuk nodul akar.

Pembentukan �odul Akar• Rhizobia tertarik ke permukaan akar tanaman, kemudian

memperbanyak diri, lalu menyerang sel-sel dengan cara yang spesifik yang melibatkan interaksi antar makromolekul yang terdiri atas karbohidrat (gliko-) protein yang disebut dengan lektin yang berada di dalam akar tanaman legum.

• Simbion yang cocok satu dengan lainnya memproduksi suatu • Simbion yang cocok satu dengan lainnya memproduksi suatu senyawa ekstraseluler, yaitu polisakarida yang bersifat asam, senyawa ini bereaksi dengan lektin.

• Reaksi ini berlangsung dalam dua arah, yaitu dari bakteri ke tanaman dan dari tanaman ke bakteri.

Pembentukan �odul Akar

• Respon akar terhadap keberadaan rhizobia

menyebabkan akar melengkung.

• Infeksi rhizobia terhadap akar akan berlanjut

sampai ke korteks, kemudian membelah diri sampai ke korteks, kemudian membelah diri

membentuk sel-sel akar.

• Bentuk batang dari bakteri berubah menjadi

bentuk “Pleomorfik”, yaitu seperti tongkat (club-

shape)

Pembentukan Nodul Akar

Rambut akar mengeriting

Rhizobia

Benang infeksi

Nodul akar legum

Pembentukan �odul Batang• Pembentukan nodul batang

terjadi pada genus Aeschynomene (beberapa spesies) dan Sebania (hanya Sesbania rostrata), merupakan dua genus legum yang dapat dua genus legum yang dapat tumbuh pada kondisi tergenang.

• Pembentukan nodul dapat terjadi sepanjang batang, kadang-kadang mencapai 3 m di atas tanah

Faktor yang mempengaruhi Pembentukan �odul

dan Penambatan �2

• Sumber Energi (organik atau anorganik)

• Amonium: Kandungan rendah menghambat nitrogenase

• Oksigen: nitrogenase peka oksigen, jika kena oksigen menjadi beracunmenjadi beracun

• Nutrisi mineral (P, Mo, Fe)

• Temperatur

– antara 5 dan 10oC, aktivitas nitrogenase rendah,

– nntara 37-40oC juga terhambat karena kepekaan enzim pada panas.

• pH tanah: < 4, tidak berkembang; ideal 5-5,5

Pengamatan Penambatan �2• Metode Perbedaan N (N-difference method)

– membandingkan hasil dan kandungan nitrogen tanaman yang ditumbuhkan dengan dan tanpa bakteri penambat N2.

• Metode Isotop Stabil 15N– Kultur bakteri atau jaringan tanaman diinkubasikan kondisi atmosfer

yang diperkaya dengan 15N2

– Setelah beberapa waktu N dalam bahan biologi dipurifikasi dengan digestion dan destilasi, dan proporsi atom 15N yang ada ditetapkan digestion dan destilasi, dan proporsi atom 15N yang ada ditetapkan dengan menggunakan mass spectrometry.

– Jumlah N yang ditambat bisa dihitung dari pengamatan N total dan proporsi 15N dalam bahan, jika pengkayaan (enrichment) 15N pada atmosfer yang digunakan dalam percobaan diketahui

• Acetylene Reduction Assay– nisbah acetylene yang direduksi terhadap nitrogen yang ditambat adalah

4 dibanding 1

Penambatan �2 secara simbiosis lainnya

• Frankia dan Simbiosis Aktinoriza– Frankia adalah aktinomisetes yang membentuk aktinoriza, yaitu

nodul penambatan N2 pada berbagai jenis angiosperma

– Spesies tanaman inang umumnya bukan tanaman budidaya, tetapi beberapa di antaranya penting dalam agroforestri, ekologi dan ekonomi nitrogen untuk tanah-tanah marginal, reklamasi bekas tambang, atau stabilisasi bukit pasir tambang, atau stabilisasi bukit pasir

• Simbiosis Azolla / Anabaena– Tanaman perairan Azolla banyak digunakan sebagai pupuk hijau

– Azolla dipertahankan pada aliran air yang lambat atau dalam petak persemaian tanaman padi yang kemudian dibenamkan sebelum tanaman bibit padi dipindahkan ke lahan atau dibiarkan ternaungi kanopi padi yang tumbuh.

Komplek enzim nitrogenase

MIKORIZA

21/10/08

Istilah

• Istilah mikoriza (atau ‘jamur akar’) pertama kali diterapkan untuk asosiasi jamur-pohon pada tahun 1885 oleh A.B Frank, seorang ahli patologi hutan dari Jerman.

• Mikoriza adalah asosiasi atau simbiosis antara tanaman dengan jamur yang mengkoloni jaringan kortek akar dengan jamur yang mengkoloni jaringan kortek akar selama periode aktif pertumbuhan tanaman

• Asosiasi tersebut dicirikan oleh pergerakan karbon yang diproduksi tanaman ke jamur dan pergerakan hara yang diperoleh jamur ke tanaman.

Tipe Mikoriza

Ektomikoriza• juga disebut mikoriza ektotrofik, merupakan karakteristik berbagai tanaman pohon di daerah agak dingin, misalnya pinus dan eukaliptus.

• Jamur yang terlibat dalam asosiasi ini adalah Ascomycota dan Basidiomycota

• memproduksi hifa dalam jumlah besar pada akar dan • memproduksi hifa dalam jumlah besar pada akar dan dalam tanah.

• Fungsi Hifa – serapan dan translokasi hara anorganik dan air,

– melepaskan hara dari lapisan seresah dengan memproduksi enzim yang digunakan dalam mineralisasi bahan organik.

Beberapa Tipe Ektomikoriza

ektomikoriza

• Akar yang diinfeksi oleh ektomikoriza

– mempunyai ujung akar yang tumpul dan pendek yang

diselimuti oleh mantel jaringan jamur,

– serta tidak ada atau hanya ada sedikit rambut akar. – serta tidak ada atau hanya ada sedikit rambut akar.

– Jamur mengambil alih peran rambut akar dalam

menyerap hara.

– Dari bagian dalam mantel tersebut jamur tumbuh

diantara sel-sel kortek akar membentuk ’Jaring Hartig’

(Hartig net)

Beberapa Tipe Ektomikoriza

Mantel dan Jaring Hartig Ektomikoriza serta

penetrasi jamur di antara sel kortek akar

Mikoriza Arbuskular• dijumpai pada sebagian besar tanaman budidaya maupun

tanaman liar

• peran penting dalam serapan unsur hara

• kadang-kadang perlindungan terhadap kekeringan dan serangan patogenserangan patogen

• Jamur umum adalah Ordo Glomales.

– Membentuk arbuskular, atau struktur bercabang banyak dalam sel kortek akar, menghasilkan mikoriza arbuskular.

– Istilah umum untuk semua mikoriza yang tumbuh dalam sel kortek adalah endomikoriza

– Jamur memproduksi hifa ekstramatrik yang ekstensif (hifa di luar akar) dan dapat meningkatkan serapan fosfor oleh tanaman yang dikoloni

mikoriza arbuskular• Ciri diagnostik mikoriza arbuskular perkembangan arbuskular

yang bercabang banyak dalam sel-sel kortek akar

• Jamur tersebut pada mulanya tumbuh di antara sel kortek, tetapi dengan segera menembus dinding sel inang dan tumbuh dalam sel.

• Dalam asosiasi ini, dinding sel jamur maupun membran sel inang tidak tertembus. Ketika jamur tumbuh, membran sel inang menyelimuti jamur, membentuk kompartemen baru bagi bahan menyelimuti jamur, membentuk kompartemen baru bagi bahan yang mempunyai kompleksitas molekular tinggi.

• Kompartemen ini mencegah kontak langsung antar sitoplasma tanaman dan jamur dan menyebabkan transfer hara yang efisien antar simbion, mikoriza arbuskular ini umumnya berumur pendek, kurang dari 15 hari.

mikoriza arbuskular

• Struktur lain yang dihasilkan oleh beberapa jamur mikoriza arbuskular termasuk – Vesikula: adalah struktur berisi lipid yang berdinding tipis yang biasanya terbentuk dalam ruang antar sel. Fungsi utamanya diduga sebagai penyimpan, tetapi vesikula juga utamanya diduga sebagai penyimpan, tetapi vesikula juga dapat berperan sebagai propagula reproduksi untuk jamur.

– sel auksilari: dibentuk dalam tanah, tetapi fungsinya masih belum diketahui dengan jelas.

– spora aseksual: Spora yang dihasilkan oleh jamur pembentuk asosiasi mikoriza arbuskular adalah spora aseksual, dibentuk dengan diferensiasi hifa vegetatif.

Mikoriza Arbuskular

Klasifikasi mikoriza arbuskular

• Jamur yang membentuk mikoriza arbuskular saat

ini diklasifikasikan dalam ordo Glomales:

Taksonominya ke dalam subordo atas dasar

– adanya vesikula dalam akar dan pembentukan – adanya vesikula dalam akar dan pembentukan

klamidospora (dinding tebal, spora aseksual) yang

dihasilkan dari hifa, untuk subordo Glomineae, atau

– tidak adanya vesikula dalam akar dan pembentukan sel

auksilari dan zygospora dalam tanah, untuk subordo

Gigasporaeae.

vesicular-arbuscular mycorrhiza

(VAM)

• Istilah vesicular-arbuscular mycorrhiza (VAM) asalnya diterapkan pada asosiasi simbiotik yang dibentuk oleh jamur dalam ordo Glomales tersebut, tetapi karena ordo Glomales tersebut, tetapi karena kebanyakan sub ordonya tidak punya kemampuan untuk membentuk vesikula dalam akar, banyak orang yang menggunakan istilah AM yang sinonim dengan VAM.

Serapan dan Transfer Hara

Tanah

• Hifa jamur mikoriza sangat berpotensi untuk meningkatkan luas permukaan serapan akar sampai dengan 80%

• Pelepasan P tidak tersedia menjadi tersedia secara fisikokimia dengan asam organik seperti oksalat.

• Pelepasan P tidak tersedia menjadi tersedia secara fisikokimia dengan asam organik seperti oksalat. – Peran asam organik

• melepaskan fosfor yang dijerap oleh hidrooksida logam melalui reaksi pertukaran ligan,

• melarutkan permukaan oksida logam yang menjerap fosfor

• mengkomplek logam dalam larutan sehingga mencegah presipitasi fosfat logam.