tesis kulit telor

77
BAB 1 PENDAHULUAN

Upload: atukbelumganyut

Post on 17-Nov-2014

1.275 views

Category:

Documents


0 download

DESCRIPTION

contoh tesis sem ntok fizik

TRANSCRIPT

Page 1: tesis kulit telor

 

 

 

 

BAB 1 

PENDAHULUAN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 2: tesis kulit telor

Bab 1  PENDAHULUAN

 

1.0   PENGENALAN

 

1.0.1        Fungsi

Cangkerang telur merupakan organ respirasi bagi pertumbuhan embrio melalui pertukaran

gas secara resapan. Struktur asas sosiologi cangkerang telur terbina daripada pelbagai

komponen yang menyediakan permukaan atau lapisan bagi pertukaran gas dan kawalan

osmosis berlaku (Steward, 1935; Simons, 1971; Freeman and Vince, 1974; Parsons, 1982).

 

1.0.2        Lapisan filem

Lapisan paling dalam ialah lapisan filem nipis yang merupakan lapisan pelindung bagi

cangkerang telur ayam.

 

1.0.3        Lapisan membran dan lapisan membran palisad

Lapisan filem seterusnya dilapisi oleh lapisan membran cangkerang telur. Bahagian luar

lapisan filem ini dilindungi oleh lapisan vascularized chorioallantois iaitu lapisan yang

paling nipis daripada lapisan membran luar cangkerang telur. Membran luar ini dilapisi oleh

lapisan mammillary (100m) yang mempunyai lapisan teras epitactic bagi formasi kristal

kalsium karbonat, CaCO3 (Creger et al., 1976; Stembergeret al., 1977). Lapisan kristal

CaCO3 terbentuk mencancang di atas bonggol struktur lapisan mammillary membentuk ruang

berbentuk kon di antara lapisan kristal yang terbentuk. Lapisan ini membentuk permukaan

lapisan membran palisad  (200m) yang berongga. Sebahagian kecil lapisan ini terdiri

Page 3: tesis kulit telor

daripada 0.3% fosforus, 0.3% magnesium, dam kuantiti kecil sodium, potassium, zink,

mangan, besi dan kuprum. Hampir 95% daripada cangkerang telur terbina daripada struktur

CaCO3 (kumpulan no. 167: R-3c) atau kira-kira 5.5 g CaCO3 yang terdapat dalam membran

palisad.

 

1.0.4        Peranan cangkerang telur

Oleh sebab liang yang terdapat dalam cangkerang telur yang sesuai adalah terbentuk di mana

sisi kon atau ruang yang gagal untuk bertemu dengan sama rata. Oleh itu, formasi teras

mammillary dan pembahagiannya adalah berkaitan dengan tenaga mekanikal dan kualiti

proses respirasi yang dikawal oleh cangkerang telur.

 

1.0.5  Lapisan kutikel

Lapisan paling luar adalah lapisan organik yang melapisi permukaan yang tidak sama rata

iaitu lapisan kutikel (5-8m). Kutikel terbina daripada sebahagian besarnya protein dengan

beberapa polisakarida dan jirim lipid (Baker and Balch, 1970; Board, 1982). Lapisan kutikel

juga menghubungkan lumina dari luar liang cangkerang telur bagi menyediakan laluan untuk

gas resapan (Board and Scott, 1980).

 

 

 

1.1  MASALAH PELUPUSAN CANGKERANG TELUR AYAM

 

Page 4: tesis kulit telor

1.1.1  Kajian ADAS

Kajian oleh ADAS dalam industri penghasilan produk telur di United Kingdom pada Mei

2001, telah menyenaraikan masalah-masalah berikutan pelupusan cangkerang telur ayam

khususnya, dalam aspek kos termasuklah dalam masalah pembayaran cukai. Dalam kajian

tersebut, kira-kira 10 000 hingga 11 000 tan cangkerang perlu dilupuskan setiap tahun.

Masalah pelupusan cangkerang telur ayam bukan sahaja berlaku di United Kingdom sahaja

malah di negara-negara lain. Beberapa kajian yang sama dan usaha sama telah dilakukan bagi

mengatasi masalah ini.

 

1.1.2        Kos dan cukai

Pelupusan cangkerang telur ayam di tapak pelupusan sampah merupakan cara yang paling

murah dari segi kos. Namun, peningkatan cukai bagi tapak pelupusan sampah ini

membuatkan cara ini sebenarnya tidak sesuai pada masa akan datang malah membebankan.

 

1.1.3        Cukai bahan buangan

Pasukan pencinta alam sedar bahawa penghasilan gas metana, karbon dioksida dan kesan

bahan kimia organik yang reaktif amat bahaya . Oleh itu, kawalanterhadap tapak pelupusan

sampah diperketat. Peraturan di United Kingdom, misalnya di kuatkuasakan kembali. Justeru,

cukai bahanm buangan cangkerang telur ayam terbuang yang mencapai £13 per tan

ditetapkan meningkat sebanyak £1 per tan pada setiap tahun berikutnya. Kos bahan buangan

meningkat mengikut berapa jauh atau berapa lama jarak tapak pelupusan sampah tersebut.

Perubahan kos tersebut antara £15 per tan dan £35 per tan  tidak termasuk cukai lain.

 

Page 5: tesis kulit telor

1.2          KONKLUSI

 

Cangkerang telur termasuk dalam ketegori makanan terbuang, minuman atau bahan yang

digunakan atau menjadi sumber dalam penyediaan makanan dan minuman. Kenyataan ini

temasuk dalam The Waste Management Licening Regulations 1994, Statuory Instrument

1994 No. 1056 di United Kingdom. Sifat fizikal cangkerang telur terbuang (serpihan besar )

dapat menghasilakan kapur atau CaCO3 yang sesuai dikitar semula menjadi bahan seramik

dalam bidang agrikultur. Melalui cara ini, masalah pelupusan cangkerang telur ayam yang

tinggi berikutan penggunaan telur ayam dalm penyediaan makanan sangat meluas.

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 6: tesis kulit telor

BAB 2

OBJEKTIF KAJIAN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAB 2  OBJEKTIF KAJIAN

 

2.0   Mengurangkan kos pelupusan sampah

 

Page 7: tesis kulit telor

1.Objektif utama kajian adalah untuk mencari alternatif lain, dalam usaha mengitar

semula cangkerang telur ayam khususnya. Masalah pelupusan bahan buangan

cangkerang telur ayam yang banyak kuantiti penggunaannya, meningkatkan kuantiti

bahan buangan yang perlu dilupuskan malah meningkatkan kos pelupusan sampah.

 

2.Kira-kira 10 000 hingga 11 000 tan cangkerang telur perlu dilupuskan bukan sahaja

menjadi masalah besar di negara seperti United Kingdom, malah berlaku juga

kepada negara-negara yang lain.

 

2.1  Mengurangkan gangguan ekosistem

 

1.Struktur kalsium karbonat, CaCO3 yang terdapat dalam cangkerang telur merupakan

struktur CaC03 yang sama dengan struktur semulajadi CaCO3 dalam batu kapur.

 

2.Pengasingan membran cangkerang telur ayam untuk mendapatkan lapisan CaC03 ini

dijalankan untuk menghasilkan bahan seramik bagi mengurangkan tarahan atau

gangguan ekosistem di gua batu kapur mahupun struktur lain yang mengandungi

sumber ini.

 

3.Masalah gangguan ekosistem dapat mengganggu populasi yang hidup dalam

ekosistem tersebut.

 

 

 

 

2.2  Penghasilan produk seramik yang menjimatkan

 

1.      Melalui kajian ini, penggunaan seramik daripada cangkerang telur dapat digunakan

secara meluas dalam industri pembuatan pinggan dan mangkuk daripada seramik malah

digunakan dalam proses penghasilan jubin lantai yang kini luas permintaannya.

2.      Penghasilan produk seramik daripada serbuk daripada cangkerang telur ayam ini

sebenarnya amat berpatutan kerana sumbernya diperoleh daripada sumber yang terbuang.

Maka produk ini amat menjimatkan.

 

Page 8: tesis kulit telor

2.3    Memenuhi  syarat graduasi

 

1.      Antara syarat keutamaan graduasi adalah melibatkan diri dalam Program Khas

Pendidikan di MRSM Mersing. Syarat ini perlu diikuti bagi mendapatkan sijil

penganugerahan graduasi.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAB 3

CARA KERJA DAN MASALAH

 

Page 9: tesis kulit telor

 

 

 

 

 

 

 

 

 

3.0  MENGENAL PASTI MASALAH

 

3.0.1  A) Masalah kos pelupusan bahan buangan termasuk cangkerang telur yang tinggi.

          B) Masalah gangguan ekosistem di lokasi sumber batu kapur.

          C) Masalah kos penghasilan seramik dan kos jualan yang tinggi di samping 

               permintaan yang luas.

 

3.1  MERANGKA HIPOTESIS

 

Sumber kalsium karbonat (CaCO3) dalam struktur cangkerang telur boleh dikitar    semula

menjadi bahan seramik yang praktikal.

 

3.2  MERANCANG PENYIASATAN

 

A)  Pengumpulan maklumat

Page 10: tesis kulit telor

1.      Maklumat tentang struktur cangkerang telur dan masalah yang dihadapi tentang

pelupusan cangkerang telur, kajian terdahulu tentang cangkerang telur, diperoleh daripada

internet dan bahan rujukan di pusat sumber .

 

 

 

 

 

B)  Pengumpulan cangkerang telur ayam terbuang

1.Pengumpulan dijalankan di beberapa restoran terdekat, yang berhampiran.

2.Proses pengumpulan cangkerang telur ayam terbuang dijalankan dengan memohon

kebenaran telebih dahulu kepada pengurus perniagaan kedai makan.

3.Setiap ahli kumpulan telah berjaya mengumpul lebih kurang 50 keping cangkerang

telur ayam terbuang dalam tempoh sebulan secara keseluruhan.

 

C)  Perancangan awal eksperimen

1.Teori yang digunakan ialah teori kinetik jirim. Teori kinetik jirim menyatakan bahawa

semua jirim terdiri daripada zarah-zarah kecil iaitu atom, ion atau molekul yang

sentiasa berada dalam keadaan bergerak. Semua nirim mempunyai jisim dan

isipadu.

2.Ciri-ciri jirim dalam bentuk pepejal ialah :

a)      Jarak antara molekul dan cara susunan molekul rapat dan teratur dan pola susunan yang

tetap.

b)      Mempunyai isipadu dan bentuk yang tetap.

c)      Ketumpatan yang tinggi.

Page 11: tesis kulit telor

d)      Daya tarikan dan daya tolakan yang kuat.

e)      Bergetar pada kedudukan yang tetap sahaja.

f)        Ketermampatan yang sangat rendah dan daya tolakan antara molekul yang sangat.

(berdasarkan eksperimen memapatkan plastisin dalam picagari dengan menggerakkan

omboh).

  

 

 

 

 

 

BAB 4

 UJIKAJI DAN KEPUTUSAN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 12: tesis kulit telor

BAB 4  UJIKAJI DAN KEPUTUSAN

 

4.0  EKSPERIMEN – Penghasilan seramik daripada serbuk

cangkerang                                                                     

                                     telur ayam.

 

Tujuan  :   1.   Mengitar semula serbuk cangkerang telur ayam menjadi bahan seramik.

                  2.  Mengkaji hubungan antara jisim serbuk cangkerang telur ayam dengan

                       nilai kekerasan bahan seramik daripada serbuk cangkerang telur ayam  

                       yang terhasil.

                  3.  Menentukan jisim serbuk cangkerang telur ayam yang paling sesuai untuk

                       menghasilkan produk seramik yang pelbagai.

 

Hipotesis  :  1.   Serbuk cangkerang telur ayam boleh dikitar semula menjadi

                           bahan seramik.

                     2.   Jisim serbuk CaCO3 cangkerang telur ayam berkadaran terus  

                           dengan nilai kekerasan seramik yang terhasil.

                     3.   Jisim serbuk cangkerang telur ayam yang paling sesuai ialah 16g 

                            kerana ketebalan yang sesuai untuk menghasilkan pelbagai        

                            produk dan mempunyai nilai kekerasan yang tinggi.

 

Bahan  :  40 keping cangkerang telur ayam.

 

Radas  :  Mesin penimbang Analytical Balance, mesin pemampat Pellitizing Press,

               mangkuk pijar, spatula, mesin penguji kekerasan Rockness Hardness Tester,

               ketuhar Purnace EML, forsep, air suling, lesung penggiling dan mesin pengisar.

 

 

 

 

 

 

PROSEDUR

 

Page 13: tesis kulit telor

A)  Pengasingan membran dan cangkerang telur ayam.

1.40 keping cangkerang telur ayam dikumpulkan dan dibersihkan dengan menggunakan

air suling untuk menyingkirkan benda asing.

2.Lapisan membran cangkerang telur dipisahkan dengan menggunakan forsep. Semua

lapisan membran cangkerang telur ayam dipastikan telah diasingkan.

3.Lapisan cangkerang telur ayam yang telah diasingkan daripada membrannya, dijemur

di bawah  sinaran Matahari selama satu jam.

4.Cangkerang telur ayam diramas dengan menggunakan tangan sehingga menjadi

kepingan kasar. 

5.Kepingan kasar cangkerang telur ayam dikisar dengan menggunakan mesin pengisar

sehingga menjadi serbuk halus.

6.Masukkan serbuk halus cangkerang telur ayam ke dalam lesung penggiling. Serbuk

halus cangkerang telur ayam tersebut digiling sehingga benar-benar halus.

 

B)  Pemampatan serbuk cangkerang telur ayam di bawah tekanan, suhu dan  

      tempoh yang tertentu.

1.Serbuk cangkerang telur ayam yang sangat halus dimasukkan ke dalam mangkuk pijar

dengan menggunakan spatula dan 4g serbuk cangkerang telur ayam ditimbang

dengan menggunakan mesin penimbang Analytical Balance.

2.Serbuk cangkerang telur dimasukkan ke dalam mesin pemampat Pellitizing Press

selama 10 minit di bawah tekanan 30 kN.

3.Selepas 10 minit, pepejal serbuk cangkerang telur ayam (seramik) yang terhasil

dipindahkan ke dalam ketuhar yang dilaraskan pada suhu 200C selama 90 minit.

4.Sampel bagi setiap pepejal serbuk cangkerang telur ayam (seramik) dimasukkan yang

terhasil ke dalam bekas yang diasingkan dan dilabel dengan “A”.

5.Langkah 1 hingga langkah 4 diulang dengan menggantikan 7g, 10g, 13g, dan 16g bagi

menggantikan jisim serbuk cangkerang telur ayam dan pepejal cangkerang telur

ayam (seramik) yang terhasil dilabel masing-masing dengan “B”, “C”, “D”,  dan

“E”.

C)  Menguji kekerasan kepingan sampel pepejal cangkerang telur ayam (seramik)  

       yang terhasil.

 

1.Kekerasan pepejal cangkerang telur ayam (seramik) yang terhasil diuji dengan

menggunakan mesin mesin penguji kekerasan Rockness Hardness Tester.

Page 14: tesis kulit telor

2.Pemerhatian ketebalan dan keadaan mudah pecah sampel dicatatkan dalam jadual.

3.Nilai kekerasan bagi setiap sampel tersebut dicatatkan dalam jadual.

4.Graf jisim serbuk cangkerang telur ayam melawan kekerasan bahan seramik daripada

serbuk cangkerang telur ayam yang terhasil diplotkan.

 

 

 

 

 

 

 

 

                     

   KEPUTUSAN   

Sampel Jisim Nilai kekerasan (Hv) Purata  

Page 15: tesis kulit telor

serbuk

cangkerang

telur ayam

(g)

nilai

kekerasan

(Hv)

 

Pemerhatian

 

Bacaan

pertama

 

Bacaan

kedua

 

Bacaan

ketiga

 

 

Bacaan

keempat

A 4 57.7 78.0 49.0 21.6 51.6 Ketebalan amat tidak sesuai dan sangat mudah pecah

B 7 53.0 51.9 67.1 58.0 57.5 Ketebalan tidak sesuai dan sangat mudah pecah

C 10 57.7 69.7 59.5 68.7 63.9 Ketebalan kurang sesuai dan amat mudah pecah

D 13 70.1 62.5 59.2 65.1 64.2 Ketebalan kurang sesuai dan mudah pecah

E 16 74.2 58.2 55.0 72.6 65.0 Ketebalan kurang sesuai dan tidak mudah pecah

  

 

Jadual 1.0  Jadual purata kekerasan bahan seramik daripada serbuk cangkerang telur ayam yang terhasil.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 16: tesis kulit telor

 

 

 

Jadual 1.0  Graf jisim serbuk cangkerang telur ayam melawan kekerasan bahan seramik daripada serbuk

cangkerang telur ayam yang terhasil.

KESIMPULAN

 

1.Serbuk cangkerang telur ayam boleh dikitar semula menjadi bahan seramik.

2. Jisim serbuk CaCO3 cangkerang telur ayam berkadaran terus dengan nilai kekerasan

seramik yang terhasil.

3. Jisim serbuk cangkerang telur ayam yang paling sesuai ialah 16g kerana ketebalan

yang sesuai untuk menghasilkan pelbagai produk dan mempunyai nilai kekerasan

yang tinggi. Hipotesis diterima.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 17: tesis kulit telor

 

 

 

 

 

 

BAB 5 

HASIL DAN PERBINCANGAN

 

 

 

 

 

BAB 5  HASIL DAN PERBINCANGAN

 

5.0  Analisis Keputusan

 

1.            Kecerunan graf mewakili kadar kekerasan yang diperolehi. Hubungan yang diperoleh

ialah semakin besar jisim serbuk cangkerang telur ayam, semakin tinggi nilai kekerasan yang

diperoleh.

 

2.            Cangkerang telur ayam yang sudah diasingkan membrannya dan telah dihancurkan

sehingga halus dimampatkan untuk merapatkan jarak antara zarah-zarah cangkerang telur

Page 18: tesis kulit telor

tersebut. Prosedur ini juga penting untuk mengelakkan serbuk cangkerang telur tersebut

mempunyai liang-liang udara yang akan menyebabkan zarah-zarah udara akan bercampur

dengan zarah-zarah cangkerang telur dan hal ini akan menyukarkan proses pengujian

kekerasan cangkerang telur itu.

 

3.            Setelah cangkerang telur itu dimampatkan dengan nilai tekanan yang telah ditentukan,

kepingan tersebut mestilah dipanaskan dengan suhu yang tinggi untuk menyingkirkan

molekul-molekul air yang terkandung dalam kepingan cangkerang telur tersebut. Proses ini

mirip dengan proses penyejatan dan proses ini mengambil masa yang agak lama untuk

mengeringkan kepingan tersebut.

 

 

4.            Permasalahan yang dihadapi sepanjang menjalankan proses penghasilan seramik

daripada serbuk cangkerang telur adalah seperti berikut:

a)      Terpaksa menggunakan tenaga yang sepenuhnya untuk menggiling

cangkerang telur bagi menghasilkan serbuk cangkerang telur yang lebih

halus kerana tiada mesin penggiling yang khusus untuk tujuan industri.

b)      Membuat proses dan teori pengasingan membran telur daripada

cangkerang telur ayam dengan kadar yang maksimum. Proses

pengasingan yang dimaksudkan ialah proses yang praktikal dalam bidang

perindustrian.

c)      Mendapatkan bahan campuran atau bahan kimia yang dapat

meningkatkan nilai kekerasan dan mengukuhkan struktur seramik

daripada serbuk cangkerang telur ayam mengikut teori pengaloian.

Page 19: tesis kulit telor

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAB 6

KESIMPULAN 

 

 

 

 

 

 

 

BAB 6  KESIMPULAN

Page 20: tesis kulit telor

 

 

6.0  Rumusan

Cangkerang telur ayam berpotensi untuk dikitar semula menjadi bahan seramik. Struktur

kalsium karbonat, (CaCO3) yang dipisahkan dan digiling halus akan dimampatkan di bawah

tekanan suhu dan tempoh dan membentuk pepejal seramik yang praktikal dalam kehidupan.

Nilai kekerasan yang ditentukan sesuai untuk penggunaan seramik dalam penghasilan

pinggan mangkuk, jubin lantai dan juga dalam penghasilan kraftangan.

 

6.1  Pencapaian objektif  kajian

1.      Kos pelupusan sampah dapat dikurangkan.

2.      Gangguan ekosistem di lokasi sumber batu kapur dikurangkan.

3.      Kos produk seramik lebih murah.

 

6.2  Kajian masa hadapan

1.      Mencari bahan kimia tambahan untuk menambah kekerasan dan ketahanan seramik

daripada cangkerang telur ayam dengan menggunakan teori pengaloian agar seramik yang

dihasilkan lebih kuat dan tegar daripada sebarang gangguan .

2.      Mencari alternatif untuk menghaluskan dan memisahkan lapisan Kalsium karbonat

(CaCO3) yang sesuai digunakan dalam industri secara kormesil.

3.      Mempelbagaikan seramik daripada sumber ini dengan mencari pigmen warna yang dapat

mencorakkan dan lebih mengkomersialkan bahan seramik ini.

 

  

 

 

RUJUKAN

 

1.R. B. Von Dreele,” combined rietveld and stereo chemical Restraint Refinement of a

crystal  Stucture ,” Jounal of Applied Crystallography 32.1084-1089(1999)

Page 21: tesis kulit telor

2.Y.Nys, J.gautron ,M.D.McKee, J.M. Garcia-Ruiz, M.T.Hincke,Biochemical of a

functional characterisasion of egg shell natrix proteine in hens.World is Poutry

Science Journal 57(2001)401-413

3.R>M>G> Hamilton,The Microstructure of the Hen is Egg Shell – A short review ,

Food Microstucture 5 (1986),99-110.

4.P.Hunton ,Understanding the architecture of the egg shell, World is Poultry Journal

51 (1995) 141-147.Materials Stucture,vol.10,number 1(2003)39

5.http://lansce .lanl.gov/re search/vondreele.html.

6.Chicken Egg shell Microstucture Studied by Powder Diffaction.htm

 

 

 

 

 

 

 

 

 

 

 

 

LAMPIRAN I

 

 

 

Page 22: tesis kulit telor

 

 

 

 

 

 

 

 

APPLICATION OF POWDER DIFFRACTION IN BIOLOGY?

THE  EGG-SHELL  MICROSTRUCTURE

L. Dobiášová, R. Kužel , H. Šíchová

 

Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 2

 

In last years, renaissance of  rather old and traditional technique - X-ray powder diffraction

can be observed. This was initiated by both the interest in design of new materials (in

materials science, physics and chemistry, where it plays the role of a basic method), and also

by fast development in instrumental techniques – X-ray optics and detection which enhanced

its possibilities.

Powder diffraction pattern contains different kind of information .  Peak positions and

intensities are related to crystal (atomic) structure, i.e. the type and size of lattice cell and

atomic positions and consequently it can be used for structure refinement and even structure

determination in some cases. As a finger print of each individual phase, the diffraction pattern

can be an ideal tool for phase analysis.

However, there is much more hidden in the pattern. Variations of lattice parameters and

intensitites can detect lattice defects. This is related to the so-called real structure of material,

the term which is also used for structural features in the scale of nanometers, i.e. grains or

subgrains. The topics which is now of great interest because of intense research of

nanomaterials.  Powder diffraction analysis nowadays may include application of different

Page 23: tesis kulit telor

diffraction geometries and analysis of peak positions, intensities and widths. This makes

possible a complete PXRD analysis  – phase analysis, structure refinement,  stress, strain,

crystallite size and texture analysis.

Can the technique be of any use for biologists? There have not been many applications yet.

Main interest of biologists now seems to be directed to protein crystallography where even

synchrotron single crystal diffraction may be insufficient. However, recently, an attempt to

use powder diffraction for structure refinement of proteins has appeared [1, 2] too.

In present work, we have tried to perform more complete diffraction analysis of different

egg-shells.

The biological function of the egg-shell is a chamber for embryonic development and from

which the chick is able to emerge at the appropriate time. The requirements of the table egg

industry are different. The industry sustains economic loss from cracked eggs and some of

the cracking can be attributed to the deficiencies in the egg-shell structure. This is one of the

reasons why the attention to eggshell is devoted [3-5].

The egg-shell consists of several mutually through-growing layers of CaCO3. The innermost

layer – mamilary layer ( 100 μm) grows on the outer egg membrane and creates the base on

which the palisade layer constitutes the thickest part  ( 200 μm) of the egg-shell. The top

layer is the vertical layer  ( 5-8 μm) covered by the organic cuticle.

Different kinds of hen´s and bird´s egg-shells in the powder form or as a whole from both

sides of the shell were examined by powder diffractometry and film back-reflection method.

The powder patterns were evaluated by the fitting of diffraction profiles with the Pearson VII

function. The lattice parameters, peak intensities and profile broadening were analysed. At

the Bragg-Brentano setting (2Θ= 40o) the Cu radiation penetrates approximately into the 9

μm of the egg-shell, so the measurements from the inner and outer shell surface can give

evidence of the mamilary and palisade layer, respectively.

The results obtained on egg-shells of very different origins shown no significant differences

in lattice parameters  that correspond well to the PDF-2 values. The patterns contained only

basic phase CaCO3 (space group no. 167: R-3c) with a small addition of magnesium (0.3 wt.

% , determined by atomic absorption). Diffraction patterns of powders obtained from all the

eggs investigated correspond very well to the pattern of standard CaCO3. The correspondence

is very good including intensities. The patterns obtained from egg-shell powders are also very

similar to the standard pattern, regardless larger line broadening.

Page 24: tesis kulit telor

However, there are differences between powders and both sides of the shells. For inner shell

surfaces, the intensities are only slightly different than in powders (including standard one)

but there is significant line broadening indicating fluctuations of lattice spacings (the mean

local strain of about 0.2 %). On the other hand, for outer shell surfaces, there is much smaller

broadening of lines, similar to powders, but significant changes of intensities indicating the

00l textures of grains. This is also an evidence of presence of two basic layers, structurally

very different – mamilary and palisade. The meaning of crystallographic texture has been

emphasized [3, 4]. It was steted that the breaking strength of the eggshell is inversely related

to the degree of calcite orientation and conversely, reduced strength in the eggshell from aged

hens coincides with a high variability of texture [3].

As a general conclusion and amazing fact, we can say that any differences of XRD

parameters between the eggs of very different origin are not significant. So that their

microstructure and composition, as they can be seen by XRD, are the same.

This work was an attempt for non-traditional application of powder diffraction and it was

shown that it may be helpful for biologists not only for phase analysis but also for the study

of nanostructure of inorganic crystalline phases in biological objects which is closely related

to the overall microstructure which is strongly influenced by proteins taking part in the egg

creation. The eggshell matrix proteins influences the process of crystal growth by controlling

size, shape and orientation of calcite crystals. The formation of avian eggs belongs to most

rapid mineralization processes known.

The work has been initiated and supported only by private interests of the authors.

1.             R. B. Von Dreele, “Combined Rietveld and Stereochemical Restraint Refinement of a Protein Crystal

Structure,” Journal of Applied Crystallography 32, 1084-1089 (1999).

2.             http://lansce.lanl.gov/research/vondreele.html

3.             Y. Nys, J. Gautron, M. D. McKee, J. M. Garcia-Ruiz, M. T. Hincke, Biochemical and functional

characterisation of eggshell matrix proteins in hens.World’s Poultry Science Journal, 57 (2001), 401-413.

4.             R.M.G. Hamilton, The Microstructure of the Hen’s Egg Shell – A short review., Food Microstructure,

vol 5 (1986), 99-110.

5.             P. Hunton, Understanding the architecture of the egg shell, World’s Poultry Science Journal, vol. 51

(1995), 141-147.

CONCEPTS OF EGGSHELL QUALITY

By Dr. Gary D. Butcher and Dr. Richard D. Miles*

Page 25: tesis kulit telor

Much information has been learned about eggshell quality during the past fifty years. During

this period of time, the genetics of the chicken, diets, house design and management practices

have changed dramatically. In the future, it is very likely that additional changes will have to

he made by the commercial egg industry. No matter what changes occur, the eggshell needs

to be as strong as possible to maximize the number of eggs reaching the market.

Many factors influence eggshell breakage. Eggshell breakage is directly related to the quality

of the shell. It is impossible, even with current knowledge, to correct all eggshell quality

problems. We can, however, make significant reductions in the number of eggs lost due to

poor shell quality. This can be accomplished if one realizes that no single factor is usually

responsible for egg breakage. Many factors are known to be related to eggshell quality. These

include adequacy of nutrition, flock health problems, management practices, environmental

conditions, and breeding. The following are some of the major factors associated with

eggshell quality. A brief account of each factor is provided.

 

THE EGGSHELL ITSELF

Most good quality eggshells from commercial layers contain approximately 2.2 grams of

calcium in the form of calcium carbonate. About 95% of the dry eggshell is calcium

carbonate weighing 5.5 grams. The average eggshell contains about 0.3% phosphorous, 0.3%

magnesium, and traces of sodium, potassium, zinc, manganese, iron and copper. If the

calcium from the shell is removed, the organic matrix material is left behind. This organic

material has calcium binding properties, and its organization during shell formation

influences the strength of the shell. The organic material must be deposited so that the size

and organization of the crystalline components (mostly calcium carbonate) are ideal, thus

leading to a strong shell. The majority of the true shell is composed of long columns of

calcium carbonate. There are other zones that are involved in the self-organization giving the

eggshell its strength properties. Thus, shell thickness is the main factor, but not the only

factor, that determines strength. At present, dietary manipulation is the primary means of

trying to correct eggshell quality problems. However, the shell to organic membrane

relationship is also critical to good shell quality and must be considered.

An eggshell that is smooth is desirable, as rough-shelled eggs fracture more easily. Large

eggs will usually break more easily than small ones. The main reason for this is that the hen

is genetically capable of placing only a finite amount of calcium in the shell. As the hen ages

and the eggs get bigger, a similar amount of calcium has to be spread over a larger surface.

Therefore, controlling the rate of egg weight change can influence eggshell quality as the hen

Page 26: tesis kulit telor

ages. Controlling feed intake by changing the temperature inside the layer house influences

egg size. It must be remembered that many factors can influence the amount of calcium being

laid down by the hen. Just because an eggshell is thick does not necessarily mean that it is

strong. Sometimes a thinner eggshell is stronger than a thicker eggshell. The reason for this is

due to the shape and organization of the organic and inorganic components of the shell.

 

FEEDING

The importance of adequate nutrition in providing the hen what she needs to maintain

adequate eggshell quality is obvious. A hen lays approximately 250 eggs per year which

correspond to 20 times the quantity of calcium in her bones at any one time. Therefore, the

calcium requirement of the laying hen is great. It can be calculated that during the 20 hours

that are required to form an eggshell, 25 milligrams of calcium must be deposited on the egg

every 15 minutes. This amount of calcium is the total amount of calcium in a normal hen's

circulatory system at any given time. In addition, the laying hen is not 100 percent efficient in

extracting calcium from the available sources in the diet. Therefore, many times the diet has

to furnish in excess of 4 grams of calcium to the hen daily. Calcium availability values are

sometimes not known, and it must be remembered that higher daily intakes are needed when

the availability values are known to be low.

A high phosphorus content in the feed and excess chlorine may have a negative effect on

eggshell quality. It is possible that these two elements act negatively on eggshell quality

through their influence on the acid-base balance (pH) in the blood. The importance of

adequate vitamin D intake by the hen is obvious, and it is essential for proper calcium and

phosphorus utilization. However, excess vitamin D and its metabolites have not been shown

to benefit eggshell quality when normal hens are already consuming adequate vitamin D.

Other vitamins and trace minerals, when fed in excess of the hen's requirements, have failed

to improve eggshell quality.

 

ENVIRONMENT

Usually, eggshell quality is not as much of a problem in cooler environments as it is in hot

environments. One of the contributing factors causing poorer eggshell quality in hot weather

is hens not consuming adequate feed. This can lead to problems in body weight, egg

production, egg size, and eggshell quality if measures are not taken to assure adequate daily

nutrient and energy consumption. When environmental temperature becomes excessively hot,

feed intake decreases, and energy becomes the first limiting factor to the hen. Inadequate

Page 27: tesis kulit telor

consumption of amino acids, calcium, phosphorus, and other nutrients can usually be

corrected by adjusting the nutrient density of the diet. However, it must not be forgotten that

in hot weather, unlike cooler weather, the laying hen has to make critical life sustaining

physiological adjustments in order to cope with the increased environmental temperature.

The laying hen, through panting, resists the rise in body temperature during periods of heat

stress. At the same time, the acid-base balance in the bird's blood is changed. We sometimes

forget that the laying hen has to cool her body in extremely hot environments and this will

shift her physiological priorities from producing eggs and maintaining an adequately calcified

eggshell to that of staying alive. In such situations, maximum egg mass (egg production times

egg weight) along with maximum eggshell quality are difficult to achieve with any age bird.

 

DISEASE AND EGGSHELL QUALITY

Not all diseases affecting chickens cause a decline in eggshell quality. However, egg

production will usually decline. An example of a disease that can affect the numbers of eggs

and not necessarily the quality is infectious laryngotracheitis. Other common viral diseases,

such as egg drop syndrome (EDS), avian influenza (AI), Newcastle disease (ND) and

infectious bronchitis (IB), may produce severe effects on eggshell and internal quality. Many

times the total number of eggs is not influenced, even though the egg records indicate a drop

in total collectable eggs. This is due to the increase in non-collectable eggs (shell-less or

ultra-thin shells) that are lost under the cages. This is a common occurrence with EDS. It has

been established that the EDS virus affects only the shell gland, but with ND and IB every

portion of the reproductive tract can be affected.

If one disease had to be singled out as being responsible for the majority of the economically

significant production losses in egg layers, it would have to be infectious bronchitis.

Infectious bronchitis virus, a coronavirus, has a preference for the mucus membranes of the

respiratory and reproductive tracts. The kidney is also affected by certain IB virus strains. Not

only is eggshell quality affected, but internal quality also declines. Watery whites are very

common and can persist for long periods after egg production returns. Also, an IB outbreak

can result in a pale-colored shell in brown shell eggs.

*DVM, Ph.D., poultry veterinarian, and Ph.D., poultry nutritionist, Poultry Science

Department, respectively, University of Florida, Gainesville.

Page 28: tesis kulit telor

Back to the Flock Management Page

Back HOME

Copyright 1995-2004 by Dennis Hawkins, All Rights Reserved.

 

 

 

 

 

The Egg-Shell Microstructure Studied by Powder

Diffraction

L. Dobiášová†1, R. Kužel1, H. Šíchová1, J. Kopeček2

 1Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Praha 22Institute of Physics, Academy of Sciences of the Czech Republic † in memoriam 

In last years, traditional technique of powder diffraction known mainly to materials scientists,

physicists, chemists, mineralogists is also applied to biological materials. First powder

diffraction studies of protein structures has appeared [1, 2]. However, powder diffraction is

known also as a suitable tools for studies of the so-called real structure of materials. In

present work, we have tried to perform more complete diffraction analysis of different egg-

shells.

The biological function of the egg-shell is a chamber for embryonic development and from

which the chick is able to emerge at the appropriate time. The requirements of the table egg

industry are different. The industry sustains economic loss from cracked eggs and some of

the cracking can be attributed to the deficiencies in the egg-shell structure. This is one of the

reasons why the attention to egg-shell is devoted [3-5].

The egg-shell consists of several mutually through-growing layers of CaCO3. The inner most

layer – mamilary layer ( ~100 µm) grows on the outer egg membrane and creates the base on

which the palisade layer constitutes the thickest part 5-8 µm)200 µm) of the egg-shell. The

Page 29: tesis kulit telor

top layer is the vertical layer (( covered by the organic cuticle. Different kinds of hen´s and

bird´s egg-shells in the powder form or as a whole from both sides of the shell were

examined by powder diffractometry and film back-reflection method. The powder patterns

were evaluated by the fitting of diffraction profiles with the Pearson VII function.

The lattice parameters, peak intensities and profile broadening were analysed. At ) the Cu

radiation penetrates approximately= 40the Bragg-Brentano set ting (2 into the 9 µm of the

egg-shell, so the measurements from the inner and outer shell surface can give evidence of

the mamilary and palisade layer, respectively. The results obtained on egg-shells of very

different origins shown no significant differences in lattice parameters that correspond well to

the PDF-2 values. The patterns contained only basic phase CaCO3 (space group no. 167: R-

3c) with a small addition of magnesium (0.3 wt. % , determined by atomic absorption).

Diffraction patterns of powders obtained from all the eggs investigated correspond very well

to the pattern of standard CaCO3. The correspondence is very good including intensities. The

patterns obtained from egg-shell powders are also very similar to the standard pattern,

regardless larger line broadening.

However, there are differences between powders and both sides of the shells. For inner shell

surfaces, the intensities are only slightly different than in powders (including standard one)

but there is significant line broadening indicating fluctuations of lattice spacings (the mean

local strain of about 0.2 %). On the other hand, for outer shell surfaces, there is much smaller

broadening of lines, similar to powders, but significant changes of intensities indicating the

(00l) textures of grains. This is also an evidence of presence of two basic layers, structurally

very different – mamilary and palisade. The meaning of crystallographic texture has been

emphasized [3, 4]. It was stated that the breaking strength of the egg shell is inversely related

to the degree of calcite orientation and conversely, reduced strength in the egg shell from

aged hens coincides with a high variability of texture [3].

As a general conclusion and amazing fact, we can say that any differences of XRD

parameters (for inorganic – calcite part) between the eggs of very different origin are not

significant. So that their microstructure and composition, as they can be seen by XRD, are the

same. All the shells investigated exhibited strong texture from outside and no texture from

inside (Fig. 1). This agrees with the SEM pictures (Fig. 2) and known fact that from smaller

more or less isotropical grains larger columnar grains are developed to the outer side. This

work was an attempt for non-traditional application of powder diffraction with the aim to

show that the method may be helpful also for biologists. Not only because of the phase

Page 30: tesis kulit telor

analysis but also for the study of nanostructure of inorganic crystalline phases in biological

objects. This is closely related to the overall microstructure strongly influenced by proteins

taking part in its creation. The egg-shell matrix proteins influences the process of crystal

growth by controlling size, shape and orientation of calcite crystals. The formation of avian

eggs belongs to most rapid mineralization processes known.

1. R. B. Von Dreele, "Combined Rietveld and Stereochemical Restraint Refinement of a

Protein Crystal Structure," Journal of Applied Crystallography 32, 1084-1089 (1999).

2. http://lansce.lanl.gov/re search/vondreele.html.

3. Y. Nys, J. Gautron, M. D. McKee, J. M. Garcia-Ruiz, M. T. Hincke, Biochemical and

functional characterisation of  egg shell matrix proteins in hens. World's Poultry Science

Journal 57 (2001) 401-413.

4. R.M.G. Hamilton, The Microstructure of the Hen's Egg Shell - A short review, Food

Microstructure 5 (1986), 99-110.

5. P. Hunton, Understanding the architecture of the egg shell, World's Poultry Science

Journal 51 (1995) 141-147. Materials Structure, vol. 10, number 1 (2003) 39.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 31: tesis kulit telor

 

 

 

ADAS

IN CONFIDENCE

 

 

 

 

 

 

UTILISATION OF

EGG SHELL WASTE

FROM UK EGG PROCESSING

AND

HATCHERY ESTABLISHMENTS

 

 

 

 

 

 

Prepared for Prepared by

Mr David Jones Jason Gittins, Senior Consultant

Pigs, Eggs and Poultry Division Assisted by Catherine Drakley, Research Consultant

DEFRA ADAS Consulting Ltd

Whitehall Place East Woodthorne

London Wergs Road

SW1A 2HH Wolverhampton

  WV6 8TQ

May 2002 Tel: 01902 693197

 

Page 32: tesis kulit telor

CONTENTS

1 INTRODUCTION *

2 SOURCES AND COMPOSITION OF WASTE *

2.1 Egg Processing Premises *

2.1.1 Production of pasteurised liquid egg *

2.1.2 Production of boiled egg (minus shell) for sandwich fillings etc. *

2.2 Hatcheries *

3 CURRENT DISPOSAL OR RECOVERY OPTIONS *

3.1 Incineration *

3.2 Landfill *

3.3 Land-spreading *

4 LONGER TERM SOLUTIONS *

4.1 Effectively Separating the Shell and Membrane *

4.1.1 Uses of egg shell membrane *

4.1.2 Uses of purified shell *

4.2 Feed Options *

4.2.1 Feeding ground egg shell waste *

4.2.2 The nutritional value of day old chick meal *

4.2.3 Lactic acid fermentation of hatchery waste *

4.3 Other Possibilities for Utilising Egg Shell and Hatchery Waste *

5 FURTHER RESEARCH *

6 CONCLUSIONS *

References *

 

1 INTRODUCTION

Page 33: tesis kulit telor

A recent report prepared by ADAS for DEFRA – MPEP Branch (The UK Egg Products

Industry, May 2001) highlighted the difficulties which the disposal of egg shells presents to

UK egg processors. In the report, it was estimated that some 10-11,000 tonnes of egg shell

has to be disposed of each year by egg processors and producers of hard cooked eggs. The

vast majority of this is produced by comparatively few businesses. Similar issues affect UK

hatcheries for both egg and poultry meat production where again the quantity of egg shell and

other hatchery waste to be disposed of is considerable. It is estimated that this amounts to

some 360 tonnes per annum for egg laying birds and 4,800 tonnes per annum for broilers. An

estimated 30 million male laying strain chicks also need to be disposed of.

The disposal of egg shells and hatchery waste is not only a problem for the UK industry.

However, the problem is alleviated in many other countries since it is acceptable practice to

feed treated egg shell back to animals as a source of calcium. Since many of the egg

processing plants in other parts of Europe are part of co-operative groups which incorporate

animal feedmills, this is a very efficient option. Research has been ongoing for some years on

alternative uses for the waste in the UK, other EU countries and worldwide.

UK consumption of eggs in further processed form is growing. Approximately 20% of UK

egg production enters the further processed chain compared to 14% in 1994. It is likely that

the consumption of further processed eggs will continue to increase as ready prepared meals,

cakes and eating out become ever more popular, and therefore the problem of waste disposal

will continue to increase. By 2010, it is predicted that products could account for 30% of the

UK egg market.

The egg processing industry in particular is very competitive, with low margins being the

norm due to global competition and cheap imports. The costs associated with egg shell

disposal (much of which is currently taken to landfill sites) are significant, and set to continue

increasing as landfill taxes increase. Alternative solutions, which transform the waste product

into a saleable item would be welcomed, but investment to date is limited into new areas of

waste processing. However, new technologies are being investigated, which although

seemingly priced out of the market at present, may become economically viable in the not too

distant future.

The objective of this report is to identify the options for and costs of disposal that are

currently available to the egg processors and hatchery industries. The current disposal options

will be considered in terms of current and future costs.

The future potential uses of egg shell and hatchery waste from the poultry industry will be

established by a review of the literature, and the practical issues likely to be associated with

Page 34: tesis kulit telor

these will be evaluated. Any further research or development requirements will be

highlighted.

The UK egg products industry is particularly concerned about its ability to remain

competitive in future. Finding solutions to the problem of egg shell waste would be a step

towards safeguarding the competitive position of the UK industry.

 

2 SOURCES AND COMPOSITION OF WASTE

 

2.1 Egg Processing Premises

 

2.1.1 Production of pasteurised liquid egg

Shell from pasteurised liquid egg is perhaps the most difficult waste to manage. The liquid

constituents are rapidly degraded microbiologically causing unpleasant sulphurous odours.

There is a need to remove this material for disposal or recovery on a very regular basis. This

leads to frequent collections by waste management companies in relatively small

consignments.

 

2.1.2 Production of boiled egg (minus shell) for sandwich fillings etc.

The situation is similar to that of pasteurised liquid egg, although the cooking process will

slow down the rate of microbiological degradation slightly.

Egg shell waste primarily contains calcium, magnesium carbonate (lime) and protein.

2.2 Hatcheries

Waste from hatcheries will contain tissue from the developing embryo in the egg and the

cause of the non-viable development will generally be unknown. As the cause of this may

have been due to pathogens which can also affect humans, the subsequent waste will be

subject to the Animal By-products Order 1999 (Statutory Instrument 1999 No. 646) and

subsequent amendments. The waste must, therefore, be consigned for rendering at a cost of

£50-85/tonne.

 

3 CURRENT DISPOSAL OR RECOVERY OPTIONS

 

3.1 Incineration

Incineration with waste-to-energy (combined heat and power) is considered to be a desirable

but high cost waste disposal option. Costs can exceed £35/tonne and incinerator capacity is

Page 35: tesis kulit telor

limited. In order to maximise the recycling opportunities for egg shells, the material should

be incinerated independently of other wastes. The calcium/magnesium content of the shells

will be converted into calcium/magnesium oxide and the resultant burnt lime could be used as

a liming agent. In addition, most of the constituents are not organic and of low calorific

value, making the material less attractive as an energy source.

This option is, therefore, not considered to be viable at this time.

 

3.2 Landfill

Environmental concerns over the production of methane, carbon dioxide and other volatile

organic chemicals and the threat to controlled waters from leachate production, has led to

tighter controls over the management of landfill sites. Current and forthcoming EU and UK

regulations also demand high standards of site monitoring and engineering by site operators.

The result of these changes and the threat of the impending introduction of restrictions on the

amount of putrescible material (organic carbon) which may be landfilled means that material

such as egg shells will be less attractive for landfill disposal.

Landfill Tax is currently at £13/tonne for egg shell waste and is set to rise by £1/tonne for the

next few years.

The cost of landfill will vary according to the proximity and availability of sites but will vary

between £15/tonne and £35/tonne, excluding Landfill Tax and haulage.

In real terms, this equates to a cost of 2.8 – 4.8 pence per 10kg of pasteurised egg produced

for disposing of the shell waste (not including haulage).

In the future it is likely that restrictions on the amount of carbon allowed to be deposited into

landfills will require some form of pre-treatment such as composting, aerobic/anaerobic

digestion or chemical treatment.

Disposal to landfill is currently the most common method of disposal of eggshell waste, as it

is the cheapest. However due to the increasing levels of landfill tax, and likely future

restrictions on carbon depositing it is likely to become less attractive in the future.

 

 

3.3 Land-spreading

Land-spreading of industrial wastes is carried out under the exemptions from licensing in

paragraph 7 of Schedule 3 of the Regulations (The Waste Management Licensing

Regulations 1994, Statutory Instrument 1994 No. 1056) to permit the beneficial recovery of

specified wastes. Controlled wastes listed in Table 2 of paragraph 7 of Schedule 3 of the

Page 36: tesis kulit telor

Regulations that can be applied to land subject to the conditions of this provision are as

follows:

 

Part I

Waste soil or compost

Waste wood, bark or other plant matter

Part II

Waste food, drink or materials used in or resulting from the preparation of food or

drink

Blood and gut contents from abattoirs

Waste lime

Lime sludge from cement manufacture or gas processing

Waste gypsum

Paper waste sludge, waste paper and de-inked paper pulp

Dredgings from any inland waters

Textile waste

Septic tank sludge

Sludge from biological treatment plants

Waste hair and effluent treatment sludge from a tannery

Egg shell waste falls within the category of waste food, drink or materials used in or resulting

from the preparation of food or drink and could, subject to adequate scrutiny, be suitable for

land spreading. The total neutralising value (lime) is almost the same as ground chalk or

limestone tonne for tonne.

However, the physical nature of the egg shell waste (large shell fragments) and the foul rotten

egg odours produced when the material degrades, reduce the liming value and render the

waste difficult to recycle to land. Ideally, the waste should be dried at source, transported to a

site where it can be finely ground and used as a source of lime in agriculture. Some form of

intensive heat treatment will be necessary at some point in the process to guarantee pathogen

kill. However the costs of drying, additional transport, grinding and heat treatment required

are likely to make this option less desirable in the short term.

 

4 LONGER TERM SOLUTIONS

This section of the report considers the past and ongoing research work on the problem of the

utilisation of egg shell and hatchery waste. These techniques are not considered economically

Page 37: tesis kulit telor

viable at the present time, but a basic understanding of the scope of potential solutions is

useful in looking toward a future when land-filling may not be an option as a disposal

method.

 

 

4.1 Effectively Separating the Shell and Membrane

A major problem with profitable utilisation of eggshell waste is ensuring the complete

separation of the shell and the membrane. Many methods have been tried to completely

separate the membrane from the shell, as when separated, both items can have significant

value. Shells have been dried, crushed, acid treated, abraded and tumbled but the membrane

has remained attached to the shell. In 1997 an American company used a machine normally

used for meat processing (a comitrol) that finely cut the eggshells to a powder. When the

resultant powder was mixed with water, the shell fragments sank and the membrane particles

were suspended in the water. This process has been patented (WO 98/41326,

PCT/US98/05315). The membrane and the shell can then be used for several purposes.

 

4.1.1 Uses of egg shell membrane

 

Egg shell membrane contains around 10 % collagen, including the most common Type 1

collagen and the unusual Type 10 collagen. The potential value of collagen from egg shell

membrane is huge, especially in the medical area, where purified collagen can sell for up to

US$1000 per gram. Collagen is used for skin grafts, dental implants, angioplasty sleeves,

cornea repair, plastic surgery, treatment of osteoporosis and pharmaceuticals as well as food

casings and film emulsions.

This is however a very specialised product, and a thorough investigation of the potential size

of the market would need to be carried out before any investment occurred. It is unlikely to

be a route that an egg processor would go down directly, although a co-operative of

processing companies might be able to act as suppliers of material for other specialist

companies.

 

4.1.2 Uses of purified shell

 

The membrane free shell powder can be used in the paper industry, or in agriculture as a lime

substitute or calcium supplement

Page 38: tesis kulit telor

 

4.2 Feed Options

 

Egg shell waste does have a theoretical value either as an animal feed or as a fertiliser or lime

substitute. In many other countries, it is accepted practice for egg shells to be dried and used

as a source of calcium in animal feeds. This is currently not undertaken in the UK, although it

would be a very efficient use of the industry’s by-products. It is not used due to concerns over

the transfer of pathogens from raw animal by-products.

 

4.2.1 Feeding ground egg shell waste

 

The following provides an example of what could be done, based on studies by Froning and

Bergquist (1990). Egg shell waste was ground (70%) and blended with technical albumin

(8%), maize (5%), soya-bean meal (17%) and propionic acid (0.15%). The blend was

extruded, cooled and fed to laying hens as a protein and calcium supplement in a fully

formulated diet. The process of extrusion produced a microbiologically safe product. Hens

fed the extrudate were not adversely affected in comparison to control birds (rate of lay, feed

conversion, mortality, shell thickness and shell strength). This technique is more practical

than drying and storing waste shells, as the fresh shells are used on a daily basis. The

recycling of the nutrients back to the hen could also be seen as being environmentally logical.

However, there is the risk of bacterial contamination being circulated back to the flock, and

consumer perception of hens being fed a recycled product.

It is unlikely that egg shell waste will be acceptable to the UK consumer for recycling into

processes linked to the food chain. This includes the recycling of waste to agricultural land,

in the absence of an agreed form of auditable enhanced treatment. As a result, most wastes of

this type are consigned to landfill, although we do know of some operators who have

recycled egg shell waste to agricultural land in the past. Shells from cooked eggs may

however be accepted for this purpose having undergone an intensive heat treatment.

 

4.2.2 The nutritional value of day old chick meal

 

It is estimated that within the UK approximately 30 million male chicks from laying hen

strains are culled each year. A limited number of these are utilised as a low-priced animal

feed-stuff (at zoos and wildlife parks) but the remainder usually go to landfill. Research by

Page 39: tesis kulit telor

Tacon (1982) quantified the nutritive value of processed chick meal. The chick meal was

equivalent to meat meal, and is a good source of methionine, lysine and cystine. The chick

meal was a well balanced source of most minerals, although the level of zinc was extremely

high. Animals have a high tolerance for zinc, but very high levels may depress food intake or

induce copper deficiency.

There is a serious risk of potential health hazards arising from pathogenic microbial

contamination or parasites within the waste material, therefore it is essential that the products

must be processed to ensure destruction of the disease-causing organisms. This will add to

the cost of the process.

 

 

 

4.2.3 Lactic acid fermentation of hatchery waste

 

Hatchery waste has not been fully utilised historically as the products are highly perishable

and rapidly spoil unless they are immediately rendered or dehydrated to a stable form. In

practice the cost of regular haulage of small loads to the renderers has also proved

prohibitive. Research has been carried out on the possibility of preserving the hatchery waste

by fermentation in order to produce a nutrient dense feed-stuff that can be fed to poultry

(Deshmukh and Patterson, 1997). Cockerel chicks and shell waste were ground and

fermented in sealed containers with a fermentation culture. The fermented product was

extruded and dried, and included as a feed ingredient in a feed evaluation trial for broiler

chicks. Diets supplemented with hatchery by-products were comparable with control diets in

terms of bird performance (body weight gain and feed conversion). Carcass yields were not

adversely affected. Again, this is unlikely to be a practical proposition in the UK food

industry.

 

4.3 Other Possibilities for Utilising Egg Shell and Hatchery Waste

Production of biodegradable plastics from eggshell membrane proteins.

Altering of food-borne bacterial pathogen heat resistance with an eggshell membrane

bacteriolytic enzyme.

A human dietary calcium supplement especially for post menopausal women,

eggshells also contain useful amounts of microelements such as strontium (Sr),

fluorine (F) and selenium (Se).

Page 40: tesis kulit telor

Eggshell membrane can be used as an adsorbent for the removal of reactive dyes from

coloured waste effluents.

Eggshell membrane can be used to eliminate heavy metal ions from a dilute waste

solution

 

 

5 FURTHER RESEARCH

ADAS is already carrying out research into the viability of drying, grinding and conditioning

waste into useful by-products. These include safe products for land-spreading and substrates

for a waste-to-energy boiler. Current costs for such a technique could be in the region on £40

– 45 / tonne, but will depend upon the location of the site. This option may be economically

viable as it is similar to the cost of landfill (including tax and haulage charges).

 

 

6 CONCLUSIONS

The UK industry has a major problem with the disposal of egg shell and hatchery waste, due

to the substantial, and rising, costs of such disposal. Consumer pressure over food safety

means that recycling of treated waste back to poultry as a nutrient dense food source is

currently not acceptable and unlikely to become so in future.

At present, therefore, it appears that landfill is still the most economic means of disposal of

the large quantities of eggshells currently produced. But due to high disposal costs the UK

industry is in danger of losing out to cheaper imported egg products from countries where

disposal costs are considerably lower. In future, landfill taxes are set to rise and restrictions

on the amount of carbon that can be sent to landfill will tighten.

Some of the longer term solutions set out in this report may therefore become more feasible

but there is a need for more research into affordable and practical disposal options to help the

competitive position of the UK industry in the near future. It is recommended that a pilot

study is set up, using ADAS facilities and co-operation from industry to further evaluate the

utilisation of dried, ground egg shells for land spreading or energy production.

 

References

DESHMUKH, A.C. and PATTERSON, P.H., (1997). Preservation of hatchery waste by

lactic acid fermentation. 2, large scale fermentation and feeding trial to evaluate feeding

value. Poultry Science, 76, 1220 – 1226.

Page 41: tesis kulit telor

FRONING G.W., and BERGQUIST, D (1990). Research note: utilisation of inedible

eggshells and technical egg white using extrusion technology. Poultry Science, 69, 2051 –

2053.

TACON, A.G.J., (1982). Utilisation of chick hatchery waste: the nutritional characteristic                                  

Egg and Embryo DevelopmentThe Formation of an Egg:

The Yolk: The chicken egg starts as an egg yolk inside a hen. A yolk (called an oocyte at this point) is produced by the hen's ovary in a process called ovulation.

Cross Section of a Newly Hatched Egg

Page 42: tesis kulit telor

Fertilization: The yolk is released into the oviduct (a long, spiraling tube in the hen's reproductive system), where it can be fertilized internally (inside the hen) by a sperm. The Egg White (albumin): The yolk continues down the oviduct (whether or not it is fertilized) and is covered with a membrane (called the vitelline membrane), structural fibers, and layers of albumin (the egg white). This part of the oviduct is called the magnus. The Chalazae: As the egg goes down through the oviduct, it is continually rotating within the spiraling tube. This movement twists the structural fibers (called the chalazae), which form rope-like strands that anchor the yolk in the thick egg white. There are two chalazae anchoring each yolk, on opposite ends of the egg. The Eggshell: The eggshell is deposited around the egg in the lower part of the oviduct of the hen, just before it is laid. The shell is made of calcite, a crystalline form of calcium carbonate. This entire trip through the oviduct takes about one day. Growth of the Embryo: The fertilized blastodisc (now called the blastoderm) grows and becomes the embryo. As the embryo grows, its primary food source is the yolk. Waste products (like urea) collect in a sack called the allantois. The exchange of oxygen and carbon dioxide gas occurs through the eggshell; the chorion lines the inside surface of the egg and is connected to the blood vessels of the embryo. The Incubation Period: The embryo develops inside the egg for 21 days (the incubation period), until a chick pecks its way out of its eggshell and is hatched. Definitions:

air cell - an empty space located at the large end of the egg; it is between the inner and outer shell membranes.

chalaza - a spiral, rope-like strand that anchors the yolk in the thick egg white. There are two chalazae anchoring each yolk, one on the top and one on the bottom. (The plural of chalaza is chalazae.)

germinal disc or blastodisc - a small, circular, white spot (2-3 mm across) on the surface of the yolk; it is where the sperm enters the egg. The nucleus of the egg is in the blastodisc.

inner shell membrane - the thin membrane located between the outer shell membrane and the albumin.

outer shell membrane - the thin membrane located just inside the shell.

shell - the hard, protective coating of the egg. It is semi-permeable; it lets gas exchange occur, but keeps other substances from entering the egg. The shell is made of calcium carbonate.

thick albumin - the stringy part of the egg white (albumin) located nearest the yolk.

thin albumin - the watery part of the egg white (albumin) located farthest from the yolk.

Page 43: tesis kulit telor

vitelline (yolk) membrane - the membrane that surrounds the yolk.

yolk - the yellow, inner part of the egg where the embryo will form. The yolk contains the food that will nourish the embryo as it grows.s of day old chicks and egg shells. Agricultural Wastes, 4, 335 – 343.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Page 44: tesis kulit telor

         

LAMPIRAN II                            

           

Page 45: tesis kulit telor

                              

RAJAH 1.0   Struktur asas cangkerang telur ayam. 

                  

Page 46: tesis kulit telor

                        

RAJAH 1.1    Keratan akhbar yang membincangkan kes tarahan gua batu kapur                        yang semakin menganggu ekosistem di lokasi tersebut.

            

PROSES I  :  PROSES PEMBERSIHAN          

Page 47: tesis kulit telor

              

RAJAH 2.0    Kulit telur ayam yang telah dibersihkan daripada dengan menggunakan air                        suling untuk menyingkirkan bendasing.

       

            

PROSES II  :  PROSES PENGASINGAN             

Page 48: tesis kulit telor

        

  RAJAH 2.1    Membran telur ayam yang telah diasingkan daripada membrannya dengan                                               menggunakan forsep.

                    

PROSES III  :  PROSES PENGISARAN                

Page 49: tesis kulit telor

       

RAJAH 2.2    Cangkerang telur ayam yang telah dikisarkan secara kasar dengan                        menggunakan mesin pengisar.

                    

PROSES IV  :  PROSES PENGGILINGAN                   

Page 50: tesis kulit telor

    

RAJAH 2.3    Serbuk kasar cangkerang telur ayam yang telah dikisar digiling                        halus dengan menggunakan penggiling.

                    

PROSES V  :  PROSES PEMAMPATAN                      

Page 51: tesis kulit telor

 RAJAH 2.4.0    Serbuk halus cangkerang telur ayam ditimbang pada jisim tertentu                           dengan menggunakan mesin elektronik Analytical Balance.                                        RAJAH 2.4.1    Serbuk halus cangkerang telur ayam dimampatkan dibawah tekanan dan                                     tempoh tertentu dengan menggunakan mesin pemampat                           Pelletizing Press.

 

Page 52: tesis kulit telor

       

                                    RAJAH 2.4.2    Pepejal seramik daripada serbul halus cangkerang telur ayam diletakkan                            di bawah tekanan suhu dalam mesin ketuhar Purnace EML.   

Page 53: tesis kulit telor

                                           RAJAH 2.5    Seramik yang terhasil daripada pengitaran semula cangkerang telur ayam                         diuji kekerasannya dengan menggunakan meain penguji kekerasan                         Hardness Tester.  

Page 54: tesis kulit telor

                                     RAJAH 3.0     Gambar penulis bersama pembantu makmal Fizik di Universiti Teknologi                         Malaysia Skudai, Johor. Send instant messages to your online friends http://uk.messenger.yahoo.com