performance of ternary blended …eprints.utm.my/id/eprint/54718/1/jamiluusmanpfka2015.pdfoleh yang...

53
PERFORMANCE OF TERNARY BLENDED CEMENT MORTAR CONTAINING PALM OIL FUEL ASH AND METAKAOLIN JAMILU USMAN A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering) Faculty of Civil Engineering Universiti Teknologi Malaysia SEPTEMBER 2015

Upload: phamkhuong

Post on 29-May-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

PERFORMANCE OF TERNARY BLENDED CEMENT MORTAR CONTAINING

PALM OIL FUEL ASH AND METAKAOLIN

JAMILU USMAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering

Universiti Teknologi Malaysia

SEPTEMBER 2015

Page 2: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

Dedicated to

my family

Page 3: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my main thesis supervisor.

Associate Professor Dr. Abdul Rahman Bin Mohd. Sam, for motivations, guidance,

critics and full academic support. 1 am also very appreciative to my co-supervisor,

Dr. Yahya Bin Mohammad Yatim, for his diligent advices and encouragements.

Without their continued support and interest, this thesis would not have been the

same as presented here.

I am greatly indebted to Universiti Teknologi Malaysia (UTM) for given me

this golden opportunity to pursue Ph.D., most especially; School o f Graduate Studies,

Faculty of Civil Engineering, Department of Materials and Structure, Sultanah

Zanariah Library and Technicians-Structural and Materials laboratory UTM.

I gratefully acknowledge the support for this research from Ahmadu Bello

University Zaria (ABU) Nigeria and TETFUND. Finally, 1 am grateful to all my

family members.

Page 4: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

V

ABSTRACT

The partial substitution of Portland cement with pozzolans in concrete greatly reduces the environmental pollution due to CO2 emission during cement production. Pozzolans equally enhance mechanical properties and guarantee the production of concrete with minimum costs. These added benefits, result in the increasing use of pozzolans as a significant innovation in the construction industry. Although palm oil fuel ash (POFA) as pozzolan improves strength and durability of concrete, it however delays early strength development due to its low pozzolanicity. Conversely, metakaolin (MK) improves early strength development but equally reduces workability and increases heat of hydration which can be detrimental to the durability of concrete. MK is also deficient in magnesium sulfate environment and at high temperatures. Thus, the scope of application of the binary blends of POFA and MK in the construction industry may be limited. However, the simultaneous use of these materials in the form of ternary blend has the potential to compensate for the deficiencies due to their synergistic interactions. Hence, this study was set out to investigate the effects of the combination of POFA and MK on the properties of cement mortar. Accordingly, a total of 17 different mortar mixtures of binary and ternary blends of POFA and MK at up to 30% replacement levels by weight, and water to binder ratio of 0.55 were used. An optimal ternary blend in terms of strength development and porosity reduction was selected for further detailed investigation. The properties of the optimal ternary assessed at its fresh state include; consistency, setting times, workability and temperature rise. While at its hardened state, compressive strength, sorptivity and microstructures were evaluated. The durability was studied in terms of resistance to sulfuric acid attack, sulfates attack and at high temperatures. The properties of the binders were also examined and their conformity to the relevant standards was confirmed. The results showed that the optimal ternary blend was 10% POFA and 10% MK. The ternary blend significantly improved the workability of mortar with minimal use of superplasticizer compared to MK binary blend. It was also discovered that while the MK binary blend increased the semi- adiabatic temperature by 7% compared to plain OPC, the ternary blend showed a reduction by 4%. Besides, the ternary blend was not only effective in offsetting the low compressive strength of POFA binary at early ages but also enhanced the long­term strength compared to MK, and POFA binary. The TGA and XRD data proved that the early strength improvement of the ternary blend was due to the high pozzolanicity of MK. Furthermore, the ternary blend exhibited superior performance over the MK binary blend and plain OPC in terms of resistance to magnesium sulphate attack and at high temperatures. Generally, the optimal ternary blend of OPC, MK and POFA showed better performance and can be used in construction particularly where the binary blends of either POFA or MK proved deficient. The combined use of POFA and MK would contribute not only to the development of environmental friendly material but also the reduction of CO2 emission.

Page 5: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

vi

ABSTRAK

Penggantian sebahagian simen Portland dengan bahan pozolana dalam konkrit dapat mengurangkan masalah pencemaran alam sekitar disebabkan oleh pembebasan CO2 semasa pengeluaran simen. Pozolana juga meningkatkan sifat mekanikal dan menjamin pengeluaran konkrit dengan kos yang minima. Kelebihan ini meningkatkan penggunaan pozolana sebagai satu inovasi dalam industri pembinaan Walaupun abu kelapa sawit (POFA) sebagai bahan pozolana meningkatkan kekuatan dan ketahanlasakan konkrit bagaimanapun perkembangan kekuatan awal adalah kurang disebabkan rendah sifat pozolananya. Sebaliknya Metakolin (MK.) meningkatkan perkembangan kekuatan awal tetapi mengurangkan kebolehkerjaan dan meningkatkan haba penghidratan yang boleh menimbulkan masalah ketahanlasakan konkrit. MK juga tidak tahan kepada persekitaran bermagnesium sulfat dan pada suhu yang tinggi. Oleh itu skop penggunaan adunan penduaan POFA dan MK di dalam industri pembinaan adalah terhad. Walau bagaimana pun, penggunaan bersama bahan ini secara sinergi dalam adunan pertigaan mempunyai potensi mengatasi kelemahan-kelemahan tersebut. Oleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap sifat simen motar. Sebanyak 17 jenis campuran adunan penduaan dan pertigaan POFA dan MK yang berbeza dengan penggantian sehingga 30% mengikut berat dan nisbah air-simen 0.55 telah dibuat. Campuran yang optima adunan pertigaan berpandukan peningkatan kekuatan dan pengurangan keporosan telah dipilih untuk kajian selanjutnya. Sifat campuran optima simen motar semasa basah dikaji dari aspek konsistensi, masa set, kebolehkerjaan dan peningkatan suhu. Sementara dalam keadaan keras, kekuatan mampatan, tahap serapan dan mikrostruktur adunan diuji. Ketahanlasakan diuji terhadap rintangan asid sulfurik, serangan sulfat dan pada suhu tinggi. Ciri-ciri pelekat juga dikaji dan pematuhannya kepada piawaian yang berkaitan dibuktikan. Keputusan menunjukkan campuran pertigaan optima adalah 10% POFA dan 10% MK. Aduan pertigaan didapati meningkatkan kebolehkerjaan mortar dengan penggunaan superpemplastik yang sedikit berbanding adunan penduaan MK. Kajian menunjukkan adunan penduaan MK meningkatkan suhu separuh adiabatik sebanyak 7% berbanding campuran simen (OPC) manakala adunan pertigaan menunjukkan pengurangan sebanyak 4%. Selain daripada itu, adunan pertigaan bukan sahaja mengatasi masalah kekuatan awal yang rendah bagi adunan penduaan POFA tetapi meningkatkan kekuatan jangka panjang berbanding adunan penduaan MK dan POFA. Data TGA dan XRD membuktikan peningkatan kekuatan awal adunan pertigaan disebabkan oleh sifat pozolana MK. Tambahan pula adunan pertigaan memperlihatkan prestasi yang lebih baik berbanding adunan penduaan dan campuran OPC terhadap serangan sulfat dan suhu yang tinggi. Secara keseluruhan adunan pertigaan yang optima OPC, MK dan POFA menunjukkan prestasi yang lebih baik dan boleh digunakan dalam pembinaan terutamanya bagi mengatasi kelemahan adunan penduaan MK dan POFA. Kombinasi POFA dan MK bukan sahaja dapat membangunkan bahan yang mesra alam sekitar tetapi juga dapat mengurangkan kadar pembebasan CO2.

Page 6: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xvi

LIST OF FIGURES xviii

LIST OF SYMBOLS xxiv

LIST OF ABBREVIATIONS xxvi

LIST OF APPENDICES xxviii

INTRODUCTION 1

1.1 Background to the Study 1

1.2 Research Problem 3

1.3 Aim and Objectives 4

1.4 Scope of the Study 5

1.5 Significance of the Study 6

I

Page 7: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

viii

1.6 Thesis Organization 7

2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Description of Binders 10

2.2.1 Portland Cement 10

2.2.2 Metakaolin 11

2.2.3 Palm Oil Fuel Ash 13

2.3 Hydration and Reaction Characteristics of Cement

and Pozzolans 15

2.3.1 Portland Cement 15

2.3.2 Metakaolin 17

2.3.3 Palm Oil Fuel Ash 19

2.4 Fresh and Hardened Properties of Binary

Blended Concrete 20

2.4.1 Fresh Properties 20

2.4.2 Heat of Hydration 22

2.4.3 Strength Development 24

2.5 Durability Properties of Binary Blended Concrete 27

2.5.1 Porosity 28

2.5.2 Sorptivity 30

2.5.3 Resistance to Sulphuric Acid Attack 32

2.5.3.1 Effect of Metakaolin 33

2.5.3.2 Effect of Palm Oil Fuel Ash 34

2.5.4 Resistance to Sulphate Attack 35

2.5.4.1 Effect of Metakaolin 37

2 5.4.2 Effect of Palm Oil Fuel Ash 38

Page 8: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

IX

2.5.5 Resi stance to El evated Temperature 40

2.5.5. lEffect o f Metakaolin 41

2.5.5.2 Effect of Palm Oil Fuel Ash 41

2.6 Fresh and Hardened Properties of Ternary Concrete 42

2.6.1 Fresh Properties 42

2.6.2 Heat of Hydration 43

2.6.3 Strength Development 44

2.7 Durability of Ternary Concrete 49

2.7.1 Sorptivity 50

2.7.2 Resistance to Chemical Attack 54

2.7.3 Resi stance to El evated Tem peratures 5 7

2.8 Summary of Literature Review 58

3 RESEARCH METHODOLOGY 61

3.1 Introduction 61

3.2 Experimental Programme 61

3.3 Materials 63

3.3.1 Binders 63

3.3.2 Fine Aggregate 63

3.3.3 Water 64

3.3.4 Chemical Admixture 64

3.4 Preparation of Binders 64

3.4.1 Production of Palm Oil Fuel Ash 64

3.4.2 Production of Metakaolin 66

3.4.2. IThermogravimetric and Differential

Thermal Analysis (TG/DTA) 67

3.4.2 2 Calcination of Kaolin 68

Page 9: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

X

3.4.2 3 X-Ray Diffraction (XRD) and Fourier

Transformed Infrared (FTIR) 68

3.4.2.4 Pozzolanicity 68

3.5 Characterization of Material 69

3.5.1 Physical Properties 69

3.5.1.1 Specific Gravity and Loss on Ignition 69

3.5.1.2 Particle Size Distribution 69

3.5.1.3 Specific Surface Area 70

3.5.2 Chemical Compositions 70

3.5.3 Mineralogical Compositions and

Morphological Features of Binders 71

3.5.3.1 X-Ray Diffraction (XRD) 71

3.5.3 2 Fourier Transformed Infrared (FTIR) 72

3.5.3 3 Field Emission Scanning Electron

Microscopy (FESEM) 73

3.5.5 Pozzolanic Activity 73

3.5.5.1 Strength Activity Index 73

3.5.5 2 The Modified Chappelle’s Test 74

3.5.6 Characterization of Fine Aggregate 75

3.6 Mix Proportions of Mortar 75

3.7 Preparation of Specimens 77

3.7.1 Mixing 77

3.7.2 Casting and Curing 78

3.8 Testing: Fresh Properties 80

3.8.1 Consistency 80

3.8.2 Setting Times 81

3.8.3 Temperature Rise during Hydration 82

Page 10: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

xi

3.9 Testing: Hardened Properties 83

3.9.1 Compressive Strength 83

3.9.2 Flexural Strength 84

3.9.3 Porosity 84

3.9.4 Sorptivity 85

3.10 Testing: Durability 87

3.10.1 Sulphate Resistance 87

3.10.2 Acid Resistance 88

3.10.3 Elevated Temperature Endurance 89

3.11 Microstructures 90

3.11.1 X-Ray Diffraction (XRD) 91

3.11.2 Fourier Transformed Infrared (FTIR) Analysis 91

3.11.3 Thermogravimetry Analysis (TGA) 93

3.11.4 Field Emission Scanning Electron Microscopy

(FESEM) 94

4 MATERIAL CHARACTERIZATION AND

PROPERTIES OF POFA AND METAKAOLIN

BLENDED MIX 95

4.1 Introduction 95

4.2 Optimization of Calcination Temperature and Time

for Converting Kaolin to Metakaolin 96

4.2.1 Differential and Thermogravimetry Analysis 96

4.2.2 X-Ray Diffraction 97

4.2.3 Fourier Transformed Infrared Analysis 98

4.2.4 Strength Activity Index 100

4.2.5 Chappelles Test Results 101

Page 11: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

xii

4.3 Characterization of Material 102

4.3.1 Chemical Compositions of Binders 102

4.3.2 Fineness: Particle Size Distribution of

Binders 103

4.3.3 Particle Morphologies of Binders 104

4.3.4 Specific Gravity and Surface Area 105

4.3.5 Mineral Compositions of Binders 106

4.3.6 Pozzolanicity 108

4.3.7 Particle Size Distribution and Other Physical

Properties of Fine Aggregate 108

4.4 Properti es of B1 ended M ortars 109

4.4.1 Flow/ Workability of Mortar 110

4.4.2 Compressive Strength of Mortar 111

4.4.3 Flexural Strength of Mortar 113

4.4.4 Porosity of Mortar 115

4.4.5 Compressive Strength-Porosity Relationship 116

4.5 Summary of Results 117

5 FRESH AND HARDENED PROPERTIES AND

MICROSTRUCTURE OF POFA AND

METAKAOLIN BLENEDED MORTARS 119

5.1 Introduction 119

5.2 Fresh Properties 119

5.2.1 Consistency of Plain and Blended Pastes 120

5.2.2 Setting Times of Plain and Blended Pastes 121

5.2.3 Mortar Flow/Workability 122

5.2.4 Hydration Temperature Rise 124

Page 12: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

5.3 Hardened Properties o f Mortars 125

5.3.1 Compressive Strength 126

5.3.2 Relative Compressive Strength 128

5.3.3 Sorptivities of Mortars 131

5.3.4 Relationship between Compressive Strength

and Sorptivity 132

5.4 Microstructures of Blended Mortars 132

5.4.1 Thermogravimetry Analysis 134

5.4.1.1 Calcium Hydroxide Content 135

5.4.1.2 Calcium Hydroxide Depletion 138

5.4.2 X-Ray Diffraction 141

5.5 Summary of Results 144

6 DURABILITY OF POFA AND METAKAOLIN

BLENDED MORTARS 146

6.1 Introduction 146

6.2 Effect of Elevated Temperatures 146

6.2.1 Residual Compressive Strength 147

6.2.2 Ultra Pulse Velocity 149

6.2.3 X-Ray Diffraction Analysis 151

6.2.4 Fourier Transformed Analysis 154

6.2.5 Field Emission Scanning Electron

Microscopy 157

6.3 Sulphuric Acid Resistance 159

6.3.1 Compressive Strength Loss 159

6.3.2 Residual Mass 161

6.3.3 Relationship between Residual Compressive

Page 13: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

xiv

Strength and Residual Mass 162

6.3.4 X-Ray Diffraction Analysis 164

6.3.5 Fourier Transformed Infrared Analysis 165

6.4 Sulphate Resistance 167

6.4 .1 Compressive Strength of Mortars Exposed to

MgSO-t and Na2SO.| Solutions 167

6.4.2 Expansion of Mortars Exposed to MgSC>4

and Na2SO.t Solutions 170

6.4.3 X-Ray Diffraction 173

6.4.4 Fourier Transformed Infrared Analysis 176

6.5 Summary of Results 178

7 CONCLUSIONS AND RECOMMENDATIONS 180

7.1 Introduction 180

7.2 Conclusions 180

7.2.1 On Characterization of Metakaolin and

POFA 181

7.2.2 On Optimum Replacement level of

Ternary Mix 181

7.2.3 On Fresh Properties of Optimized

Ternary Mortar 182

7.2.4 On Hardened Properties of Optimized

Ternary Mortar 182

7.2.5 On Durability of Optimized Ternary

Mortar 183

7.3 Recommendations for Further Investigations 184

Page 14: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

REFERENCES

Appendices A-C

186

204-209

x v

Page 15: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

xvi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Typical oxide compositions of metakaolin 12

2.1 Requirements of metakaolin as pozzolan (ASTM C 618) 12

2.3 Oxide compositions of palm oil fuel ash found within

literature 14

2.4 Physical properties of Portland cement and palm oil fuel ash 15

2.5 Effect of POFA on workability and setting times of concrete 22

2.6 Pore volume and % of pores of paste containing metakaolin 30

2.7 Sorptivity of bagasse ash concrete 32

2.8 Consistency and setting times of binary and ternary cement

paste 43

2.9 Mix composition in weight (%) of blended cements 48

2.10 Test results for RCPT, sorptivity and water permeability 52

2.11 The dry mix compositions of blended cement 58

2.12 Summary of researches extracted from literature on ternary

blends of pozzolanic materials other than that of

POFA and MK 60

3.1 Mix proportions used for optimization (first stage) 76

3.2 Mix proportions used at second stage 77

3.3 Specimens cast for optimization (first stage) per mix 79

3.4 Specimens cast for testing at the second stage per mix 79

3.5 Wave number of functional groups 92

Page 16: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

xvii

4.1 Summary of IR Bands of Kaolin and calcined kaolin 100

4.2 Chemical compositions of binders 103

4.3 Specific gravity and surface area of binders 106

4.4 Pozzolanicity of POFA and metakaolin 108

4.5 Physical properties of fine aggregate 109

5.1 Flow and superplasticizer (sp) content o f the mixes 123

5.2 Tim e-temperature history of mixes 125

5.3 Compressive strengths of blended mortars at different

water binder ratio and curing ages 127

5.4 Calcium hydroxide content of mortars 137

5.5 Calcium hydroxide depleted at different water binder ratio 140

6 .1 Quality of concrete as a function of UPV 149

6.2 Residual compressive strengths of mortar after exposure to

sulphate 170

6.3 Expansion of mortars after being exposed to sulphate 173

Page 17: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

xviii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Heat evolution of concrete mixed with ground POFA 24

2.2 The effect of metakaolin on the compressive strength

at various ages 26

2.3 Relative strength of HSGC with different ultrafine

POFA content 27

2.4 Porosity of HSGC with different ultrafine POFA content 30

2.5 Weight loss for mortar immersed in 2.5% H2SO4 33

2.6 Weight loss for mortar immersed in 1% HC1 34

2.7 Reduction of compressive strength in 2% sulphuric acid 34

2.8 Effect of solution concentration and metakaolin

Replacement levels on the expansion and reduction in

compressive strength of mortar exposed to MgSO.* solutions 38

2.9 Expansion of high strength concrete due to 10% MgSO.j

solution 39

2 .1 0 Compressive strength of high strength concrete cured in

water and immersed in a 10 % MgSO-t solution for 180 days 40

2.11 Percentage drop in cumulative heat of hydration of ternary

PC-MK-PFA Blends at 20% replacement and at 120 hours

relative to PC 44

2.12 Compressive strength developments in concrete effect of

Page 18: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

xix

silica fume and Low lime fly ash 46

Compressive strength of Portland

cement-fly ash- silica fume concretes 46

Influence of varying GGBS content at 0%, 10%,

and 20% MK 47

Variation of compressive strength with time for different

cement mortars 48

Compressive strength of hardened specimens made from

PC and MK with/without RHA 48

Bulk density of hardened specimens made from

PC and MK with/without RHA 49

Total porosity of hardened specimens made from

PC and MK with/without RHA 49

Sorptivity with age at 10 %, 20%, 30% and 40% cement

replacement for water-cured concrete 51

Effect of using the binary and ternary blends of

cementitious materials on chloride permeability 53

Effect of using the binary and ternary blends of

cementitious materials on sorptivity 53

Effect of using the binary and ternary blends of

cementitious material on water absorption 54

Effect of silica fume and fly ash on sulphate resistance

(A STM C1012) 56

Weight losses due to immersion in 5% sulphuric acid

solution (a) RHA concrete (b) MK concrete

(c) RHA+MK concrete 56

Expansion of mortar bars containing 20% HCFA

Page 19: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

2.26

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3 .11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

4.1

4.2

4.3

and increasing levels of slag 57

Thermal shock resistance of control and blended cement

paste 58

Research methodology flow chart 62

Modified Loss Angeles grinding machine 65

Grinding curve for POFA 66

KM 40 Kaolin 67

Schematic structure o f kaolinite 67

X-ray fluorescence spectrometer 71

X-ray diffractometer 72

FTIR spectrometer 72

The modified Chappelle’s Test apparatus 74

Mortar mixer 78

Typical casting operation of mortar specimens 80

Mortar flow test 81

Setting time test set up using V1CAT apparatus 82

Temperature of hydration test set-up 83

Porosity test set-up 85

Sorptivity test set-up 87

Furnace 90

Temperature exposure regimes 90

Thermogravimetry Instrument 94

Thermogravimetry and differential thermal analysis for

kaolin 97

X-ray diffraction patterns of kaolin and calcined kaolin at

different temperatures 98

IR spectra of kaolin and calcined kaolin at different

Page 20: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

xxi

temperatures 99

4.4 Strength activity indexes of kaolin and calcined kaolin at

different temperatures 1 0 1

4.5 Chemical reactivity of calcined kaolin 102

4.6 Particle size distributions of binders 104

4.7 FESEM micrographs o f OPC, POFA and metakaolin 105

4.8 X-ray diffraction patterns of (a) OPC, (b) POFA and

(c) metakaolin 107

4.9 Particle size distribution of fine aggregate 109

4.10 Flow of plain and blended mortars 111

4 . 1 1 Compressive strength and relative strength of blended

mortars 113

4.12 Flexural strength of plain and blended mortars 114

4.13 Compressive strength-flexural strengths relationship 115

4.14 Porosity o f plain and blended mortars 116

4.15 Compressive strength-porosity relation of blended mortar 117

5.1 Standard Consistencies of pastes 121

5.2 Setting times of pastes 122

5.3 Fleat of hydration temperature of mixes 125

5.4 Compressive strengths of mortars at different

water to binder ratios (a) 0.55 (b) 0.35 128

5.5 Relative compressive strength of mortars at

different water to binder ratios (a) 0.55 (b) 0.35 130

5.6 Sorptivities of plain and blended mortars at

different water to binder ratios 132

5.7 Relationship between compressive strength and sorptivity

of mortars 133

Page 21: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

5.8 TG/DTG curves for plain and blended mortars (w/b = 0.35)

after 7 days 134

5.9 TG/DTG curves for plain and blended mortars (w/b = 0.35)

after 180 days 135

5.10 Calcium hydroxide content for w/b ratio of 0.55 137

5.11 Calcium hydroxide content for w/b ratio of 0.35 138

5.12 Calcium hydroxide depleted for w/b of 0.55 140

5.13 Calcium hydroxide depleted for w/b of 0.35 141

5.14 X-ray diffraction patterns of mortars at 7 days 142

5.15 X-ray diffraction patterns of mortars at 28 days 142

5.16 X-ray diffraction patterns of mortars at 90 days 143

5.17 X-ray diffraction patterns of mortars at 180 days 143

6 . 1 Compressive strength and residual compressive

strength of blended mortars at different temperatures 148

6.2 Pulse velocities and residual pulse velocities of

blended mortars at different temperatures 150

6.3 Relationship between compressive strength and

pulse velocity of mortars 151

6.4 XRD patterns of mixes at ambient temperature 153

6.5 XRD patterns of mixes at 400°C 153

6.6 XRD patterns of mixes at 800°C 154

6.7 FTIR spectra of mixes at ambient temperature 155

6.8 FTIR spectra of mixes at 400°C 156

6.9 FTIR spectra of mixes at 800°C 156

6 .10 FESEM images of plain OPC mix at different temperatures 157

6 .11 FESEM images of 20PF mix at different temperatures 158

6.12 FESEM images of 20MK mix at different temperatures 158

xxii

Page 22: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

6.13

6.14

6 15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

XXUI

FESEM images of ternary mix at different temperatures 158

Compressive strengths of mortars after immersion in

3% H2SO4 solution 158

Residual compressive strengths of mortars after

immersion in 3% H2SO4 solution 161

Residual mass of mortars after immersion in 3% H2SO4 162

Relationship between residual compressive strength and

residual mass of mortars exposed to H2SO4 solution 163

XRD patterns of plain and blended mortars after 180 days

in 3% H2SO4 solution 164

XRD patterns of plain and blended mortars after 180 days

in limewater 165

FTIR spectra of plain and blended mortars after 180 days in

limewater 166

FTIR spectra of plain and blended mortars after 180 days in

3% H2S 0 4 167

Residual compressive strength of mortars in Na2S0 4 solution 169

Residual compressive strength of mortars in MgS(>4 solution 169

Expansion of plain and blended mortars in Na2SC>4 and

MgSC>4 solution 172

XRD patterns of plain and blended mortar after 180 days

in water, Na2SC>4 and MgSC>4 solution 175

FTIR spectra of plain and blended mortars after 180 days

in Na2SC>4 and MgSC>4 solution 177

Page 23: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

xxiv

LIST OF SYMBOLS

A - Cross-sectional area of specimen

A - Angstrom

°c - Degree Celsius

d - Density of water

D50 - Median particle size

fm - Compressive strength

Hr - Hour(s)

H* - Hydrogen Ion

/ - Water absorption

Kv - Kilovolt

KBr - Potassium bromide

MPa - Mega Pascal

Mi - Initial mass of specimen

M„ - Mass of specimen at n days

m, - Change in mass due to water absorption of specimen

n - Age in days

P - Total maximum load

Pr Porosity

S - Second

Page 24: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

X XV

5 - Sorptivity

Sf - Flexural strength

T - Time

Vl, \>2 - symmetric stretches vibration mode

Vj - antisymmetric stretches vibration mode

vp - variabl e-pressure

WA - Weight of saturated specimen in air

WD - Weight of oven-dried specimen

Ww - Weight of saturated specimen in water

pm - Micrometer

> - Greater than or equal to

< . less than or equal to

9 - Theta

X - Lambda

0 - Diameter

Page 25: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

XXVI

LIST OF ABBREVIATIONS

ANOVA - Analysis of Variance

ASTM - American Society for Testing and Materials

BA - Bagasse Ash

BET - Brunauer Emmett Teller

BS - British Standard

CaC 03 - Calcium Carbonate

Ca(OH)2 - Calcium Hydroxide

CSH - Calcium Silicate Hydrate

DSC - Differential Scanning

DTA - Differential Thermal Analysis

FESEM - Field Emission Scanning Electron Microscopy

FA - Fly Ash

FTIR - Fourier Transformed Infrared

GGBS - Ground Granulated Blast Slag

GLM - General Linear Model

GPOFA - Ground Palm Oil Fuel Ash

HCFA - High Calcium Fly Ash

HCl - Hydrochloric Acid

HSGC - High Strength Green Concrete

LOI - Loss on Ignition

Page 26: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

MK - Metakaolin

N 2 - Nitrogen

OPC - Ordinary Portland Cement

PC - Portland Cement

PFA - Pulverized Fly Ash

POFA - Palm Oil Fuel Ash

RHA - Rice Husk Ash

RILEM - International Union of Laboratories and Experts

Construction Materials, Systems and Structures

SCC - Self-Compacting Concrete

SF - Silica Fume

sp - Superplasticizer

TGA - Thermogravimetric Analysis

UPV - Ultrasonic Pulse Velocity

w/b - Water to Binder Ratio

XRD - X-Ray Diffraction

Page 27: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Sorptivity Calculation Example 204

B Determination of Ca(OH)2 Content and

amount of Ca(OH)2 Depleted in Blended Sample 205

C List of Publications 208

Page 28: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

CHAPTER 1

INTRODUCTION

1.1 Background to the Study

Concrete is second to water as the most widely used material in the globe

(Mehta and Monteiro, 2006). The superior niche of concrete in the construction

industry over other materials, such as steel and timber is undoubtedly attributed to its

strength, durability, versatility nature and relative cheapness. However, concrete

constitutes Portland cement as its most important component because of its binding

characteristic but the key contributor to the embodied CO2.

Cement production contributes to global warming due to CO2 emission. For

every one ton of Portland cement produced, an average of 0.87 ton of CO2 is emitted

to the atmosphere (Saca and Georgescu, 2014). In fact, due to the bulky annual

global cement production output; which had reached 3737 metric ton (Mt) in the year

2012 and projected to increase to 4368 Mt by the year 2016 (Armstrong, 2013),

cement production accounts for 5 to 8% of the total anthropogenic CO2 emitted in

the planet (Femandez-Carrasco et al., 2012). However, the use of pozzolanic

materials to partially substitute Portland cement in concrete has been recognized as

one of the sustainable approaches for reducing CO2 emission that arise from cement

production (Saca and Georgescu, 2014).

Page 29: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

2

Pozzolanic materials are siliceous, and aluminous materials that react with

calcium hydroxide liberated during cement hydration to produce secondary

cementitious compounds that enhance strength and durability of concrete (Grist et

al., 2013). The commonly used pozzolanic materials include; fly ash, silica fume,

slag, metakaolin (MK), rice husk ash, palm oil fuel ash (POFA) and natural

pozzolans. Apart from the benefits of reducing CO2 emission as well as performance

improvement of concrete, the utilization of these pozzolanic materials; which are

mostly industrial wastes, helps in reducing not only the environmental burden related

to their disposal but also the cost of concrete production. In palm oil producing

countries such as Malaysia, Indonesia and Thailand, POFA is generated in huge

quantity from palm oil mills as waste with a significant amount of the ash disposed

off to landfills. For instance, according to Chandara et al. (2012), in 2009 alone, up

to 3 million tons of POFA was generated in Malaysia and with the growth of palm

oil industry, more waste generation should be anticipated and hence increase in

volume of waste to landfills.

In an attempt to reduce the environmental impact of disposing POFA to

landfills and cement production, as well as to produce affordable but high-

performance cement based materials, considerable effort of research into the use of

POFA as pozzolanic material is currently underway. POFA has been found to be a

useful pozzolanic material that improves the performance o f concrete (Awal and

Hussin, 1997). On the other hand, due to the global abundance of kaolin reserve

coupled with the prospective shortage of traditional pozzolanic materials (fly ash,

slag and silica fume), the use of MK as pozzolan has also been investigated

(Vejmelkova et al., 2010). Metakaolin is produced from the thermal treatment of

kaolinite clay or paper sludge at a controlled temperature of 500 to 800°C (Frias et

al., 2008a and Kadri et a l 2011).The incorporation of MK in the production of

concrete enhances its mechanical properties and durability performance (Siddique

and Klaus, 2009; Moser et al., 2010; Shekarchi et al., 2010). Moreover, the use of

MK is also environmentally friendly with respect to reduction in CO: emission to the

atmosphere by reducing the Portland cement consumption (Guneyisi et al., 2008;

Mermerda§ et al., 2012).

Page 30: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

3

However, due to the variability in the properties of pozzolanic materials and

their different reaction patterns with the cement hydration products, the influence of

each of these materials on the properties of concrete varies. While some materials are

deficient, others exhibit contrasting influences on the properties of concrete. These

limit the extent to which each pozzolanic material can substitute cement to achieve

the desired concrete property. In view of the need to increase the level of alternatives

to cement and also produce concrete of high performance, the use of ternary blend

(combining two pozzolanic materials to partially replace Portland cement) utilizing

their synergistic interactions has currently become a common practice. To date,

intensive researches on the use of ternary blends such as MK and fly ash by Moser et

al. (2010), MK and slag by Khatib and Hibbert (2005), and POFA and fly ash by

Rukzon and Chindaprasirt (2009) have been conducted Yet there has not been

detailed study on the ternary blend of MK and POFA. It is, therefore, the intent of

this study to investigate the effect of a ternary blend of MK and POFA on the

properties of cement mortar.

1.2 Research Problem

Intensive researches on the use of pozzolanic materials have been undertaken

over an extended period, and the benefits of using binary blends o f POFA and

metakaolin (MK) are widely established (Awal and Hussin, 1997; Bai et al., 1999;

Kroehong et al., 2011; Kadri et al., 2011; Megat Johari et al.. 2012; Cassagnabere et

al., 2013). It is known that MK improves early strength development,

microstructures and some durability properties. But it was shown to reduce

workability (Bai et al., 1999; Cassagnabere et al., 2013) as well as to increase heat of

hydration (Bai and Wild, 2002; Kadri et al., 2011) which could be detrimental to the

durability of mainly mass concrete. Moreover, metakaolin was found to be deficient

in resisting magnesium sulphate attack (Lee et al., 2005) and elevated temperatures

(above 400 °C) (Poon et al., 2003; Nadeem et a l, 2014). On one hand, the use of

POFA showed improvement in reducing heat of hydration, in resistance to sulphate

attack and elevated temperatures but on the other hand, it is deficient in early

Page 31: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

4

strength development (Tangchirapat et al., 2007). The deficiencies of these materials

when singly used may restrict the scope of their use in construction industry. For

instance, due to the slow strength development characteristic of POFA in concrete,

POFA may not be a suitable material in precast industry or where early strength

development is paramount. Also, due to the increase in heat of hydration, the use of

metakaolin in mass concrete may be a disadvantage. While there are abundant

information on the effects of POFA and MK as binary, limited information exists on

their combining influence in ternary blends. Therefore, the potential improvement in

the properties of the mortar due to the combining effect of POFA and MK through

their synergistic interaction needs to be studied. The study may consequently lead to

the development of environmental friendly cement-based materials with a wider

scope of applications in construction industry.

1.3 Aim and Objectives

The aim of the study is to evaluate the combined effects of metakaolin (MK)

and palm oil fuel ash (POFA) as pozzolanic materials on the performance of cement

mortar. The aim is to be achieved through the following objectives:

(i) To characterize the physical and chemical properties of POFA and MK used

in the study.

(ii) To determine the optimum replacement levels of POFA and MK ternary

blended cement mortar.

(iii) To evaluate the fresh and hardened properties as well as microstructures of

the optimized POFA and MK ternary blended cement mortar.

Page 32: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

(iv) To investigate the durability performance of the optimized POFA and MK

ternary blended cement mortar exposed to hostile environments.

1.4 Scope of the Study

This study was purely experimental in nature and it focused on examining the

effects of combining MK and POFA on the properties of cement mortar. In the

beginning, material characterizations such as physical properties, chemical and

mineralogical compositions that are essential for explaining how these may influence

the properties tested in mortar were carried out. In order to obtain the optimum

ternary blend, tests on the properties of various binary and ternary blended mixes

made with varying replacement levels limited up to 30% by weight and a constant

water binder ratio of 0.55 were also performed. The properties considered were

mortar flow as well as compressive strength, flexural strength and porosity after

water-cured for up to 90 days. The established optimum ternary blend was used for

the detail investigations on the fresh and hardened properties, microstructures and

durability. However, for the detailed study, different water to binder ratios of 0.55

and 0.35 were used for the production of mortar.

At fresh state, the setting times, standard consistency, flowability and

temperature of hydration of the optimized ternary blend were investigated while at

the hardened state only the compressive strength, sorptivity, microstructures and

durability properties for up to 6 months were considered The durability was assessed

in terms of resistance to magnesium and sodium sulphate attack, sulphuric acid

attack and elevated temperature. The microstructure was evaluated using the

Thermogravimetry Analysis (TGA), X-Ray Diffraction (XRD), Fourier Transformed

Infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM)

techniques.

Page 33: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

6

The series of tests conducted in this study are based on the procedures of

British Standards (BS), American Society for Testing and Materials (ASTM),

International Union of Laboratories and Experts in Construction Materials, Systems

and Structures (RILEM) and adopted methods in the literature reviewed. As these are

well established, this enabled comparison with related studies, with information on

their precision known.

In addition to compressive strength and sorptivity, the amount of Ca(OH)2

depleted was used as a variable for assessing the microstructure of the optimized

specimens at its hardened state. Meanwhile, residual compressive strength, residual

mass and expansion were used as parameters for measuring the resistance of

specimens to sulphuric acid, magnesium and sulphate attacks. The resistance to

elevated temperature was however, measured in terms of residual compressive

strength and ultrasonic pulse velocity (UPV). All the results were analyzed and

presented in the forms of graph and output from the XRD, TG/DTG and FTIR tests.

The findings were referred and compared with similar previous studies.

1.5 Significance of the Study

As this research study was aimed at gathering information on the use of

ternary blend from a systematic investigation, it can be useful for the development of

standard specifications for ternary blended system which are essential for their

practical application. It can also contribute to the development of environmental

friendly material that has a wide range of applications in construction industry. This

will be more beneficial for the palm oil producing countries like Malaysia, as waste

(POFA) from palm oil mills can be put to good use in addition to the environmental

benefit of solving disposal problems of POFA to landfills. The outcome of the study

can also provide the basis for further researches for better understanding of the

behaviour of a ternary blend of POFA and MK, which will ultimately increase

substance to the pool of existing knowledge.

Page 34: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

7

1.6 Thesis Organisation

Chapter 1 provides a general appraisal and the rationale for conducting this

research. Also, concise description of background problem, aim and objectives,

scope and limitations, and significance of study are presented in this chapter.

Chapter 2 describes the properties of Portland cement and pozzolanic

materials. The chapter also presents the review of previous studies on the effect of

binary and ternary blends on the properties of paste, mortar and concrete. Although,

there few or no literature available on the ternary blend o f palm oil fuel ash and

metakaolin, the benefits of ternary blends of other pozzolanic materials such as fly

ash and silica fume over their binary counterparts are also reviewed

Chapter 3 provides a detailed account of the materials and sample

preparation as well as the test methods used during the experimental work.

Subsequent chapters then present the results of these tests.

Chapter 4 examines the physical and chemical properties of Portland

cement, palm oil fuel ash and metakaolin. The results of the optimization of

calcination temperature of kaolin to produce metakaolin are also presented. In

addition, the results and discussions on the optimization of the ternary blend used for

the detailed study are presented in this chapter.

Chapter 5 covers the results and discussions on the fresh and hardened

properties, and microstructures of the optimized ternary blended mortar. The

properties of mortar studied in its fresh state include consistency, setting times,

workability/flow, and adiabatic temperature rise. At the hardened state, the

characteristics of mortar considered were compressive strength and sorptivity. The

relationship between sorptivity and compressive strength of mortar was also

highlighted in order to establish a correlation. Furthermore, the results of the

Page 35: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

8

microstmcture of blended mortars using the thermogravimetry Analysis (TGA) and

X-ray diffraction (XRD) are discussed.

Chapter 6 describes the results and discussions of the chemical attack

and elevated temperature tests on the blended mortars. Fourier transform infrared

(FTIR), X-ray diffraction (XRD) and field emission scanning electron microscopy

(FESEM) results of specimens after the attack are likewise presented in this chapter.

Chapter 7 shows the overall conclusions from this study and

recommendations for further researches.

Page 36: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

REFERENCES

Abdul Razak, H., Chai, H. and Wong, H. (2004). Near Surface Characteristics of

Concrete Containing Supplementary Cementing Materials. Cement and

Concrete Composites. 26(7), 883-889.

Abdullah, K., Hussin, M., Zakaria, F., Muhamad, R. and Abdul Hamid, Z. (2006).

POFA: A Potential Partial Cement Replacement Material in Aerated

Concrete. Proceedings o f the Sixth Asia-Pacific Structural Engineering and

Construction Conference. Kuala Lumpur. 132-140.

Ahmad, S. and Azad, A. K. (2013). An Exploratory Study on Correlating the

Permeability of Concrete with Its Porosity and Tortuosity. Advances in

Cement Research. 25(5), 288-294.

Al-Akhras, N. M. (2006). Durability of Metakaolin Concrete to Sulfate Attack.

Cement and Concrete Research. 36(9), 1727-1734.

Alsubari, B , Shafigh, P., Jumaat, M. Z. and Alengaram, U. J. (2014) Palm Oil Fuel

Ash as a Partial Cement Replacement for Producing Durable Self-

Consolidating High-Strength Concrete. Arabian Journal for Science and

Engineering. 39(12), 8507-8516.

Altwair, N. M„ Johari, M. a. M. and Hashim, S. F. S. (2011). Strength Activity Index

and Microstructural Characteristics of Treated Palm Oil Fuel Ash.

International Journal o f Civil & Environmental Engineering. 11(5), 100-107.

Ambroise, J., Maximilien, S. and Pera, J. (1994). Properties of Metakaolin Blended

Cements. Advanced Cement Based Materials. 1(4), 161-168.

Antoni, M. (2013). Investigation o f Cement Substitution by Blends o f Calcined Clays

and Limestone. ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE.

American Soceity for Testing and Materials. Standard Specification for Concrete

Aggregates. United State, ASTM C33C33M. 2013.

American Soceity for Testing and Materials. Standard Test Method for Compressive

Strength o f Hydraulic Cement Mortars (Using 2-In. Or [50-MmJ Cube

Specimens). United State, ASTM C109C109M. 2013.

Page 37: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

187

American Soceity for Testing and Materials. Standard Test Method for Materials

Finer Than 75-pM (No. 200) Sieve in Mineral Aggregates by Washing.

United State, ASTM Cl 17. 2013.

American Soceity for Testing and Materials. Standard Terminology Relating to

concrete and Concrete Aggregates. United State, ASTM Cl 25. 2013.

American Soceity for Testing and Materials. Standard Test Method for Density.

Relative Density (Specific Gravity), and Absorption o f Fine Aggregate.

United State, ASTM C l28. 2013.

American Soceity for Testing and Materials. Standard Specification fo r Portland

Cement. United State, ASTM C150C150M. 2012.

American Soceity for Testing and Materials. Standard Test Method fo r Amount o f

Water Required fo r Normal Consistency o f Hydraulic Cement Paste. United

State, ASTM C l87. 2011.

American Soceity for Testing and Materials. Standard Test Methods for Chemical

Resistance o f Mortars. Grouts. and Monolithic Surfacings and Polymer

Concretes. United State, ASTM C267. 2012.

American Soceity for Testing and Materials. Standard Practice fo r Mechanical

Mixing o f Hydraulic Cement Pastes and Mortars o f Plastic Consistency.

United State, ASTM C305. 2014.

American Soceity for Testing and Materials. Standard Test Methods for Sampling

and Testing Fly Ash or Natural Pozzolans fo r Use in Portland-Cement

Concrete. United State, ASTM C311C311M. 2013.

American Soceity for Testing and Materials. Standard Test Method for Flexural

Strength o f Hydraulic-Cement Mortars. United State, ASTM C348. 2014.

American Soceity for Testing and Materials. Standard Specification for Chemical

Admixtures for Concretes. United State, ASTM C494C494M. 2013.

American Soceity for Testing and Materials. Standard Test Method for Pulse

Velocity through Concrete. United State, ASTM C597. 2009.

American Soceity for Testing and Materials. Standard Specification for Coal Fly Ash

and Raw or Calcined Natural Pozzolan for Use in Concrete. United State,

ASTM C618. 2012.

American Soceity for Testing and Materials. Standard Test Method for Length

Change o f Hydraulic-Cement Mortars Exposed to a Sulfate Solution. United

State, ASTM C1012C1012M. 2013.

Page 38: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

188

American Soceity for Testing and Materials. Standard Performance Specification for

Hydraulic Cement. United State, ASTM Cl 157C1157M. 2011.

American Soceity for Testing and Materials. Standard Test Method for Flow o f

Hydraulic Cement Mortar. United State, ASTM C l437. 2013.

American Soceity for Testing and Materials. Standard Test Method fo r Measurement

o f Rate o f Absorption o f Water by Hydraulic Cement Concretes. United State,

ASTM C1585. 2013.

American Soceity for Testing and Materials. Standard test Methods fo r Specific

Gravity o f Soil Solids by Water Pycnometer. United State, ASTM D854.

2010.

Armstrong, T. (2013). International Cement Industry Trend. The Global Cement

Report l(f ' Edition.

Awal, A. and Hussin, M. (1999). Durability of High Performance Concrete

Containing Palm Oil Fuel Ash. Eighth International Conference on

Durability o f Building Materials and Components. 8 dbmc. 465-474

Awal, A. and Hussin, M. W. (1997). The Effectiveness of Palm Oil Fuel Ash in

Preventing Expansion Due to Alkali-Silica Reaction. Cement and Concrete

Composites. 19(4), 367-372.

Awal, A. and Shehu, I. (2013). Evaluation of Heat of Hydration of Concrete

Containing High Volume Palm Oil Fuel Ash. Fuel. 105 728-731.

Awal, A. and Hussin, M. W. (2011). Effect of Palm Oil Fuel Ash in Controlling Heat

of Hydration of Concrete. Procedia Engineering. 14, 2650-2657.

Aydin, S. (2008). Development of a High-Temperature-Resistant Mortar by Using

Slag and Pumice. Fire Safety Journal. 43(8), 610-617.

Aydin, S. and Baradan, B. (2007). Effect of Pumice and Fly Ash Incorporation on

High Temperature Resistance of Cement Based Mortars. Cement and

Concrete Research. 37(6), 988-995.

Badogiannis, E., Kakali, G. and Tsivilis, S. (2005). Metakaolin as Supplementary

Cementitious Material : Optimization of Kaolin to Metakaolin Conversion.

Journal o f Thermal Analysis and Calorimetry. 81(2), 457-462.

Badogiannis, E., Papadakis, V., Chaniotakis, E. and Tsivilis, S. (2004). Exploitation

of Poor Greek Kaolins: Strength Development of Metakaolin Concrete and

Evaluation by Means of< I> K</I>-Value. Cement and Concrete Research.

34(6), 1035-1041.

Page 39: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

189

Badogiannis, E. and Tsivilis, S. (2009). Exploitation of Poor Greek Kaolins:

Durability of Metakaolin Concrete. Cement and Concrete Composites. 31(2),

128-133.

Bai, J. and Wild, S. (2002). Investigation of the Temperature Change and Heat

Evolution of Mortar Incorporating Pfa and Metakaolin. Cement and Concrete

Composites. 24(2), 201-209.

Bai, J., Wild, S. and Sabir, B. (2002). Sorptivity and Strength of Air-Cured and

Water-Cured Pc-Pfa-M k Concrete and the Influence of Binder Composition

on Carbonation Depth. Cement and Concrete Research. 32( 11), 1813-1821.

Bai, J., Wild, S., Sabir, B. and Kinuthia, J. (1999). Workability o f Concrete

Incorporating Pulverized Fuel Ash and Metakaolin. Magazine o f Concrete

Research. 51(3), 207-216.

Bai, J., Wild, S., Ware, J. A. and Sabir, B. B (2003). Using Neural Networks to

Predict Workability of Concrete Incorporating Metakaolin and Fly Ash.

Advances in Engineering Software. 34(11-12), 663-669.

Bamaga, S., Ismail, M. A., Majid, Z., Ismail, M. and Hussin, M. (2013). Evaluation

of Sulfate Resistance of Mortar Containing Palm Oil Fuel Ash from Different

Sources. Arabian Journal for Science and Engineering. 38(9), 2293-2301.

Bassuoni, M. T. and Nehdi, M. L. (2007) Resistance of Self-Consolidating Concrete

to Sulfuric Acid Attack with Consecutive Ph Reduction. Cement and

Concrete Research. 37(7), 1070-1084.

Batis, G , Pantazopoulou, P., Tsivilis, S. and Badogiannis, E. (2005). The Effect of

Metakaolin on the Corrosion Behavior of Cement Mortars. Cement and

Concrete Composites. 27(1), 125-130.

Boukendakdji, O , Kadri, E.-H. and Kenai, S. (2012). Effects of Granulated Blast

Furnace Slag and Superplasticizer Type on the Fresh Properties and

Compressive Strength of Self-Compacting Concrete. Cement and Concrete

Composites. 34(4), 583-590.

Bredy, P , Chabannet, M. and Pera, J. (1988). Microstructure and Porosity of

Metakaolin Blended Cements. MRS Proceedings. 139, 431.

Brew, D R M and Glasser, F P (2005). Synthesis and Characterisation of

Magnesium Silicate Hydrate Gels. Cement and Concrete Research. 35(1), 85­

98.

Page 40: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

190

Brooks, J. J., Megat Johari, M. A. and Mazloom, M. (2000). Effect of Admixtures on

the Setting Times of High-Strength Concrete. Cement and Concrete

Composites. 22(4), 293-301.

British Standard Institution. Cement Composition; Specifications and Conformity

Criteria fo r Common Cements. London, BS EN 197-1. 2011.

Cassagnabere, F., Diederich, P., Mouret, M., Escadeillas, G. and Lachemi, M.

(2013). Impact of Metakaolin Characteristics on the Rheological Properties of

Mortar in the Fresh State. Cement and Concrete Composites. 37(0), 95-107.

Chandara, C., Mohd Azizli, K. A., Ahmad, Z. A., Saiyid Hashim, S. F. and Sakai, E.

(2012). Heat o f Hydration of Blended Cement Containing Treated Ground

Palm Oil Fuel Ash. Construction and Building Materials. 27(1), 78-81.

Chandara, C., Sakai, E , Azizli, K. a. M.. Ahmad, Z. A. and Hashim, S. F. S. (2010).

The Effect of Unburned Carbon in Palm Oil Fuel Ash on Fluidity of Cement

Pastes Containing Superplasticizer. Construction and Building Materials.

24(9), 1590-1593.

Chang, Z.-T., Song, X.-J., Munn, R and Marosszeky, M. (2005). Using Limestone

Aggregates and Different Cements for Enhancing Resistance of Concrete to

Sulphuric Acid Attack. Cement and Concrete Research. 35(8), 1486-1494.

Chatveera, B and Lertwattanaruk, P. (2009). Evaluation of Sulfate Resistance of

Cement Mortars Containing Black Rice Husk Ash. Journal o f Environmental

Management. 90(3), 1435-1441.

Chatveera, B. and Lertwattanaruk, P. (2011). Durability of Conventional Concretes

Containing Black Rice Husk Ash. Journal o f Environmental Management.

92(1), 59-66.

Chen, J.-K. and Jiang, M.-Q. (2009). Long-Term Evolution of Delayed Ettringite and

Gypsum in Portland Cement Mortars under Sulfate Erosion. Construction

and Building Materials. 23(2), 812-816.

Chen, M.-C., Wang, K. and Xie, L. (2013a). Deterioration Mechanism of

Cementitious Materials under Acid Rain Attack. Engineering Failure

Analysis. 27 272-285.

Chen, X., Wu, S. and Zhou, J. (2013b). Influence of Porosity on Compressive and

Tensile Strength of Cement Mortar. Construction and Building Materials.

40(0), 869-874.

Page 41: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

191

Chindaprasirt, P., Homwuttiwong, S. and Jaturapitakkul, C. (2007). Strength and

Water Permeability of Concrete Containing Palm Oil Fuel Ash and Rice

Husk-Bark Ash. Construction and Building Materials. 21(7), 1492-1499.

Chindaprasirt, P., Sinsiri, T., Kroehong, W. and Jaturapitakkul, C. (2013). Role of

Filler Effect and Pozzolanic Reaction of Biomass Ashes on Hydrated Phase

and Pore Size Distribution of Blended Cement Paste. Journal o f Materials in

Civil Engineering. 26(9).

Claisse, P., Cabrera, J. and Hunt, D. (2001). Measurement of Porosity as a Predictor

of the Durability Performance of Concrete with and without Condensed Silica

Fume Advances in Cement Research. 13(4), 165-174.

Cordeiro, G. C., Toledo Filho, R. D., Tavares, L. M , Fairbairn, E. D. M. R. and

Hempel, S. (2011). Influence of Particle Size and Specific Surface Area on

the Pozzolanic Activity of Residual Rice Husk Ash. Cement and Concrete

Composites. 33(5), 529-534.

Courard, L., Darimont, A., Schouterden, M., Ferauche, F., Willem, X. and

Degeimbre, R (2003). Durability of Mortars Modified with Metakaolin.

Cement and Concrete Research. 33(9), 1473-1479.

International Union of Laboratories and Experts in Construction. Absorption o f

Water by Concrete by Immersion under Vacuum: RILEM Technical

Reommendat ions fo r the Testing and Use o f Construction Materials. London,

CPC11.3. 1984.

De Lomas, M. G., De Rojas, M. S. and Frias, M. (2007). Pozzolanic Reaction of a

Spent Fluid Catalytic Cracking Catalyst in Fcc-Cement Mortars. Journal o f

Thermal Analysis and Calorimetry. 90(2), 443-447.

De Silva, P. and Glasser, F. (1990). Hydration of Cements Based on Metakaolin:

Thermochemistry. Advances in Cement Research. 3(12), 167-177.

De Weerdt, K., Kjellsen, K., Sellevold, E. and Justnes, H. (2011). Synergy between

Fly Ash and Limestone Powder in Ternary Cements. Cement and Concrete

Composites. 33(1), 30-38.

Demirel, B and Kele§temur, O. (2010). Effect of Elevated Temperature on the

Mechanical Properties of Concrete Produced with Finely Ground Pumice and

Silica Fume. Fire Safety Journal. 45(6), 385-391.

Elkhadiri, I., Palacios, M. and Puertas, F. (2009). Effect of Curing Temperatura on

Hydration Process of Different Cement. Ceramics-Silikaty. 53(2), 65-75.

Page 42: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

192

Fernandez-Carrasco, L., Torrens-Martin, D. and Martinez-Ramirez, S. (2012).

Carbonation of Ternary Building Cementing Materials. Cement and Concrete

Composites. 34(10), 1180-1186.

Fernandez-Carrasco, L. and Vazquez, E. (2009). Reactions of Fly Ash with Calcium

Aluminate Cement and Calcium Sulphate. Fuel. 88(9), 1533-1538.

FriAs, M. and Cabrera, J. (2000). Pore Size Distribution and Degree of Hydration of

Metakaolin-Cement Pastes. Cement and Concrete Research. 30(4), 561-569.

FriAs, M. and Cabrera, J. (2001). Influence of Mk on the Reaction Kinetics in

Mk/Lime and Mk-Blended Cement Systems at 20°C. Cement and Concrete

Research. 31(4), 519-527.

FriAs, M., De Rojas, M. I. S. and Cabrera, J. (2000). The Effect That the Pozzolanic

Reaction of Metakaolin Has on the Heat Evolution in Metakaolin-Cement

Mortars. Cement and Concrete Research. 30(2), 209-216.

FriAs, M., De Rojas, M. S., Rodriguez, O , Jimenez, R. G. and De La Villa, R V.

(2008a). Characterisation of Calcined Paper Sludge as an Environmentally

Friendly Source of Metakaolin for Manufacture of Cementitious Materials.

Advances in Cement Research. 20(1), 23-30.

Frias, M., Garcia, R., Vigil, R. and Ferreiro, S. (2008b). Calcination of Art Paper

Sludge Waste for the Use as a Supplementary Cementing Material. Applied

Clay Science. 42( 1), 189-193.

Gadsden, J. A. (1975). Infrared Spectra o f Minerals and Related Inorganic

Compounds. Butterworths, London. 46-215.

Ganesan, K., Rajagopal, K. and Thangavel, K. (2007). Evaluation of Bagasse Ash as

Supplementary Cementitious Material. Cement and Concrete Composites.

29(6), 515-524.

Ganjian, E. and Pouya, H. S. (2009). The Effect o f Persian Gulf Tidal Zone Exposure

on Durability of Mixes Containing Silica Fume and Blast Furnace Slag.

Construction and Building Materials. 23(2), 644-652.

Garas, V. and Kurtis, K. (2008). Assessment of Methods for Optimising Ternary

Blended Concrete Containing Metakaolin. Magazine o f Concrete Research.

60(7), 499-510.

Gesoglu, M., Guneyisi, E. and Ozbay, E. (2009). Properties of Self-Compacting

Concretes Made with Binary, Ternary, and Quaternary Cementitious Blends

Page 43: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

193

of Fly Ash, Blast Furnace Slag, and Silica Fume. Construction and Building

Materials. 23(5), 1847-1854.

Grist, E. R., Paine, K. A., Heath, A., Norman, J. and Pinder, H. (2013). Compressive

Strength Development of Binary and Ternary Lime-Pozzolan Mortars.

Materials & Design. 52(0), 514-523.

Guneyisi, E. and Gesoglu, M. (2008). Properties of Self-Compacting Mortars with

Binary and Ternary Cementitious Blends of Fly Ash and Metakaolin.

Materials and Structures. 41 (9), 1519-1531.

Guneyisi, E., Gesoglu, M., Algin, Z. and Mermerda§, K. (2014). Optimization of

Concrete Mixture with Hybrid Blends of Metakaolin and Fly Ash Using

Response Surface Method. Composites Part B: Engineering. 60 707-715.

Guneyisi, E., Gesoglu, M. and Mermerda§, K. (2008). Improving Strength, Drying

Shrinkage, and Pore Structure of Concrete Using Metakaolin. Materials and

Structures. 41(5), 937-949

Guneyisi, E. and Mermerda§, K. (2007). Comsparative Study on Strength, Sorptivity,

and Chloride Ingress Characteristics of Air-Cured and Water-Cured

Concretes Modified with Metakaolin. Materials and Structures. 40(10),

1161-1171.

Hall, C. (1989). Water Sorptivity of Mortars and Concretes: A Review. Magazine o f

Concrete Research. 41(147), 51-61.

Hewayde, E„ Nehdi, M., Allouche, E. and Nakhla, G. (2006). Effect of Geopolymer

Cement on Microstructure, Compressive Strength and Sulphuric Acid

Resistance of Concrete. Magazine o f Concrete Research. 58(5), 321-331.

Hewayde, E., Nehdi, M. L., Allouche, E. and Nakhla, G. (2007). Using Concrete

Admixtures for Sulphuric Acid Resistance. Proceedings o f the 1CE-

Construction Materials. 160(1), 25-35.

Hewlett, P. C. (2003). Lea's Chemistry o f Cement and Concrete. Butterworth-

Heinemann.

Hilsdorf, H. and Kropp, J (2004). Performance Criteria for Concrete Durability.

CRC Press.

Ho, D. W. S. and Chirgwin, G. J. (1996). A Performance Specification for Durable

Concrete. Construction and Building Materials. 10(5), 375-379.

Page 44: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

194

Hussin, M., Ismail, M. A., Budiea, A. and Muthusamy, K. (2009). Durability of High

Strength Concrete Containing Palm Oil Fuel Ash of Different Fineness.

Malaysian Journal o f Civil Engineering. 21 (2), 180-194.

Hussin, M. W. and Awal, A. A. (1998). Influence of Palm Oil Fuel Ash on Sulfate

Resistance of Mortar and Concrete. ACI Special Publication. 178, 417-430

Ibrahim, R. K., Hamid, R. and Taha, M. (2012). Fire Resistance of High-Volume Fly

Ash Mortars with Nanosilica Addition. Construction and Building Materials.

36, 779-786.

llic, B R , Mitrovic, A. A. and MiliCic, L. R. (2010). Thermal Treatment of Kaolin

Clay to Obtain Metakaolin. Hemijska Industrija. 64(4), 351-356.

Ismail, M., Elgelany Ismail, M. and Muhammad, B. (2011). Influence of Elevated

Temperatures on Physical and Compressive Strength Properties of Concrete

Containing Palm Oil Fuel Ash. Construction and Building Materials. 25(5),

2358-2364.

Jaturapitakkul, C., Kiattikomol, K., Tangchirapat, W. and Saeting, T. (2007).

Evaluation of the Sulfate Resistance of Concrete Containing Palm Oil Fuel

Ash. Construction and Building Materials. 21(7), 1399-1405.

Jaturapitakkul, C., Tangpagasit, J., Songmue, S. and Kiattikomol, K. (2011). Filler

Effect and Pozzolanic Reaction of Ground Palm Oil Fuel Ash. Construction

and Building Materials. 25(11), 4287-4293.

Jin, F. and Al-Tabbaa, A (2014). Strength and Hydration Products of Reactive M go-

Silica Pastes. Cement and Concrete Composites. 52(0), 27-33.

Kadri, E.-H., Kenai, S., Ezziane, K., Siddique, R. and De Schutter, G. (2011).

Influence of Metakaolin and Silica Fume on the Heat of Hydration and

Compressive Strength Development of Mortar. Applied Clay Science. 53(4),

704-708.

Kandasamy, S. and Shehata, M. H. (2014). Durability of Ternary Blends Containing

High Calcium Fly Ash and Slag against Sodium Sulphate Attack

Construction and Building Materials. 53(0), 267-272.

Kannan, V. and Ganesan, K. (2014). Chloride and Chemical Resistance of Self

Compacting Concrete Containing Rice Husk Ash and Metakaolin.

Construction and Building Materials. 51 225-234.

Page 45: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

195

Khatib, J. and Mangat, P. (1995). Absorption Characteristics of Concrete as a

Function of Location Relative to Casting Position. Cement and Concrete

Research. 25(5), 999-1010.

Khatib, J. M. (2008). Metakaolin Concrete at a Low Water to Binder Ratio.

Construction and Building Materials. 22(8), 1691-1700.

Khatib, J. M. and Hibbert, J. J. (2005). Selected Engineering Properties of Concrete

Incorporating Slag and Metakaolin. Construction and Building Materials.

19(6), 460-472.

Khatib, J. M. and Wild, S. (1996). Pore Size Distribution of Metakaolin Paste.

Cement and Concrete Research. 26(10), 1545-1553.

Khatib, J. M and Wild, S. (1998). Sulphate Resistance of Metakaolin Mortar.

Cement and Concrete Research. 28(1), 83-92.

Kim, H.-S., Lee, S. H., and Moon, H.Y. (2007). Strength Properties and Durability

Aspects of High Strength Concrete Using Korean Metakaolin. Construction

and Building Materials. 21(6), 1229-1237.

Kroehong, W , Sinsiri, T., Jaturapitakkul, C. and Chindaprasirt, P. (2011). Effect of

Palm Oil Fuel Ash Fineness on the Microstructure of Blended Cement Paste.

Construction and Building Materials. 25(11), 4095-4104.

Kumar, M., Singh, S. K., Singh, N. P. and Singh, N. B. (2012b). Hydration of

Multicomponent Composite Cement: OPC-FA-SF-MK Construction and

Building Materials. 36(0), 681-686.

Lagier, F. and Kurtis, K. E. (2007). Influence of Portland Cement Composition on

Early Age Reactions with Metakaolin. Cement and Concrete Research.

37(10), 1411-1417.

Langan, B. W., Weng, K. and Ward, M. A. (2002). Effect of Silica Fume and Fly

Ash on Heat of Hydration of Portland Cement. Cement and Concrete

Research. 32(7), 1045-1051.

Lawson, I., Danso, K., Odoi, H., Adjei, C., Quashie, F., Mumuni, I. and Ibrahim, I.

(2011). Non-Destructive Evaluation of Concrete Using Ultrasonic Pulse

Velocity. Research Journal o f Applied Sciences, Engineering and

Technology’. 3(6), 499-504.

Lee, S. T., Moon, H. Y., Hooton, R. D. and Kim, J P. (2005). Effect of Solution

Concentrations and Replacement Levels of Metakaolin on the Resistance of

Page 46: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

196

Mortars Exposed to Magnesium Sulfate Solutions. Cement and Concrete

Research. 35(7), 1314-1323.

Li, G., Xiong, G. and Yin, Y. (2009). The Physical and Chemical Effects of Long­

Term Sulphuric Acid Exposure on Hybrid Modified Cement Mortar. Cement

and Concrete Composites. 31(5), 325-330.

Li, Z. and Ding, Z. (2003). Property Improvement of Portland Cement by

Incorporating with Metakaolin and Slag. Cement and Concrete Research.

33(4), 579-584.

Liew, Y. M., Kamarudin, H., Al Bakri, A. M., Luqman, M., Nizar, I. K., Ruzaidi, C.

and Heah, C. (2012). Processing and Characterization of Calcined Kaolin

Cement Powder. Construction and Building Materials. 30 794-802.

Lim, S. K., Tan, C. S., Lim, O. Y. and Lee, Y. L. (2013). Fresh and Hardened

Properties of Lightweight Foamed Concrete with Palm Oil Fuel Ash as Filler.

Construction and Building Materials. 46 39-47.

Luz, A. and Pandolfelli, V. (2011). Halting the Calcium Aluminate Cement

Hydration Process. Ceramics International. 37(8), 3789-3793.

Mahmud, H. (2010). Absorption and Permeability Performance of Selangor Rice

Husk Ash Blended Grade 30 Concrete. Journal o f engineering science and

technology’. 5(1), 1-16.

Makhloufi, Z., Kadri, E., Bouhicha, M. and Benaissa, A. (2012). Resistance of

Limestone Mortars with Quaternary Binders to Sulfuric Acid Solution.

Construction and Building Materials. 26(1), 497-504.

Megat Johari, M. A., Zeyad, A. M., Muhamad Bunnori, N. and Ariffin, K. S. (2012).

Engineering and Transport Properties of High-Strength Green Concrete

Containing High Volume of Ultrafine Palm Oil Fuel Ash. Construction and

Building Materials. 30(0), 281-288.

Mehta, P. K. and Monteiro, P J. (2006). Concrete: Microstructure. Properties, and

Materials. McGraw-Hill New York.

Mendes, A„ Gates, W. P., Sanjayan, J. G. and Collins, F. (2011). Nmr, Xrd, Ir and

Synchrotron Nexafs Spectroscopic Studies of Opc and Opc/Slag Cement

Paste Hydrates. Materials and Structures. 44( 10), 1773-1791.

Mermerda§, K., Gesoglu, M., Guneyisi, E. and Ozturan, T. (2012). Strength

Development of Concretes Incorporated with Metakaolin and Different Types

of Calcined Kaolins. Construction and Building Materials. 37 766-774.

Page 47: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

197

Mollah, M., Yu, W , Schennach, R. and Cocke, D. L. (2000). A Fourier Transform

Infrared Spectroscopic Investigation of the Early Hydration of Portland

Cement and the Influence of Sodium Lignosulfonate. Cement ami Concrete

Research. 30(2), 267-273.

Moodi, F., Ramezanianpour, A. A. and Safavizadeh, A. S. (2011). Evaluation of the

Optimal Process of Thermal Activation of Kaolins. Scientia Iranica. 18(4),

906-912.

Morsy, M., Rashad, A. and Shebl, S. (2008). Effect of Elevated Temperature on

Compressive Strength of Blended Cement Mortar. Build Res J. 56(2-3), 173­

185.

Morsy, M. S., Al-Salloum, Y. A., Abbas, H. and Alsayed, S. H. (2012). Behavior of

Blended Cement Mortars Containing Nano-Metakaolin at Elevated

Temperatures. Construction and Building Materials. 35(0), 900-905.

Moser, R. D., Jayapalan, A. R., Garas, V. Y. and Kurtis, K. E. (2010). Assessment of

Binary and Ternary Blends of Metakaolin and Class C Fly Ash for Alkali -

Silica Reaction Mitigation in Concrete. Cement and Concrete Research.

40(12), 1664-1672.

Murat, M. (1983). Hydration Reaction and Hardening of Calcined Clays and Related

Minerals. I. Preliminary Investigation on Metakaolinite. Cement and

Concrete Research. 13(2), 259-266.

Murthi, P and Sivakumar, V. (2008). Studies on Acid Resistance of Ternary Blended

Concrete. Asian Journal o f Civil Engineering. 9(5), 473-486.

Nadeem, A., Memon, S. A. and Lo, T. Y. (2013a). Evaluation of Fly Ash and

Metakaolin Concrete at Elevated Temperatures through Stiffness Damage

Test. Construction and Building Materials. 38 1058-1065.

Nadeem, A., Memon, S. A. and Lo, T. Y. (2013b). Mechanical Performance,

Durability, Qualitative and Quantitative Analysis of Microstructure of Fly

Ash and Metakaolin Mortar at Elevated Temperatures. Construction and

Building Materials. 38 338-347.

Nadeem, A., Memon, S. A. and Lo, T. Y. (2013c). Qualitative and Quantitative

Analysis and Identification of Flaws in the Microstructure of Fly Ash and

Metakaolin Blended High Performance Concrete after Exposure to Elevated

Temperatures. Construction and Building Materials. 38 731-741.

Page 48: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

198

Nadeem, A., Memon, S. A. and Lo, T. Y. (2014). The Performance of Fly Ash and

Metakaolin Concrete at Elevated Temperatures. Construction and Building

Materials. 62(0), 67-76.

Nanayakkara, S. (2011). Importance o f Controlling Temperature Rise Due to Heat of

Hydration in Massive Concrete Elements. Proceedings o f the IESL-SSMS

Joint International Symposium on Social Management Systems. Colombo,

Sri-Lanka. 1-7.

Neville, A. (2002). Properties of Concrete-Fourth and Final Edition. Pearson

Education Limited, Essex.

NFP 18513 (2010). French Norm Modified Chappelle Test

Nochaiya, T., Wongkeo, W. and Chaipanich, A. (2010). Utilization of Fly Ash with

Silica Fume and Properties of Portland Cement-Fly Ash-Silica Fume

Concrete. Fuel. 89(3), 768-774

Paiva, H., Velosa, A., Cachim, P. and Ferreira, V. M. (2012). Effect o f Metakaolin

Dispersion on the Fresh and Hardened State Properties of Concrete. Cement

and Concrete Research. 42(4), 607-612.

Peng, G. F. and Huang, Z. S. (2008). Change in Microstructure of Hardened Cement

Paste Subjected to Elevated Temperatures. Construction and Building

Materials. 22(4), 593-599.

Pera, J and Ambroise, J. (1998). Pozzolanic Properties of Metakaolin Obtained from

Paper Sludge. ACI Special Publication. 178, 1007-1020.

Piasta, J., Sawicz, Z. and Rudzinski, L. (1984). Changes in the Structure of Hardened

Cement Paste Due to High Temperature. Materiaux et Constructions. 17(4),

291-296.

Pontes, J., Santos Silva, A. and Faria, P. (2013). Evaluation of Pozzolanic Reactivity

of Artificial Pozzolans. Materials Science Forum. 433-438

Poon, C. S., Azhar, S., Anson, M. and Wong, Y. L. (2003). Performance of

Metakaolin Concrete at Elevated Temperatures. Cement and Concrete

Composites. 25(1), 83-89.

Poon, C. S., Kou, S. C. and Lam, L. (2006). Compressive Strength, Chloride

Diffusivity and Pore Structure of High Performance Metakaolin and Silica

Fume Concrete. Construction and Building Materials. 20(10), 858-865.

Page 49: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

Poon, C. S., Lam, L„ Kou, S. C„ Wong, Y. L. and Wong, R. (2001). Rate of

Pozzolanic Reaction of Metakaolin in High-Performance Cement Pastes.

Cement and Concrete Research. 31 (9), 1301-1306.

Qtaitat, M. A. and Al-Trawneh, I. N. (2005). Characterization of Kaolinite of the

Baten El-Ghoul Region/South Jordan by Infrared Spectroscopy.

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.

61(7), 1519-1523.

Ramezanianpour, A. A. and Bahrami Jovein, H (2012). Influence of Metakaolin as

Supplementary Cementing Material on Strength and Durability of Concretes.

Construction and Building Materials. 30(0), 470-479.

Rashad, A. M. (2013). Metakaolin as Cementitious Material: History, Scours,

Production and Composition - a Comprehensive Overview. Construction and

Building Materials. 41(0), 303-318

Rojas, M. F., Amp, X, As and Sanchez De Rojas, M. 1 (2003). The Effect of High

Curing Temperature on the Reaction Kinetics in Mk/Lime and Mk-Blended

Cement Matrices at 60 °C. Cement and Concrete Research. 33(5), 643-649.

Rostami, V., Shao, Y„ Boyd, A. J. and He, Z. (2012). Microstructure of Cement

Paste Subject to Early Carbonation Curing. Cement and Concrete Research.

42(1), 186-193.

Roy, D. M., Aijunan, P. and Silsbee, M. R. (2001). Effect of Silica Fume,

Metakaolin, and Low-Calcium Fly Ash on Chemical Resistance of Concrete.

Cement and Concrete Research. 31(12), 1809-1813.

Rukzon, S. and Chindaprasirt, P (2009). Strength and Chloride Resistance of

Blended Portland Cement Mortar Containing Palm Oil Fuel Ash and Fly Ash.

International Journal o f Minerals. Metallurgy and Materials. 16(4), 475-481.

Sabir, B., Wild, S. and Bai, J. (2001). Metakaolin and Calcined Clays as Pozzolans

for Concrete: A Review. Cement and Concrete Composites. 23(6), 441-454

Saca, N. and Georgescu, M. (2014). Behavior of Ternary Blended Cements

Containing Limestone Filler and Fly Ash in Magnesium Sulfate Solution at

Low Temperature. Construction and Building Materials. 71(0), 246-253.

Safiuddin, M., Abdus Salam, M. and Jumaat, M. Z. (2011). Utilization of Palm Oil

Fuel Ash in Concrete: A Review. Journal o f Civil Engineering and

Management. 17(2), 234-247.

Page 50: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

200

Said-Mansour, M., Kadri, E.-H , Kenai, S., Ghrici, M. and Bennaceur, R (2011).

Influence of Calcined Kaolin on Mortar Properties. Construction and

Building Materials. 25(5), 2275-2282.

Sata, V., Jaturapitakkul, C. and Kiattikomol, K. (2004). Utilization of Palm Oil Fuel

Ash in High-Strength Concrete. Journal o f Materials in Civil Engineering.

16(6), 623-628.

Sata, V., Jaturapitakkul, C. and Kiattikomol, K. (2007). Influence of Pozzolan from

Various by-Product Materials on Mechanical Properties of High-Strength

Concrete. Construction and Building Materials. 21(7), 1589-1598.

Shatat, M. R (2013). Hydration Behavior and Mechanical Properties of Blended

Cement Containing Various Amounts of Rice Husk Ash in Presence of

Metakaolin. Arabian Journal o f Chemistry. (0).

Shekarchi, M., Bonakdar, A., Bakhshi, M., Mirdamadi, A. and Mobasher, B (2010).

Transport Properties in Metakaolin Blended Concrete. Construction and

Building Materials. 24( 11), 2217-2223.

Siddique, R. and Kadri, E.-H. (2011). Effect of Metakaolin and Foundry Sand on the

near Surface Characteristics of Concrete. Construction and Building

Materials. 25(8), 3257-3266.

Siddique, R. and Klaus, J. (2009). Influence of Metakaolin on the Properties of

Mortar and Concrete: A Review. Applied Clay Science. 43(3), 392-400.

Snelson, D , Wild, S. and O'farrell, M. (2011). Setting Times of Portland Cement-

Metakaolin-Fly Ash Blends. Journal o f Civil Engineering and Management.

17(1), 55-62.

Snelson, D G., Wild, S. and O'farrell, M. (2008). Heat of Hydration of Portland

Cement-Metakaolin-Fly Ash (Pc-M k-Pfa) Blends. Cement and Concrete

Research. 38(6), 832-840.

Sonebi, M., Lachemi, M. and Hossain, K. M. A. (2013). Optimisation of Rheological

Parameters and Mechanical Properties of Superplasticised Cement Grouts

Containing Metakaolin and Viscosity Modifying Admixture. Construction

and Building Materials. 38(0), 126-138.

Soutsos, M. (2009). Concrete Durability. Thomas Telford Limited.

Sumadi, S. R. (1993). Relationship between Engineering Properties and

Microstructural Characteristic of Mortar Containing Agricultural Ash. PhD

Thesis. Universiti Teknologi Malaysia.

Page 51: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

201

Sumadi, S. R. and Hussin, M. W. (1995). Palm Oil Fuel Ash (Pofa) as a Future

Partial Cement Replacement Material in Housing Construction. Journal o f

ferrocement. 25(1), 25-34.

Talero, R. (2005). Performance of Metakaolin and Portland Cements in Ettringite

Formation as Determined by Astm C 452-68: Kinetic and Morphological

Differences. Cement and Concrete Research. 35(7), 1269-1284.

Tangchirapat, W., Jaturapitakkul, C. and Chindaprasirt, P. (2009). Use o f Palm Oil

Fuel Ash as a Supplementary Cementitious Material for Producing High-

Strength Concrete. Construction and Building Materials. 23(7), 2641-2646.

Tangchirapat, W., Khamklai, S. and Jaturapitakkul, C. (2012). Use of Ground Palm

Oil Fuel Ash to Improve Strength, Sulfate Resistance, and Water

Permeability of Concrete Containing High Amount of Recycled Concrete

Aggregates. Materials & Design. 41(0), 150-157.

Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K. and

Siripanichgom, A. (2007). Use of Waste Ash from Palm Oil Industry in

Concrete. Waste Management. 27(1), 81-88.

Tay, J. H. (1990). Ash from Oil-Palm Waste as a Concrete Material. Journal o f

Materials in Civil Engineering. 2(2), 94-105.

Tay, J. H. and Show, K.-Y (1995). Use of Ash Derived from Oil-Palm Waste

Incineration as a Cement Replacement Material. Resources, Conservation

and Recycling. 13(1), 27-36.

Taylor, H. F. (1997). Cement Chemistry. Thomas Telford.

Thi, P. and Ha, T. (2012). Metakaolin as an Additive in Composite Cement. PhD

Thesis. Weimar Bauhaus University.

Thomas, M. D. A., Shehata, M. H , Shashiprakash, S. G , Hopkins, D S. and Cail, K.

(1999). Use of Ternary Cementitious Systems Containing Silica Fume and

Fly Ash in Concrete. Cement and Concrete Research. 29(8), 1207-1214.

Turkel, S., Felekoglu, B. and D u IIu q , S. (2007). Influence of Various Acids on the

Physico-Mechanical Properties of Pozzolanic Cement Mortars. Sadhana.

32(6), 683-691.

Van Odler, I. (2003). Hydration, Setting and Hardening of Portland Cement. Lea's

chemistry o f cement and concrete. 4, 241 -297.

Vance, K , Aguayo, M , Oey, T., Sant, G. and Neithalath, N. (2013). Hydration and

Strength Development in Ternary Portland Cement Blends Containing

Page 52: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

202

Limestone and Fly Ash or Metakaolin. Cement and Concrete Composites.

39(0), 93-103.

Vegas, I., Urreta, J., Frias, M. and Garcia, R. (2009). Freeze-Thaw Resistance of

Blended Cements Containing Calcined Paper Sludge. Construction and

Building Materials. 23(8), 2862-2868.

Vejmelkova, E., Pavlikova, M., Keppert, M., KerSner, Z., Rovnanikova, P.,

Ondraiek, M., Sedlmajer, M. and tem y , R. (2010). High Performance

Concrete with Czech Metakaolin: Experimental Analysis of Strength,

Toughness and Durability Characteristics. Construction and Building

Materials. 24(8), 1404-1411.

Wild, S., Khatib, J. and Jones, A. (1996). Relative Strength, Pozzolanic Activity and

Cement Hydration in Superplasticised Metakaolin Concrete. Cement and

Concrete Research. 26( 10), 1537-1544.

Xiong, Y., Wu, B , Zhu, J., Fan, X., Cai, P., Wen, J. and Liu, X. (2014). Preparation

of Magnesium Hydroxide from Leachate of Dolomitic Phosphate Ore with

Dilute Waste Acid from Titanium Dioxide Production. Hydrometallurgy.

142(0), 137-144.

Yilmaz, B and Olgun, A. (2008). Studies on Cement and Mortar Containing Low-

Calcium Fly Ash, Limestone, and Dolomitic Limestone. Cement and

Concrete Composites. 30(3), 194-201.

Ylmen, R (2013). Early Hydration o f Portland Cement. Chalmers University of

Technology.

Ylmen, R , Jaglid, U., Steenari, B.-M. and Panas, I. (2009). Early Hydration and

Setting of Portland Cement Monitored by Ir, Sem and Vicat Techniques.

Cement and Concrete Research. 39(5), 433-439.

Ylmen, R., Wadso, L. and Panas, I. (2010). Insights into Early Hydration of Portland

Limestone Cement from Infrared Spectroscopy and Isothermal Calorimetry.

Cement and Concrete Research. 40( 10), 1541-1546.

Yusuf, M. O. (2015). Performance of Slag Blended Alkaline Activated Palm Oil Fuel

Ash Mortar in Sulfate Environments. Construction and Building Materials.

98 417-424.

Zhang, M.-H. and Li, H. (2011). Pore Structure and Chloride Permeability of

Concrete Containing Nano-Particles for Pavement. Construction and

Building Materials. 25(2), 608-616.

Page 53: PERFORMANCE OF TERNARY BLENDED …eprints.utm.my/id/eprint/54718/1/JamiluUsmanPFKA2015.pdfOleh yang demikian kajian ini dijalankan untuk mengkaji kesan gabungan POFA dan MK terhadap

203

Zhang, M. H. and Malhotra, V. M. (1995). Characteristics of a Thermally Activated

Alumino-Silicate Pozzolanic Material and Its Use in Concrete. Cement and

Concrete Research. 25(8), 1713-1725.

Zhang, N., Liu, X., Sun, H. and Li, L. (2011). Evaluation of Blends Bauxite-

Calcination-Method Red Mud with Other Industrial Wastes as a Cementitious

Material: Properties and Hydration Characteristics. Journal o f Hazardous

Materials. 185(1), 329-335.

Zhang, Q. (2013). Microstructure and Deterioration Mechanisms of Portland Cement

Paste at Elevated Temperature. PhD Dissertation. TU Delft, Delft University

of Technology.