alkali tanah

Upload: gilang-ramadhan

Post on 15-Oct-2015

48 views

Category:

Documents


0 download

DESCRIPTION

jhv

TRANSCRIPT

Sifat, Kegunaan, Cara memperoleh, dan Definisi Alkali Tanah

Posted by Gusti Prassojo on 11:39

Definisi Logam Alkali Tanah Logam alkali tanah terdiri dari 6 unsur yang terdapat di golongan IIA. Yang termasuk ke dalam golongan II A yaitu : Berilium (Be), Magnesium (Mg), Calcium (Ca), Stronsium (Sr), Barium (Ba), dan Radium (Ra). Di sebut logam karena memiliki sifat-sifat seperti logam. Disebut alkali karena mempunyai sifat alkalin jika direaksikan dengan air. Dan istilah tanah karena oksidasinya sukar larut dalam air, dan banyak ditemukan dalam bebatuan di kerak bumi. Oleh sebab itu, istilah alkali tanah biasa digunakan untuk menggambarkan kelompok unsur golongan II A.

Tiap logam memiliki konfigurasi elektron sama seperti gas mulia atau golongan VIII A, setelah di tambah 2 elektron pada lapisan kulit S paling luar. Contohnya konfigurasi elektron pada Magnesium (Mg) yaitu : 1s22s22p63s2 atau (Ne) 3s2. Ikatan yang dimiliki kebanyakan senyawa logam alkali tanah adalah ikatan ionik. Karena, elektron paling luarnya telah siap untuk di lepaskan, agarmencapai kestabilan.

Unsur alkali tanah memiliki reaktifitas tinggi, sehingga tidak ditemukan dalam bentuk monoatomik , unsur ini mudah bereaksi dengan oksigen, dan logam murni yang ada di udara, membentuk lapisan luar pada oksigen.

Keberadaan Alkali Tanah di Alam Logam alkali tanah memilii sifat yang reaktif sehingga di alam hanya ditemukan dalam bentuk senyawanya. Berikut keberadaan senyawa yang mengandung logam alkali :

Berilium. Berilium tidak begitu banyak terdapat di kerak bumi, bahkan hampir bisa dikatakan tidak ada. Sedangkan di alam berilium dapat bersenyawa menjadi Mineral beril [Be3Al2(SiO6)3], dan Krisoberil [Al2BeO4].

Magnesium. Magnesium berperingkat nomor 7 terbanyak yang terdapat di kerak bumi, dengan 1,9% keberadaannya. Di alam magnesium bisa bersenyawa menjadi Magnesium Klorida [MgCl2], Senyawa Karbonat [MgCO3], Dolomit [MgCa(CO3)2], dan Senyawa Epsomit [MgSO4.7H2O]

Kalsium. Kalsium adalah logam alkali yang paling banyak terdapat di kerak bumi. Bahkan kalsium menjadi nomor 5 terbanyak yang terdapat di kerak bumi, dengan 3,4% keberadaanya. Di alam kalsium dapat membentuk senyawa karbonat [CaCO3], Senyawa Fospat [CaPO4], Senyawa Sulfat [CaSO4], Senyawa Fourida [CaF]

Stronsium. Stronsium berada di kerak bumi dengan jumlah 0,03%. Di alam strontium dapat membuntuk senyawa Mineral Selesit [SrSO4], dan Strontianit

Barium. Barium berada di kerak bumi sebanyak 0,04%. Di alam barium dapat membentuk senyawa : Mineral Baritin [BaSO4], dan Mineral Witerit [BaCO3]

Cara Memperoleh Logam Alkali Tanah1. Ekstraksi Berilium (Be)a. Metode reduksi Untuk mendapatkan Berilium, bisa didapatkan dengan mereduksi BeF2. Sebelum mendapatkan BeF2, kita harus memanaskan beril [Be3Al2(SiO6)3] dengan Na2SiF6 hingga 700 0C. Karena beril adalah sumber utama berilium.

BeF2 + Mg MgF2 + Be

b. Metode Elektrolisis Untuk mendapatkan berilium juga kita dapat mengekstraksi dari lelehan BeCl2 yang telah ditambah NaCl. Karena BeCl2 tidak dapat mengahantarkan listrik dengan baik, sehingga ditambahkan NaCl. Reaksi yang terjadi adalah :

Katoda : Be2+ + 2e- Be

Anode : 2Cl- Cl2 + 2e-http://shaylife.blogspot.com/2010/11/sifat-kegunaan-cara-memperoleh-dan.htmlLOGAM GOLONGANUTAMA

28 November 2009 at 07:40 1 komentar Logam golongan 2

Logam golongan 2 dari berilium Be, sampai radium, Ra, disebut juga logam-logam alkali tanah (Tabel 5.2). Berilium merupakan komponen beril atau emeral. Emeral adalah mineral yang mengandung 2%, Cr, dalam beril, Be3Al2Si6O18. Logam berilium bewarna putih keperakan dan digunakan dalam paduan khusus dan untuk jendela dalam tabung sinar-X, atau sebagai moderator dalam reaktor nuklir, dsb. Senyawa Be2+mirip dengan senyawa Mg2+atau Al3+. Karena berilium sangat beracun, berilium harus ditangani dengan sangat hati-hati.

Magnesium, Mg, terutama diproduksi sebagai karbonat, sulfat, dan silikat, dan kelimpahannya di antara natrium dan kalsium. Magnesium diproduksi dengan elektrolisis garam leleh magnesium khlorida, MgCl2, atau reaksi dolomit, CaMg(CO3)2, dengan paduan ferosilikon FeSi. Logam magnesium bewarna putih keperakan dan permukaannya dioksidasi di udara. Pada suhu tinggi magnesium terbakar di udara dan bereaksi dengan nitrogen menghasilkan nitrida, Mg3N2. Logam magnesium terbakar dengan nyala yang sangat terang dan sampai saat ini masih digunakan sebagai lampu blitz. Paduannya dengan aluminum bersifat ringan dan kuat dan digunakan sebagai bahan struktural dalam mobil dan pesawat. Mg2+merupakan ion pusat dalam cincin porfirin dalam khlorofil, dan memainkan peran dalam fotosintesis. Reagen Grignard, RMgX, yang disintesis kimiawan Perancis F. A. V. Grignard tahun 1900, adalah senyawa organologam khas logam golongan utama dan digunakan dengan luas dalam Reaksi Grignard. Reagen yang penting ini dihadiahi Nobel (1912), dan sangat bermanfaat tidak hanya untuk reaksi organik tetapi juga untuk konversi halida logam menjadi senyawa organologam.

Kalsium ada dalam silikat, karbonat, sulfat, fosfat, fluorit, dsb. Kalsium bewarna putih keperakan, dan merupakan logam yang lunak diproduksi dengan elektrolisis garam kalsium khlorida, CaCl2leleh.

Kapur tohor, CaO, diproduksi dengan kalsinasi batu pualam, CaCO3, pada 950-1100 oC. Jumlah produksi kapur tohor menempati ranking kedua produksi bahan kimia anorganik setelah asam sulfat. Kalsium hidroksida, Ca(OH)2, juga disebut kapur mati. Kalsium karbonat adalah komponen utama pualam dan pualam digunakan dalam produksi semen. Gipsum adalah dihidrat kalsium sulfat CaSO4.2H2O dan didapatkan dalam jumlah besar sebagai produk samping desulfurisasi gas, dan digunakan sebagai bahan bangunan, dsb.

Walaupun kalsium tidak penting baik dalam larutan dalam air maupun dalam kimia organologam dalam pelarut organik, unsur ini memerankan peran kunci dalam organisme hidup. Tidak hanya sebagai bahan struktural tulang dan gigi, ion kalsium juga memiliki berbagai fungsi biologis, seperti transfer aksi hormon, kontraksi otot, komunikasi syaraf, stabilisasi protein, dan pembekuan darah.

Stronsium adalah logam lunak dengan warna putih keperakan. Permukaannya dioksidasi oleh udara pada suhu kamar, dan menjadi oksidanya, SrO, dan nitridanya, Sr3N2, pada suhu tinggi. Walaupun kerak bumi relatif tinggi kandungan stronsiumnya, unsur ini belum dipelajari dengan luas dan aplikasinya agak terbatas. Ada empat isotop Sr, dan 88Sr (82.58 %) adalah yang paling 90Sr didapat dengan murah dalam reaksi inti, isotop ini digunakan sebagai sumber partikel , dan sebagai perunut radioaktif. Namun, isotop ini, dan juga 137Cs, memiliki waktu paruh yang panjang (28.8 tahun) dan keduanya ada dalam sisa-sisa radioaktif yang menyertai uji ledakan nuklir.

Kimia barium, Ba, tidak luar biasa, tetapi BaSO4digunakan sebagai media kontras untuk diagnostik sinar-X perut sebab senyawa ini tidak larut dalam asam khlorida. Ion Ba2+sangat beracun dan larut dalam air yang mengandung ion ini harus ditangani dengan ekstra hati-hati.

Walaupun radium, Ra, ada dalam bijih uranium, kandungannya hanya 10-6kali kandungan uranium. Tuan dan Nyonya Curie telah mengisolasi sejumlah kecil uranium khlorida dari bertonton pitblenda di tahun 1898. Unsur uranium diisolasi oleh Curie melalui anamalgamnya. Walaupun radium memiliki nilai historis penting dalam radiokimia, kini radium tidak digunakan lagi sebagai sumber radiasi.

Sifat fisik dan sifat atom dari unsur-unsur golongan II

Pada halaman ini akan dijelaskan beberapa tren pada sifat fisik dan sifat atom dari unsur-unsur golongan II berilium, magnesium, kalsium, strontium, dan barium.

Tren dalam Jari-jari Atom

Seperti terlihat di atas, semakin ke bawah jari-jari atom meningkat. Perhatikan bahwa berilium memiliki bentuk atom terkecil dibanding atom lain di golongan ini.

Penjelasan peningkatan jari-jari atom

Jari-jari atom diatur oleh:E Jumlah lapisan elektron di luar nukleus (inti atom).E Gaya tarik dari nukleus terhadap elektron luar.

Bandingkan berilium dan magnesium:

Be 1s22s2Mg 1s22s22p63s2

Untuk atom golongan II, dua elektron di kulit terluar mendapat gaya tarik total 2+ dari inti atom. Muatan positif dari nukleus dihilangkan atau dikurangi oleh muatan negatif dari elektron yagn terletak dikulit dalam.

Satu-satunya faktor yang mempengaruhi ukuran atom adalah jumlah kulit atom yang terisi elektron. Jelas sekali, semakin banyak kulit atom semakin banyak ruang yang dibutuhkan atom, mengingat elektron saling tolak-menolak. Ini berarti semakin kebawah (nomor atom makin besar) ukuran atom harus semakin besar.

Tren dalam Energi Ionisasi PertamaEnergi ionisasi pertama adalah energi yang diperlukan untuk memindahkan elektron yang paling lemah ikatannya, dari 1 mol atom menjadi ion bermuatan. Dengan kata lain, yang diperlukan untuk 1 mol proses ini:

Perhatikan bahwa semakin kebawah energi ionisasi pertama semakin menurun.

Penjelasan penurunan dalam energi ionisasi pertamaEnergi ionisasi diatur oleh:E muatan dalam inti atom,E jumlah elektron dalam kulit-kulit atom dalam,E jarak antara elektron terluar dengan inti atom.

Semakin ke bawah dalam golongan, peningkatan muatan inti atom diimbangi oleh peningkatan jumlah elektron dalam. Jadi, seperti telah dijelaskan sebelumnya, atom terluar tetap mendapat gaya tarik total 2+ dari inti atom.

Tetapi, semakin ke bawah jarak antara inti atom dengan elektron terluar meningkat, sehingga elektron semakin mudah dipindahkan, energi ionisasi yang diperlukan menurun.

Tren dalam KeelektronegatifanKeelektronegatifan adalah ukuran kecenderungan atom untuk menarik pasangan elektron. Ukuran ini biasanya dibuat dalam skala Pauli, dimana unsur paling elektronegatif, yaitu fluorin, diberi angka 4,0.

Semua unsur dalam golongan II ini memiliki sifat keelektronegatifan yang kecil (ingat, unsur paling elektronegatif, fluorin, memiliki keelektronegatifan 4,0). Perhatikan bahwa semakin kebawah keelektronegatifan semakin menurun. Atom-atom menjadi kurang mampu menarik pasangan elektron.

Anda mungkin tidak setuju dengan tren penurunan keelektronegatifan ini, karena pada tabel di atas terlihat kalsium dan strontium sama-sama memiliki keelektronegatifan 1,0. Ini dapat dijelaskan bahwa keelektronegatifan dicatat sampi 1 desimal saja. Misal kalsium memiliki keelektronegatifan 1,04 dan strontium 0,95 (angka permisalan!), keduan atom itu akan tercatat mempunyai keelekronegatifan 1,0.

Penjelasan penurunan dalam keelektronegatifan

Bayangkan ikatan antara atom magnesium dan atom klorin. Dimulai dengan ikatan kovalen dengan sepasang elektron koordinasi. Pasangan elektron akan tertarik ke arah klorin yang memiliki gaya tarik lebih besar dari inti atom klorin dibanding dari inti atom magnesium.

Pasangan elektron berada dekat dengan klorin sehingga terjadi transfer satu elektron kepada klorin, dan terbentuk ion.

Gaya tarik dari inti atom klorin yagn besar adalah sebab mengapa klorin memiliki keelektronegatifan yang lebih besar dari magnesium.

Selanjutnya bandingkan dengan ikatan antara berilium dan klorin. Gaya tarik total dari tiap atom sama dengan contoh pertama tadi. Tapi harus diingat, berilium memiliki ukuran atom yang lebih kecil dibanding magnesium. Ini berarti pasangan elektron akan berada lebih dekat dengan muatan total 2+ dari berilium, jadi lebih kuat terikat pada berilium.

Pada contoh ini, pasangan elektron tidak tertarik cukup dekat pada klorin untuk membentuk ikatan ion. Karena ukurannya yang kecil, berilium membentuk ikatan kovalen, bukan ikatan ion. Gaya tarik antara inti berilium dengan pasangan elektron terlalu besar untuk dapat membentuk ikatan ion.

Kesimpulan tren ke bawah Golongan II

Semakin besar ukuran atom, setiap pasangan elektron semakin menjauh dari inti atom logam, jadi elektron kurang kuat untuk tertarik ke inti atom. Dengan kata lain, semakin kebaah dalam golongan, unsur semakin kurang elektronegatif.

Semakin ke bawah dalam golongan, ikatan yang terbentuk antara unsur-unsur ini dengan unsur lain, seperti klorin, menjadi semakin ionik. Pasangan elektron semakin mudah tertarik dari unsur golongan II ke unsur klorin (atau unsur lain).

Tren dalam Titik Leleh

Terlihat pada tabel di atas bahwa (dengan perkecualian pada magnesium) semakin ke bawah titik didih semakin menurun.

Penjelasan tren dalam titik lelehPenjelasan tentang kecenderungan tren pada titik leleh ini sangat sulit. Mungkin anda berpikir bahwa (kecuali magnesium) semakin rendah titik leleh semakin lemah ikatan logamnya, tetapi tidak, dan akan berbahaya untuk berpikir seperti itu. Ikatan logam tidak tidak dirusak oleh pelelehan. Tetapi dengan titik didih biasanya tolak ukur yang lebih baik dalam hal kekuatan ikatan yang terlibat.

Untuk titik leleh magnesium yang rendah, anda mungkin menemukan penjelasan adalah karena atom magnesium tersusun berbentuk kristal. Dan memang titik didih magnesium juga rendah. Tetapi pemikiran tentang susunan ini akan tidak relevan untuk unsur bentuk cairan. Untuk magnesium, pasti ada hal lain yang mempengaruhi lemahnya ikatan logam magnesium.

Untuk titik didih, tidak ada pola yang jelas dalam golongan II ini. Jadi, tidak ada pola yang jelas pula untuk kekuatan ikatan logam.

Ukuran lain yang munkin digunakan untuk kekuatan ikatan logam adalah energi ionisasi. Energi ionisasi adalah energi yang diperlukan untuk menghasilkan 1 mol atom dalam keadaan gas dari keadaan awalnya (yaitu keadaan dalam kondisi suhu dan tekanan ruang/ standar).

Lagi-lagi, tidak ada pola atau tren yang jelas dalam energi ionisasi ini. Dan memang belum ada penjelasan yang pasti mengenai ini.

Reaksi Unsur-unsur Golongan II dengan Udara atau OksigenFakta

Reaksi dengan oksigenPembentukan oksida sederhanaDengan oksigen, logam- logam Golongan III ini terbakar membentuk logam oksida sederhana.

Berilium sulit untuk terbakar kecuali dalam bentuk serbuk. Berilium memiliki lapisan berilium oksida yang tipis tetapi kuat pada permukaannya, yang mencegah oksigen baru untuk bereaksi dengan berilium dibawah lapisan tersebut.

2X + O2 2XO

X pada persamaan diatas menunjukkan logam Golongan II.

Agak mustahil untuk menemukan tren dalam reaksi logam Golongan II dengan oksigen. Karena untuk itu kita harus mendapat logam yang sama-sama bebas dari lapisan oksida, dengan luas permukaan dan bentuk yang setara, memiliki aliran oksigen yang setara, dan dipanaskan sampai sama-sama mulai bereaksi. Tetapi ini mustahil dilakukan!

Seperti apa logam-logam ini ketika dibakar sedikit rumit!

* Berilium: penulis belum dapat menemukan referensi (internet atau buku teks) mengenai warna api yang dihasilkan dari pembakaran berilium. Mungkin percikan perak seperti yang terjadi pada pembakaran magnesium atau alumunium.

* Magnesium: pembakarannya menghasilkan api berwarna putih kuat.

* Kalsium: agak sulit untuk mulai terbakar, tetapi kemudian terbakar cepat, menghasilkan api putih kemudian sedikit merah.

* Strotium: penulis belum pernah melihat pembakaran strontium, kemungkinan seperti kalsium, tetapi dengan warna merah yang lebih kuat.

* Barium: penulis hanya pernah melihat pembakaran barium melalui video, yang meyebutkan api yang dihasilkan adalah berwarna hijau pucat, tetapi yang terlihat api berwarna putih dengan sedikit hijau pucat.

Pembentukan peroksidaStrontium dan barium juga bereaksi dengan oksigen membentuk strontium atau barium peroksida.

Strontium membentuk strontium peroksida jika dipanaskan dengan oksigen di bawah tekanan tinggi, tetapi barium membentuk barium peroksida dengan pemanasan normal dengan oksigen. Pada reaksi ini akan dihasilkan campuran barium oksida dan barium peroksida.

Ba + O2 BaO2

Persamman reaksi untuk strontium sama seperti persaman di atas.

Reaksi dengan udaraReaksilogam-logam Golongan II dengan udara lebih rumit karena selain dengan oksigen, logam ini juga bereaksi dengan nitrogen menghasilkan nitrida. Pada tiap kasus, akan dihasilkan campuran logam oksida dan logam nitrida.

Persamaan umum untuk reaksi ini adalah:

3X + N2 X3N2

Debu putih yang dihasilkan ketika membakar pita magnesium dengan udara adalah campuran magnesium okisida dan magnesium nitrida.

Penjelasan

Reaksi unsur-unsur golongan

II dengan air

Fakta-faktaBeriliumBerilium tidak bereaksi dengan air atau uap air meskipun dalam suhu tinggi.

MagnesiumMagnesium bereaksi dengan uap air menghasilkan magnesium oksida dan hidrogen.

Mg + H2O MgO + H2

Magnesium murni memiliki kemampuan bereaksi yang kecil terhadap air dingin. Reaksi di atas lekas terhenti karena terbentuknya magnesium hidroksida yang tidak larut dalam air dan membentuk rintangan bagi magnesium untuk bereaksi lebih lanjut.

Mg + 2H2O Mg(OH)2 + H2

Sebagai catatan, jika logam bereaksi dengan uap air, terbentuk logam oksida. Jika bereaksi dengan air dingin, dihasilkan logam hidroksida.

Kalsium, strontium, dan bariumUnsur-unsur ini dapat bereaksi dengan air dingin dengan pengadukan kuat menghasilkan logam hidroksida dan hidrogen. Strontium dan barium memiliki reaktivitas mirip dengan litium di Golongan I. Persamaan reaksi unsur-unsur ini adalah :

X + 2H2O X(OH)2 + H2

Logam hidroksida yang dihasilkan bersifat tidak larut air, tetapi kelarutannya meningkat ke bawah golongan. Kalsium hidroksida yang terbentuk sebagian besar berupa endapan putih (sebagian kecil larut). Untuk reaksi strontium akan dihasilkan endapan yang lebih sedikit, dan lebih sedikit lagi untuk reaksi barium, karena peningkatan kelarutan logam hidroksida tadi.

Rangkuman tren reaktivitas

Logam Golongan II semakin ke bawah reaktivitas dengan air semakin meningkat.

Penjelasan Mengenai Tren Reaktivitas Perubahan Entalpi dalam reaksi

Perubahan entalpi dalam suatu reaksi menunjukkan jumlah panas yang diserap atau yang dikeluarkan selama raksi berlangsung. Perubahan entalpi negatif jika panas dikeluarkan, dan positif jika panas diserap.

Sebagai contoh, perhitungan perubahan entalpi dalam reaksi antara berilium atau magnesium dan uap air :

Kedua reaksi di atas adalah sangat eksotermis, mengeluarkan panas dengan jumlah sama. Tetapi, hanya reaksi magnesium yang benar-benar terjadi. Sebab perbedaan reaktivitas kedua unsur ini ada dalam penjelasan lain.

Perhitungan perubahan entalpi untuk kalsium, strontium, atau barium dengan air dingin, akan juga menghasilkan panas dengan jumlah yang sama dalam tiap reaksi, yaitu sekitar -430 kJ mol-1.

Energi aktivasi dalam reaksi

Energi aktivasi adalah jumlah minimum energi yang diperlukan untuk menghasilkan sebuah reaksi. Tidak peduli eksotermiknya suatu reaksi, jika ada halangan energi aktivasi, reaksi akan berlangsung sangat lambat.

Ketika logam Golongan II bereaksi membentuk oksida atau hidroksida, terlebih dahulu terbentuk ion logam.Pembentukan ion ini melibatkan beberapa tahap reaksi yang memerlukan masukan energi, untuk energi aktivasi reaksi. Tahapan reaksi ini melibatkan :* Energi atomisasi dari logam. Ini adalah energi yang diperlukan untuk memecah ikatan atom dalam logam.* Energi ionisasi + yang pertama. Energi ini penting untuk mengubah atom logam menjadi ion dengan muatan 2+.

Setelah tahapan tersebut, ada beberapa langkah dalam reaksi yang mengeluarkan energi, menghasilkan keseluruhan reaksi eksotermik dan produk reaksi.

Grafik di bawah ini memperlihatkan efek dari tahap penyerapan energi pada reaksi unsur Golongan II.

Perhatikan bahwa energi ionisasi mendominasi tahapan ini, terutama energi ionisasi kedua. Energi ionisasi semakin menurun ke bawah Golongan, karena semakin ke bawah logam semakin mudah membentuk ion, sehingga reaksi lebih mudah terjadi.

Rangkuman dalam peningkatan reaktivitas ke bawah Golongan

Reaksi lebih mudah terjadi jika energi yang dibutuhkan untuk membentuk ion positif kecil. Ini terutama karena penurunan energi ionisasi ke bawah Golongan, menyebabkan rendahnya energi aktivasi, dan reaksi yang lebih cepat.

http://jabirbinhayyan.wordpress.com/2009/11/28/logam-golongan-utama/Manfat Senyawa Alkali Tanah

Manfat Senyawa Alkali Tanah Unsur-unsur golongan IIA disebut juga alkali tanah sebab unsur-unsur tersebut bersifat basa dan banyak ditemukan dalam mineral tanah. Logam alkali tanah umumnya reaktif, tetapi kurang reaktif jika dibandingkan dengan logam alkali.

Gambar 3.17 Unsurunsur logam alkali Tanah

1. Kelimpahan Unsur Logam Alkali Tanah. Di alam unsur-unsur alkali tanah terdapat dalam bentuk senyawa. Magnesium dan kalsium terdapat dalam batuan silikat dan aluminosilikat sebagai kationiknya. Oleh karena kation-kation dalam silikat itu larut dalam air dan terbawa oleh air hujan ke laut maka ion-ion Ca2+ dan Mg2+ banyak ditemukan di laut, terutama pada kulit kerang sebagai CaCO3. Kulit kerang dan hewan laut lainnya yang mati berakumulasi membentuk deposit batu kapur. Magnesium dalam air laut bereaksi dengan sedimen kalsium karbonat menjadi dolomit, CaCO3.MgCO3.

Mineral utama berilium adalah beril, Be3Al2(SiO3)6(lihat Gambar 3.18), mutiara dari jenis aquamarin (biru terang), dan emerald (hijau tua). Stronsium terdapat dalam celestit, SrSO4, dan stronsianat, SrCO3. Barium ditemukan dalam barit, BaSO4, dan iterit, BaCO3. Radium terdapat dalam jumlah kecil pada bijih uranium, sebagai unsur radioaktif.

Gambar 3.18 Mineral beril, Be3Al2(SiO3)62. Sifat-Sifat Unsur Logam Alkali Tanah. Kalsium, stronsium, barium, dan radium membentuk senyawa ion bermuatan +2. Magnesium kadang-kadang bersifat kovalen dan berilium lebih dominan kovalen. Sifat-sifat golongan alkali tanah ditunjukkan pada Tabel 3.11.Tabel 3.11 Sifat-Sifat Fisika dan Kimia Unsur-Unsur Golongan Alkali Tanah

Sifat SifatBeMgCaSrBa

Titik leleh (C)1.278649839769725

Titik didih (C)2.9701.0901.4841.3841.640

Massa jenis (g cm3)1,851,741,542,63,51

Keelektronegatifan1,51,21,01,00,9

Jari-jari ion M+, 0,300,650,991,131,35

Potensial reduksi standar (V)1,702,382,762,892,90

Nomor atom412203856

Konfigurasi elektron[He]2s2[Ne] 3s2[Ar] 4s2[Kr]5s2[Xe]6s2

Rapatan (Densitas), g/cm31.851.741.542.63.51

Energi pengionan

Pertama, kJ/mol

Kedua, kJ/mol

Ketiga, kJ/mol899

1.757

14.848738

1.451

7.733590

1.1451

4.912590

1.064

4.210503

9.065

3.430

Potensial reduksi standar (volt)M2+ + 2e- -> M -1.70-2,38-2.76-2.89-2,90

Jari-jari atom, 1,111.601,972,151,17

Kekerasan (skala Mohs)52,01,51,82

Warna nyalaTidak adaTidak adaJinggamerahmerahhijau

Kekerasan logam alkali tanah berkurang dari atas ke bawah akibat kekuatan ikatan antaratom menurun. Hal ini disebabkan jarak antaratom pada logam alkali tanah bertambah panjang. Berilium merupakan logam berwarna abu dan kekerasannya mirip dengan besi, serta cukup kuat untuk menggores kaca. Logam alkali tanah yang lain umumnya berwarna perak dan lebih lunak dari berilium, tetapi lebih keras jika dibandingkan dengan logam alkali.

Gambar 3.20 Magnesium jika dibakar akan mengeluarkan cahaya sangat terang.

Titik leleh dan titik didih logam alkali menurun dari atas ke bawah dalam sistem periodik. Hal ini disebabkan oleh jari-jari atom yang bertambah panjang. Energi ionisasi kedua dari unsur-unsur golongan IIA relatif rendah sehingga mudah membentuk kation +2. Akibatnya, unsur-unsur cukup reaktif. Kereaktifan logam alkali meningkat dari atas ke bawah dalam sistem periodik. Pada suhu kamar, berilium tidak bereaksi dengan air, magnesium bereaksi agak lambat dengan air, tetapi lebih cepat dengan uap air. Adapun kalsium dan logam alkali tanah yang di bawahnya bereaksi dengan air pada suhu kamar. Reaksinya:

Ca(s) + 2H2O(l) Ca(OH)2(aq) + H2(g)

Logam alkali tanah bereaksi dengan oksigen membentuk oksida. Barium dapat membentuk peroksida. Barium peroksida terbentuk pada suhu rendah dan terurai menjadi oksida pada 700C. Kalsium, stronsium, dan barium bereaksi dengan hidrogen membentuk logam hidrida. Adapun magnesium dapat bereaksi dengan hidrogen pada tekanan tinggi dengan bantuan katalis MgI2.

Ca(s) + H2(g) CaH2(s)Mg(s) + H2(g) MgI2MgH2(s)

Semua unsur alkali tanah bereaksi langsung dengan halogen membentuk halida, dengan nitrogen dapat membentuk nitrida pada suhu tinggi, misalnya magnesium nitrida:

Mg(s) + N2(g)Mg3N2(s)

Pembakaran unsur-unsur alkali tanah atau garamnya dalam nyala bunsen dapat memancarkan spektrum warna khas. Stronsium berwarna krimson, barium hijau-kuning, dan magnesium putih terang.

Gambar 3.21 Nyala logam alkali tanah

3. Pembuatan dan Kegunaan Unsur Logam Alkali TanahLogam-logam alkali tanah diproduksi melalui proses elektrolisis lelehan garam halida (biasanya klorida) atau melalui reduksi halida atau oksida. Magnesium diproduksi melalui elektrolisis lelehan MgCl2. Air laut mengandung sumber ion Mg2+ yang tidak pernah habis. Rumah tiram yang banyak terdapat di laut mengandung kalsium karbonat sebagai sumber kalsium.

Gambar 3.22 Oleh karena garam-garam alkali tanah menghasilkan nyala beraneka warna, sering dipakai sebagai bahan untuk membuat kembang api. Pembuatan logam magnesium dari air laut telah dikembangkan oleh berbagai industri kimia seperti ditunjukkan pada Gambar 3.23.

Gambar 3.23 Pembuatan logam magnesium dari air laut

Jika rumah tiram dipanaskan, CaCO3 terurai membentuk oksida:CaCO3(s) CaO(s) + CO2(g)

Penambahan CaO ke dalam air laut dapat mengendapkan magnesium menjadi hidroksidanya:Mg2+(aq) + CaO(s) + H2O(l) Mg(OH)2(s) + Ca2+(aq)

Selanjutnya, Mg(OH)2 disaring dan diolah dengan asam klorida menjadi magnesium klorida.Mg(OH)2(s) + 2HCl(aq) MgCl2(aq) + 2H2O(l)

Setelah kering, garam MgCl2 dilelehkan dan dielektrolisis:MgCl2(l) Elektrolisis 1.700 Mg(l) + Cl2(g)

Magnesium dapat juga diperoleh dari penguraian magnesit dan dolomit membentuk MgO. Kemudian, direduksi dengan ferosilikon (paduan besi dan silikon). Logam magnesium banyak digunakan sebagai paduan dengan aluminium, bertujuan untuk meningkatkan kekerasan dan daya tahan terhadap korosi. Oleh karena massa jenis paduan MgAl ringan maka paduan tersebut sering digunakan untuk membuat kerangka pesawat terbang atau beberapa bagian kendaraan. Sejumlah kecil magnesium digunakan sebagai reduktor untuk membuat logam lain, seperti berilium dan uranium. Lampu blitz pada kamera analog menggunakan kawat magnesium berisi gas oksigen menghasilkan kilat cahaya putih ketika logam tersebut terbakar.

Gambar 3.24 Kulit kerang/tiram merupakan sumber kalsium.

2Mg(s) + O2(g) 2MgO(s) + Cahaya

Kalsium dibuat melalui elektrolisis lelehan CaCl2, juga dapat dibuat melalui reduksi CaO oleh aluminium dalam udara vakum. Kalsium yang dihasilkan dalam bentuk uap sehingga dapat dipisahkan.

3CaO(s) + 2Al(l) 1.200 3Ca(g) + Al2O3(s)

Jika logam kalsium dipadukan dengan timbel akan menghasilkan paduan yang cukup keras, digunakan sebagai elektrode pada accu. Elektrode ini tahan terhadap elektrolisis air selama proses isi-ulang, sehingga accu dapat diperbarui. Kalsium juga digunakan sebagai zat pereduksi dalam pembuatan beberapa logam yang kurang umum, seperti thorium.

ThO2(s) + 2Ca(l) 1.000 Th(s) + 2CaO(s)

Berilium diperoleh dari elektrolisis berilium klorida, BeCl2. Natrium klorida ditambahkan untuk meningkatkan daya hantar listrik lelehan BeCl2. Selain itu, berilium juga dapat dibuat melalui reduksi garam fluoridanya oleh logam magnesium.

BeF2(l) + Mg(l) 950C MgF2(l) + Be(s)

Berilium merupakan logam mahal. Ini disebabkan manfaatnya tinggi. Jika sejumlah kecil tembaga ditambahkan ke dalam berilium, akan menghasilkan paduan yang kerasnya sama dengan baja. Adapun, barium dihasilkan melalui reduksi oksidanya oleh aluminium. Walaupun stronsium sangat sedikit digunakan secara komersial, stronsium dapat diproduksi melalui proses yang serupa.

4. Pembuatan dan Kegunaan Senyawa Alkali TanahSenyawa logam alkali tanah dengan beberapa aplikasinya dalam industri dan rumah tangga dipaparkan dalam Tabel 3.12.Tabel 3.12 Manfaat Senyawa Logam Alkali Tanah

SenyawaKegunaan

MgOBata tahan api (tungku), dan makanan hewan

Mg(OH)2Sumber magnesium untuk logam dan senyawa, susu magnesia

MgSO4.7H2OPupuk, obat-obatan (analgesik), dan pabrik pencelupan

CaOPabrik baja, dan pengolahan air

CaCO3Mortar

CaSO4Lapisan kertas, pengisi, dan antasid

Ca(HPO4)2Plester, dinding, semen, dan pupuk

BaSO4Pigmen cat, minyak, dan penggiling lumpur

Mineral kalsium karbonat dan kulit kerang adalah sumber komersial sangat murah dan melimpah di alam. Jika dipanaskan hingga 900C, karbonat terurai melepaskan karbon dioksida dan menghasilkan kalsium oksida, yang secara komersial dikenal sebagai kapur tohor. Kapur tohor digunakan pada pembuatan baja. Penambahan zat tersebut ke dalam lelehan besi yang mengandung silikat akan bereaksi dengan silikat membentuk ampas yang mengapung pada permukaan lelehan besi. Reaksinya tergolong asam-basa Lewis:

CaO(s) + SiO2(s) CaSiO3(l)

oksida basa oksida asam ampas kalsium silikat Kalsium hidroksida, Ca(OH)2 digunakan sebagai bahan pengisi pada pembuatan kertas, dan untuk membuat gigi buatan bersama-sama senyawa fluorin. Senyawa CaO dan Ca(OH)2 digunakan untuk melunakkan air sadah. Jika air sadah yang mengandung Ca(HCO3)2 diolah dengan Ca(OH)2, semua ion kalsium diendapkan sebagai kalsium karbonat.

Ca2+(aq) + 2HCO3(aq) + Ca(OH)2(aq) 2CaCO3(s)+ 2H2O(l)

Senyawa MgCO3 jika dipanaskan di atas 1.400C, akan menjadi MgO yang bersifat agak inert. MgO digunakan untuk membuat bata tahan api (tungku pirolisis). Jika MgO dibuat pada suhu lebih sekitar 700C, akan diperoleh serbuk oksida yang larut dalam asam dan digunakan sebagai aditif makanan hewan, merupakan sumber ion Mg2+ dalam nutrien. Senyawa penting dari barium adalah BaSO4. Senyawa ini digunakan pada penggilingan minyak dalam bentuk bubur, berfungsi sebagai perekat gurdi penggilingan. BaSO4 juga tidak dapat di tembus sinar-X sehingga senyawa ini digunakan untuk diagnosa sinar-X (Gambar 3.25). Senyawa barium yang larut dalam air tidak dapat digunakan sebab bersifat racun, tetapi suspensi BaSO4 yang terdapat sebagai ion barium, racunnya dapat diabaikan.

Gambar 3.25 Fotografi sinar-X pada usus manusia menggunakan senyawa BaSO4.Tabel 3.13 Daftar Kelarutan Senyawa Alkali Tanah di Dalam Air

HidroksidaKarbonatSulfat

BeTidak larutLarut

MgTidak larutSedikit larutLarut

CaSedikit larutTidak larutSedikit

SrLarutTidak larutTidak

BaLaruTidak larutTidak

Contoh Mengidentifikasi Senyawa Logam Alkali TanahMelalui uji kimia, bagaimanakah membedakan antara MgCl2 dan BaCl2?JawabBerdasarkan kelarutannya dalam air, diketahui bahwa MgSO4 larut dalam air, sedangkan BaSO4 tidak larut. Oleh sebab itu, jika Na2SO4 ditambahkan ke dalam larutan BaCl2 dan MgCl2 maka BaCl2 akan mengendap sebagai BaSO4, dan MgCl2 tetap di dalam larutannya.

Na2SO4(aq) + BaCl2(aq) 2NaCl(aq) + BaSO4(s)

http://budisma.web.id/materi/sma/kimia-kelas-xii/unsur-alkali-tanah/Top of Form

Unsur-unsur alkali tanah dalam sistem periodik menempati golongan IIA. Unsur-unsur alkali tanah terdiri dari berilium (Be), magnesium (Mg), kalsium (Ca), stronsium (Sr), barium (Ba), dan radium (Ra). Disebut alkali tanah karena oksida dan hidroksida dalam air bersifat basa (alkalis) dan oksidanya serupa dengan Al2O3 dan oksida logam berat yang sejak semula dikenal dengan nama tanah.

a. Sifat-Sifat FisisUnsur-unsur alkali tanah kecuali berilium (Be) semua merupakan logam putih keperakan dan lebih keras dari alkali.

Sifat-Sifat Fisika Logam-logam Alkali Tanah(Tak Termasuk Radium)

Pada tabel di atas terlihat dengan naiknya nomor atom, jari-jari atom bertambah panjang yang berakibat semakin lemahnya gaya tarik antaratom. Hal ini menyebabkan makin menurunnya titik leleh dan titik didih. Logam alkali tanah memiliki 2 elektron valensi sehingga ikatan logamnya lebih kuat daripada ikatan logam pada alkali seperiode. Hal ini menyebabkan titik leleh, titik didih, kerapatan, dan kekerasan alkali tanah lebih besar daripada logam alkali seperiode.

b. Sifat-Sifat Kimia Alkali TanahAlkali tanah merupakan golongan logam yang reaktif meskipun tidak sereaktif alkali. Kereaktifan logam alkali tanah meningkat dengan semakin meningkatnya jari-jari atom. Alkali tanah dapat bereaksi dengan hampir semua unsur nonlogam dengan ikatan ion (kecuali berilium yang membentuk ikatan kovalen). Beberapa reaksi alkali tanah dengan senyawa atau unsur lain adalah sebagai berikut.

1) Reaksi dengan Oksigen

Semua logam alkali tanah dapat bereaksi dengan oksigen membentuk oksida yang mudah larut dalam air.

2MO(s)(2M(s) + O2(g) M = alkali tanah

2BaO(s)(Contoh: 2Ba(s) + O2(g)

Bila oksigen berlebih dan pada tekanan tinggi terjadi peroksida.

BaO2(s)(Ba(s) + O2(g) (berlebih)Kelarutan oksidanya semakin besar dari atas ke bawah.

2) Reaksi dengan Air

Magnesium bereaksi lambat dengan air, kalsium stronsium, dan barium bereaksi lebih cepat dengan air membentuk basa dan gas hidrogen.

Ca(OH)2(aq) + H2(g)(Ca(s) + 2H2O(l) Kalsium hidroksida

3) Reaksi dengan Hidrogen

Alkali tanah bereaksi dengan gas hidrogen membentuk hidrida dengan ikatan ion.

CaH2(s)(Ca(s) + H2(g)TKalsium hidroksida

Hidrida alkali tanah dapat bereaksi dengan air menghasilkan basa dan gas hidrogen.

Ca(OH)2(aq) + H2(g)(CaH2(s) + 2H2O(l)

4) Reaksi dengan Nitrogen

Reaksi alkali tanah dengan gas nitrogen membentuk nitrida.

Mg3N2(s)(3Mg(s) + N2(g) Magnesium nitrida

5) Reaksi dengan asam

Alkali tanah bereaksi dengan asam menghasilkan garam dan gas hidrogen. Reaksi semakin hebat dari atas ke bawah.

MgCl2(aq) + H2(g)(Mg(s) + 2HCl(aq)

Berilium bersifat amfoter (dapat bereaksi dengan asam dan basa). Reaksi berilium dengan basa kuat adalah sebagai berikut:

Na2Be(OH)4(aq) + H2(g)(Be(s) + 2NaOH(aq) + 2H2O(l)

6) Reaksi dengan Halogen

Semua alkali tanah dapat bereaksi dengan halogen membentuk garam dengan ikatan ion kecuali berilium. Secara umum dapat dituliskan:

MX2(M + X2 CaCl2(s)(Contoh: Ca(s) + Cl2(g)

7) Reaksi Nyala

Pada pemanasan/pembakaran senyawa alkali pada nyala api menyebabkan unsur alkali tereksitasi dengan memancarkan radiasi elektromagnetik sehingga memberikan warna nyala berilium (putih), magnesium (putih), kalsium (jingga merah), stronsium (merah), dan barium (hijau).

c. Kelarutan Basa Alkali Tanah dan GaramnyaBasa alkali tanah berbeda dengan basa alkali, basa alkali tanah ada yang sukar larut. Harga hasil kelarutan (Ksp) dari basa alkali tanah dapat dilihat pada tabel berikut.

Dari data Ksp di atas terlihat harga Ksp dari Be(OH)2 ke Ba(OH)2 makin besar, berarti hidroksida alkali tanah kelarutannya bertambah besar dengan naiknya nomor atom. Be(OH)2 dan Mg(OH)2 sukar larut, Ca(OH)2 sedikit larut, Sr(OH)2 dan Ba(OH)2 mudah larut. Be(OH)2 bersifat amfoter (dapat larut dalam asam dan basa kuat).

Be2+ + 2H2O(l)(Be(OH)2(s) + 2H+(aq)

BeO2 + 2H2O(l)(Be(OH)2(s) + 2H(aq)

Harga hasil kali kelarutan (Ksp) beberapa garam alkali tanah terlihatdalam tabel berikut.

Dari tabel Ksp di atas terlihat hasil kali kelarutan garam sulfat berkurang dari BeSO4 sampai BaSO4 berarti kelarutan garam sulfatnya dari atas ke bawah semakin kecil. Kelarutan garam kromat dari BeCrO4 sampai BaCrO4. Semua garam karbonatnya sukar larut, semua garam oksalatnya sukar larut kecuali MgC2O4 yang sedikit larut. Untuk lebih memahami kelarutan basa dan garam alkali lakukan kegiatan berikut.

Air Sadah1. Pengertian Air Sadah

Bila kita masuk dalam sebuah gua di daerah berkapur kita akan melihat stalaktit dan stalagmit. Bagaimanakah terjadinya stalaktit dan stalagmit? Pernahkah Anda merebus air dalam ketel yang sudah lama digunakan? Apa yang dapat Anda amati dalam dasar ketel? Semua peristiwa tersebut ada kaitannya dengan air sadah.

Di dalam air seringkali terkandung mineral yang terlarut, misalnya CaCl2, CaSO4, Ca(HCO3)2, MgSO4, Mg(HCO3)2 dan lain-lain tergantung dari sumber airnya. Air yang mengandung ion Ca2+ atau Mg2+ dalam jumlah yang cukup banyak disebut air sadah. Penggunaan air sadah ini menimbulkan beberapa masalah diantaranya sukar berbuih bila digunakan untuk mencuci dengan sabun, menimbulkan kerak pada ketel bila direbus karena air sadah mengendapkan sabun menjadi scum dan mengendapkan CaCO3 bila dipanaskan. Air yang hanya sedikit atau tidak mengandung ion Ca2+ atau Mg2+ disebut air lunak.

Air sadah terutama disebabkan adanya Ca(HCO3)2 yang terlarut dalam air. Ion kalsium dan bikarbonat, antara lain berasal dari proses pelarutan batu kapur CaCO3 dalam lapisan tanah oleh air hujan yang mengandung sedikit asam.

Ca(HCO3)2(aq)(CaCO3(s) + H2O(l) + CO2(g) batu kapur air hujan kalsium bikarbonat

Air yang menetes di dalam gua mengandung Ca(HCO3)2 yang terlarut dan CaCO3 yang tidak larut. CaCO3 yang tertinggal di langit-langit gua semakin bertambah panjang membentuk stalaktit dan air yang menetes membawa CaCO3 yang semakin menumpuk di dasar gua makin tinggi membentuk stalagmit. Air yang terus mengalir mengandung Ca(HCO3)2 terlarut merupakan air sadah. Untuk mengetahui kesadahan suatu air dapat dilakukan penambahan tetesan air sabun terhadap suatu contoh sampel air sampai terbentuk busa. Air sadah memerlukan lebih banyak air sabun untuk membentuk busa, sedangkan air lunak hanya membutuhkan sedikit air sabun untuk membentuk busa.

http://jabirbinhayyan.wordpress.com/2009/11/28/aklai-tanah-part2/Logam Alkali Tanah Dibandingkan dengan logam alkali pada periode yang sama :

Titik leleh dan titik didih lebih tinggi, lebih keras, lebih kuat dan lebih padat. Hal ini disebabkan karena terdapat dua delokalisas elektron per ion dalam kristal yang memberikan gaya elektronik lebih besar dengan muatan ion . M2+ yang lebih tinggi.

Sifat kimia sangat mirip misalnya dalam pembentukan senyawa ionik tetapi berbeda dalam rumus dan reaktivitas lebih rendah karena energi ionisasi (IE) pertama lebih tinggi dan terdapatnya energi ionisasi kedua membentuk ion M2+ yang stabil.

Bilangan oksidasi senyawa selalu +2 di dalam senyawa.

Dua elektron s terluar lepas. Sedangkan energi ionisasi ketiga sangat tinggi untuk membentu ion +3.

Golongan 2 yang stabil membentuk konfigurasi elektron gas mulia.

Contoh : ion kalsium, Ca2+, is 2,8,8 or 1s22s22p63s23p6 atau[Ar]

Pada umumnya makin ke bawah dalam satu golongan nomor atom cenderung makin meningkat.

Energi Ionisasi pertama atau kedua menurun

Karena jari-jari atom makin besar akibat adanya ekstra kulit yang terisi. Elektron terluar sangat jauh dari inti sehinga tertarik lemah oleh inti sehingga lebih sedikit energi yang diperlukan untuk melepaskannya.

Potensial energi selalu meningkat dengan urutan . ke 3 > 2 > 1, karena muatan inti yang sama menarik sedikit elektron yang rata-rata lebih dekat dengan inti. TETAPI dengan catatan IE ke 2 untuk golongan 1, IE ke 3 untuk golongan 2 menunjukkan menunjukkan peningkatan yang luar biasa dibandingkan IE sebelumnya.

Jari-jari Atom atau ionik meningkat:

Disebabkan adanya kulit yang lebih banyak.

Jari-jari golongan 2 lebih kecil dari pada golongan 1.karena tarikan elektron dengan jumlah kulit yang sama.

Biasanya jari-jari ion holongan 2 M2+ lebih kecil dari pada golongan 1 M+ pada periode yang sama karena muatan inti meningkat.

Pada umumnya (tidak selalu) titik didih dan titik leleh menurun

Disebabkan peningkatan jari-jari ion dan meningkatnya muatan.

Lebih reaktif karena makin ke bawah makin mudah membentuk ion.

Electronegativity cenderung menurun:

Pola rumus molekul:

Rumus umum dapat ditulis M2O atau rumus ionik (M+)2O2- dimana M adalah Li sampai Fr atau Be sampai Ra.http://www.chem-is-try.org/materi_kimia/kimia-smk/kelas_xi/logam-alkali-dan-alkali-tanah/