2. statika partikel

34
2. Statika Partikel Genap 013 / 2014 STATIKA STRUKTUR I Made Gatot Karohika, ST. MT. Mechanical Engineering Udayana University

Upload: gaia

Post on 22-Mar-2016

123 views

Category:

Documents


5 download

DESCRIPTION

STATIKA STRUKTUR. I Made Gatot Karohika , ST. MT. Mechanical Engineering Udayana University. 2. Statika Partikel. Genap 2013 / 2014. Contents. Introduction Resultant of Two Forces Vectors Addition of Vectors Resultant of Several Concurrent Forces Sample Problem 2.1 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 2.  Statika Partikel

2. Statika Partikel

Genap2013 / 2014

STATIKA STRUKTURI Made Gatot Karohika, ST. MT.

Mechanical EngineeringUdayana University

Page 2: 2.  Statika Partikel

2 - 2

Contents

IntroductionResultant of Two ForcesVectorsAddition of VectorsResultant of Several Concurrent ForcesSample Problem 2.1Sample Problem 2.2Rectangular Components of a Force: Unit VectorsAddition of Forces by Summing Components

Sample Problem 2.3Equilibrium of a ParticleFree-Body DiagramsSample Problem 2.4Sample Problem 2.6Rectangular Components in SpaceSample Problem 2.7

Page 3: 2.  Statika Partikel

2 - 3

Pendahuluan• Dalam bab ini, kita akan mempelajari pengaruh gaya-gaya yang bekerja pada

partikel:

- Mempelajari cara mengganti dua atau lebih gaya [multiple forces] yang bekerja pada suatu partikel menjadi sebuah gaya tunggal [resultant force] yang pengaruhnya sama seperti gaya-gaya semula,

- Menurunkan hubungan-hubungan yang ada antara berbagai gaya yang bekerja pada suatu partikel dalam kondisi seimbang [equilibrium] dan memakai hubungan ini untuk menentukan beberapa gaya-gaya yang bekerja pada partikel tersebut.

• Pemakaian kata “partikel” tidak berarti bahwa kita membatasi pelajaran kita pada benda yang kecil [miniscule bodies]. Yang dimaksud disini adalah ukuran dan bentuk benda yang dianalisa tidak banyak [ tidak significant] mempengaruhi penyelesaian masalah, sehingga semua gaya yang bekerja pada suatu benda akan diasumsikan bekerja di titik yang sama.

Page 4: 2.  Statika Partikel

2 - 4

Resultant of Two Forces• Force [Gaya]: aksi sebuah benda pada benda

lain; ditentukan oleh its point of application [titik kerjanya], magnitude [besarnya], line of action [garis aksi], and sense [arah].

• Dari Percobaan menunjukkan bahwa pengaruh kombinasi dari dua gaya dapat digantikan dengan sebuah gaya resultan.

• Gaya resultant adalah equivalent dengan diagonal of a parallelogram [jajaran genjang] dengan dua gaya pada kedua sisinya.

• Force [ gaya ] adalah besaran vector .

Page 5: 2.  Statika Partikel

2 - 5

Vectors• Vector: parameters yang mempunyai besar dan arah, yang

penjumlahannya mengikuti hukum jajaran genjang [parallelogram law]. Examples: displacements [perpindahan], velocities [kecepatan], accelerations [percepatan], momen.

• Klasifikasi Vector:- Tertentu atau terikat; vectors mempunyai titik tangkap yang

pasti yaitu partikel itu sendiri yang tidak dapat dipindahkan tanpa merubah kondisi soal yang ditinjau/analisa [ex: gaya pada partikel].

- Bebas; vectors yang dapat diubah dengan bebas dalam ruang tanpa mempengaruhi analisa [ex: kopel gaya].

- Geser; vectors yang dapat dipindahkan, atau menggeser sepanjang garis aksi [ex: gaya pada benda tegar].

• Vector Equal atau sama : vectors mempunyai besar dan arahnya sama.

• Negative vector of a given vector has the same magnitude and the opposite direction.

• Scalar: parameters yang mempunyai besar tetapi tidak mempunyai arah. Ex: mass, volume, temperature

Page 6: 2.  Statika Partikel

2 - 6

Penjumlahan Vectors• Hukum jajaran genjang untuk

penjumlahan vector.• Hukum segitiga untuk penjumlahan vektor

B

B

C

C

vektor] secara[penulisan QPR

analisaBPQQPR

}{cos2222

• Law of cosines,

• Law of sines,

PC

RB

QA sinsinsin

• Penjumlahan Vector adalah bersifat commutative,

PQQP

• Vector subtraction)( QPQP

Page 7: 2.  Statika Partikel

2 - 7

Penjumlahan Vector______________cont…

• Penjumlahan dari tiga atau lebih vektor dengan penggunaan berulang dari hukum segitiga

• Aturan poligon untuk penjumlahan tiga atau lebih vector.

• Penjumlahan Vector adalah associative,

SQPSQPSQP

• Perkalian vektor dengan skalar

Page 8: 2.  Statika Partikel

2 - 8

Resultant of Several Concurrent Forces

• Concurrent forces: sekumpulan gaya yang melalui titik yang sama.

Sekumpulan gaya concurrent yang diterapkan pada sebuah partikel dapat digantikan dengan sebuah resultant force yang merupakan penjumlahan vektor dari gaya-gaya yang bekerja.

• Vector force components: two or more force vectors which, together, have the same effect as a single force vector.

Page 9: 2.  Statika Partikel

2 - 9

Sample Problem 2.1

Dua buah gaya P dan Q beraksi pada suatu paku A.

Tentukan resultannya

SOLUTION:• Graphical solution - construct a

parallelogram with sides in the same direction as P and Q and lengths in proportion. Graphically evaluate the resultant which is equivalent in direction and proportional in magnitude to the the diagonal.

• Trigonometric solution - use the triangle rule for vector addition in conjunction with the law of cosines and law of sines to find the resultant.

Page 10: 2.  Statika Partikel

2 - 10

Sample Problem 2.1

• Graphical solution – Jajaran genjang dengan sisi sama dengan P dan Q digambar mengikuti skala. Besar dan arah gaya reultan diukur dan diperoleh,

35N 98 R

• Graphical solution – hukum segitiga dapat pula digunakan. Gaya P dan Q digambar megikuti skala dengan cara menghubungkan ujung dan ekor gaya. Kemudian besar dan arah gaya diukur,

35N 98 R

Page 11: 2.  Statika Partikel

2 - 11

Sample Problem 2.1• Trigonometric solution – hukum segitiga digunakan lagi

disini, dua sisi dengan sudutnya diketahui. Dengan memakai rumus kosinus dapat dicari,

155cosN60N402N60N40cos222

222 BPQQPR

AA

RQBA

RB

QA

2004.15

N73.97N60155sin

sinsin

sinsin

N73.97R

Dari rumus sinus ditulis,

04.35

Page 12: 2.  Statika Partikel

2 - 12

Sample Problem 2.2

a) gaya pada masing-masing tali, dengan mengetahui = 45o,

b) Harga dari agar gaya pada tali 2 minimum.

Sebuah tongkang ditarik oleh dua kapal penyeret. Jika resultan gaya yang dilakukan oleh kapal penyeret sebesar 5000 lbf diarahkan sepanjang sumbu tongkang, tentukanlah:

SOLUTION:• Find a graphical solution by applying the

Parallelogram Rule for vector addition. The parallelogram has sides in the directions of the two ropes and a diagonal in the direction of the barge axis and length proportional to 5000 lbf.

• The angle for minimum tension in rope 2 is determined by applying the Triangle Rule and observing the effect of variations in .

• Find a trigonometric solution by applying the Triangle Rule for vector addition. With the magnitude and direction of the resultant known and the directions of the other two sides parallel to the ropes given, apply the Law of Sines to find the rope tensions.

Page 13: 2.  Statika Partikel

2 - 13

Sample Problem 2.2

a) Gaya untuk = 45o

• Graphical solution – dengan menggunakan hukum jajarangenjang dapat diperoleh diagonal(resultan) sebesar 5000 lbf dengan arah kekanan. Sisi-sisinya digambarkan sejajar dengan kedua tali. Bila gambar dilakukan mengikuti skala, kita peroleh :

lbf2600lbf3700 21 TT

• Trigonometric solution - hukum segitiga dan hukum sinus ,

105sinlbf5000

30sin45sin21 TT

lbf2590lbf3660 21 TT

Page 14: 2.  Statika Partikel

2 - 14

Sample Problem 2.2

b) Mencari harga untuk gaya T2 minimum• Untuk menentukan harga agar tali 2 (T2)

minimum, hukum segitiga kita gunakan. Dalam gambar yang ditunjukkan garis 1 – 1’ adalah arah T1 yang diketahui. Beberapa kemungkinan arah T2 ditunjukkan oleh garis 2 – 2’.

• Dapat kita lihat bahwa harga T2 minimum bila T1 dan T2 saling tegak lurus. Harga mimimum T2 :

30sinlbf50002T lbf25002 T

30coslbf50001T lbf43301 T

3090 60

Page 15: 2.  Statika Partikel

Quis (10 menit)

Dua buah gaya P dan Q beraksi pada suatu paku hook A.

Tentukan besar dan arah resultannya

(a) secara grafis dengan hukum jajaran genjang dan segitiga

(b) secara trigonometik

Page 16: 2.  Statika Partikel

2 - 16

Rectangular Components of a Force: Unit Vectors

• Vector components may be expressed as products of the unit vectors with the scalar magnitudes of the vector components.

Fx and Fy are referred to as the scalar components of jFiFF yx

F

• May resolve a force vector into perpendicular components so that the resulting parallelogram is a rectangle. are referred to as rectangular vector components and

yx FFF

yx FF

and

• Define perpendicular unit vectors which are parallel to the x and y axes.

ji

and

Page 17: 2.  Statika Partikel

2 - 17

Addition of Forces by Summing Components

SQPR

• Wish to find the resultant of 3 or more concurrent forces,

jSQPiSQPjSiSjQiQjPiPjRiR

yyyxxx

yxyxyxyx

• Resolve each force into rectangular components

xxxxx

FSQPR

• The scalar components of the resultant are equal to the sum of the corresponding scalar components of the given forces.

y

yyyyF

SQPR

x

yyx R

RRRR 122 tan

• To find the resultant magnitude and direction,

Page 18: 2.  Statika Partikel

2 - 18

Sample Problem 2.3

Empat gaya bekerja pada titik A, seperti pada gambar. Tentukan resultan gaya-gaya yang bekerja pada baut.

SOLUTION:• Uraikan masing-masing gaya menjadi

komponen tegak lurusnya.

• Hitung besar dan arah resultan.

• Tentukan komponen-komponen dari resultan dengan menambahkan berdasarkan komponen gayanya.

Page 19: 2.  Statika Partikel

2 - 19

Sample Problem 2.3 SOLUTION:• Uraikan masing-masing gaya menjadi komponen

tegak lurus.

9.256.961000.11001102.754.27800.759.129150

4

3

2

1

FFFF

compycompxmagforce

22 3.141.199 R N6.199R

• Hitung besar dan arah resultan.

N1.199N3.14tan 1.4

• Tentukan komponen-komponen dari resultan dengan menambahkan berdasarkan komponen gayanya.

1.199xR 3.14yR

Page 20: 2.  Statika Partikel

2 - 20

Equilibrium of a Particle• When the resultant of all forces acting on a particle is zero, the particle is in

equilibrium.

• Particle acted upon by two forces:- equal magnitude- same line of action- opposite sense

• Particle acted upon by three or more forces:- graphical solution yields a closed polygon- algebraic solution

00

0

yx FF

FR

• Newton’s First Law: If the resultant force on a particle is zero, the particle will remain at rest or will continue at constant speed in a straight line.

Page 21: 2.  Statika Partikel

2 - 21

Free-Body Diagrams

Space Diagram: A sketch showing the physical conditions of the problem.

Free-Body Diagram: A sketch showing only the forces on the selected particle.

Page 22: 2.  Statika Partikel

2 - 22

Sample Problem 2.4

Dalam suatu operasi bongkar muat kapal, sebuah mobil seberat 3500-lb diangkat oleh seutas kabel. Seutas tali diikatkan pada kabel tersebut di titik A dan ditarik agar mobil sampai ketempat yang dikehendaki. Sudut antara kabel dan arah vertikal adalah 2o, sedang sudut antara tali dan arah horisontal 30o. Berapa gaya tali

SOLUTION:• Construct a free-body diagram for the

particle at the junction of the rope and cable.

• Apply the conditions for equilibrium by creating a closed polygon from the forces applied to the particle.

• Apply trigonometric relations to determine the unknown force magnitudes.

Page 23: 2.  Statika Partikel

2 - 23

Sample Problem 2.4

SOLUTION:• Construct a free-body diagram for the

particle at A.

• Apply the conditions for equilibrium.

• Solve for the unknown force magnitudes.

58sinlb3500

2sin120sinACAB TT

lb3570ABT

lb144ACT

Page 24: 2.  Statika Partikel

2 - 24

Sample Problem 2.6

It is desired to determine the drag force at a given speed on a prototype sailboat hull. A model is placed in a test channel and three cables are used to align its bow on the channel centerline. For a given speed, the tension is 40 lb in cable AB and 60 lb in cable AE.

Determine the drag force exerted on the hull and the tension in cable AC.

SOLUTION:• Choosing the hull as the free body, draw a

free-body diagram.

• Express the condition for equilibrium for the hull by writing that the sum of all forces must be zero.

• Resolve the vector equilibrium equation into two component equations. Solve for the two unknown cable tensions.

Page 25: 2.  Statika Partikel

2 - 25

Sample Problem 2.6

SOLUTION:• Choosing the hull as the free body, draw a free-

body diagram.

25.60

75.1ft 4ft 7tan

56.20

375.0ft 4ft 1.5tan

• Express the condition for equilibrium for the hull by writing that the sum of all forces must be zero.

0 DAEACAB FTTTR

Page 26: 2.  Statika Partikel

2 - 26

Sample Problem 2.6

• Resolve the vector equilibrium equation into two component equations. Solve for the two unknown cable tensions.

jT

iFTR

iFF

iT

jTiTjTiTT

jijiT

AC

DAC

DD

ACAC

ACACAC

AB

609363.084.193512.073.34

0

lb 06

9363.03512.056.20cos56.20sin

lb 84.19lb 73.3426.60coslb 4026.60sinlb 40

Page 27: 2.  Statika Partikel

2 - 27

Sample Problem 2.6

jT

iFTR

AC

DAC

609363.084.193512.073.34

0

This equation is satisfied only if each component of the resultant is equal to zero

609363.084.1900

3512.073.3400

ACy

DACxTF

FTF

lb 66.19lb 9.42

D

ACFT

Page 28: 2.  Statika Partikel

2 - 28

Rectangular Components in Space

• The vector is contained in the plane OBAC.

F

• Resolve into horizontal and vertical components.

yh FF sin

F

yy FF cos

• Resolve into rectangular components

hF

sinsin

sin

cossincos

y

hy

y

hx

F

FF

FFF

Page 29: 2.  Statika Partikel

2 - 29

Rectangular Components in Space

• With the angles between and the axes,F

kji

F

kjiF

kFjFiFF

FFFFFF

zyx

zyx

zyx

zzyyxx

coscoscos

coscoscos

coscoscos

• is a unit vector along the line of action ofand are the direction cosines for

F

F

zyx cos and,cos,cos

Page 30: 2.  Statika Partikel

2 - 30

Rectangular Components in Space

Direction of the force is defined by the location of two points,

222111 ,, and ,, zyxNzyxM

dFdF

dFd

Fd

FdF

kdjdidd

FF

zzdyydxxd

kdjdid

NMd

zz

yy

xx

zyx

zyx

zyx

1

and joining vector

121212

Page 31: 2.  Statika Partikel

2 - 31

Sample Problem 2.7

The tension in the guy wire is 2500 N. Determine:

a) components Fx, Fy, Fz of the force acting on the bolt at A,

b) the angles x, y, z defining the direction of the force

SOLUTION:• Based on the relative locations of the points

A and B, determine the unit vector pointing from A towards B.

• Apply the unit vector to determine the components of the force acting on A.

• Noting that the components of the unit vector are the direction cosines for the vector, calculate the corresponding angles.

Page 32: 2.  Statika Partikel

2 - 32

Sample Problem 2.7SOLUTION:• Determine the unit vector pointing from A towards B.

m 3.94

m30m80m40

m30m80m40222

AB

kjiAB

• Determine the components of the force.

kji

kji

FF

N 795N 2120N1060

318.0848.0424.0N 2500

kji

kji

318.0848.0424.03.94

303.94

803.94

40

Page 33: 2.  Statika Partikel

2 - 33

Sample Problem 2.7• Noting that the components of the unit vector are the

direction cosines for the vector, calculate the corresponding angles.

kji

kji zyx

318.0848.0424.0

coscoscos

5.71

0.32

1.115

z

y

x

Page 34: 2.  Statika Partikel

thanks