ikatan antarmolekul

240

Click here to load reader

Upload: riza-septiana

Post on 01-Dec-2015

222 views

Category:

Documents


34 download

TRANSCRIPT

Page 1: Ikatan Antarmolekul

Ikatan Antarmolekul – Ikatan HidrogenKata Kunci: dipol, ikatan hidrogen, ikatan koordinasi, van der waalsDitulis oleh Jim Clark pada 10-10-2007

Halaman ini menjelaskan asal mula ikatan hidrogen – dayatarik antarmolekul yang terbentuk relatif kuat.

Keterangan untuk ikatan hidrogen

Terdapat banyak unsur yang membentuk senyawa dengan hidrogen – ditunjuk sebagai “hidrida”. Jika kamu mem-plot-kan titik didih hidrida unsur golongan 4, kamu akan menemukan bahwa titik didih tersebut naik seiring dengan menurunnya letak unsur pada golongan.

Kenaikan titik didih terjadi karena molekul memperoleh lebih banyak elektron, dan karena itu kekuatan dispersi van der Walls menjadi lebih besar.

Jika kamu mengulangi hal yang sama untuk hidrida golongan 5, 6, 7 sesuatu yang aneh terjadi.

Meskipun secara umum kecenderungannya sama persis dengan yang terjadi pada golongan 4 (dengan alasan yang sama), titik didih hidrida unsur pertama pada tiap golongan melonjak tinggi secara tidak normal.

Page 2: Ikatan Antarmolekul

Pada kasus NH3, H2O dan HF seharusnya terjadi penambahan gaya dayatarik antarmolekul, yang secara signifikan memerlukan energi kalor untuk memutuskannya. Gaya antarmolekul yang relatif kuat ini digambarkan dengan ikatan hidrogen.

Asal mula ikatan hidrogen

Molekul-molekul yang memiliki kelebihan ikatan adalah:

Catatan: Garis yang tebal menunjukkan ikatan berada pada bidang atau pada kertas. Ikatan putus-putus mengarah ke belakang bidang atau kertas berarti menjauh dari kamu, dan bentuk baji (wedge-shaped) mengarah ke arah kamu.

Harus diperhatikan bahwa tiap molekul tersebut:

Hidrogen tertarik secara langsung pada salah satu yang unsur yang paling elektronegatif, menyababkan hidrogen memperoleh jumlah muatan positif yang signifikan

Tiap-tiap unsur yang mana hidrogen tertarik padanya tidak hanya negatif secara signifikan, tetapi juga memiliki satu-satunya pasangan mandiri yang “aktifâ€.�

Pasangan mandiri pada tingkat-2 memiliki elektron yang dikandungnya pada volume ruang yang relatif kecil yang mana memiliki densitas yang tinggi muatan negatif. Pasangan mandiri pada tingkat yang lebih tinggi lebih tersebar dan tidak terlalu atraktif pada sesuatu yang positif.

Mempertimbangkan dua molekul air yang datang bersamaan.

Page 3: Ikatan Antarmolekul

Hidrogen + tertarik dengan kuat pada pasangan mendiri yang mana hampir sama jika kamu memulai untuk membentuk ikatan koordinasi (kovalen dativ). Hal ini tidak terjadi sejauh itu, tetapi dayatarik lebih kuat dibandingkan dayatarik dipol-dipol yang biasa.

Ikatan hidrogen memiliki kekuatan sepersepuluh rata-rata ikatan kovalen, dan secara konstan diputushubungkan pada molekul air. Jika kamu mengibaratkan ikatan kovalen antara oksigen dan hidrogen sebagai hubungan pernikahan yang stabil, ikatan hidrogen hanya berstatus “teman yang baikâ€. Pada skala yang sama, dayatarik van der Waals hanya menunjukkan �perkenalan belaka!

Air sebagai contoh “sempurna” ikatan hidrogen

Harus diperhatikan bahwa tiap molekul air dapat berpotensi membentuk empat ikatan hidrogen dengan molekul air disekelilingnya. Terdapat jumlah hidrogen + yang pasti dan pasangan mandiri karena itu tiap masing-masing molekul air dapat terlibat dalam ikatan hidrogen.

Hal inilah yang menjadi sebab kenapa titik didih air lebih tinggi dibandingkan amonia atau hidrogen fluorida. Pada kasus amonia, jumlah ikatan hidrogen dibatasi oleh fakta bahwa tiap atom nitrogen hanya mempunyai satu pasang elektron mandiri. Pada golongan molekul amonia, tidak terdapat cukup pasangan mandiri untuk mengelilinginya untuk memuaskan semua hidrogen.

Pada hidrogen fluorida, masalah yang muncul adalah kekurangan hidrogen. Pada molekul air, hal itu terpenuhi dengan baik. Air dapat digambarkan sebagai sistem ikatan hidrogen yang “sempurna”.

Contoh yang lebih kompleks dari ikatan hidrogen

Hidrasi ion negatif

Ketika sebuah substansi ionik dialrutkan dalam air, molekul air berkelompok disekeliling ion yang terpisah. Proses ini disebut hidrasi.

Air seringkali terikat pada ion positif melalui ikatan koordinasi (kovalen dativ). Air berikatan dengan ion negatif menggunakan ikatan hidrogen

Diagram menunjukkan potensi terbentuknya ikatan hidrogen pada ion klorida, Cl-. Meskipun pasangan mandiri pada ion klor terletak pada tingkat-3 dan secara normal tidak akan cukup aktif utnuk membentuk ikatan hidrogen, pada kasus ini mereka terbentuk lebih atraktif melalui muatan negatif penuh pada klor.

Page 4: Ikatan Antarmolekul

Meskipun ion negatif rumit, hal itu akan selalu menjadi pasangan mandiri yang mana atom hidrogen dari molekul air dapat membentuk ikatan hidrogen juga.

Ikatan hidrogen pada alkohol

Alkohol adalah molekul organik yang mengandung gugus -O-H.

Setiap molekul yang memiliki atom hidrogen tertarik secara langsung ke oksigen atau nitrogen adalah ikatan hidrogen yang cakap. Seperti molekul yang akan selalu memiliki titik didih yang tinggi dibandingkan molekul yang berukuran hampir sama yang mengandung gugus -O-H atau -N-H. Ikatan hidrogen membuat molekul lebih melekat (stickier), dan memerlukan lebih banyak energi kalor untuk memisahkannya.

Etanol, CH3CH2-O-H, dan metoksimetana, CH3-O-CH3, keduanya memiliki rumus molekul yang sama, C2H6O.

Keduanya memiliki jumlah elektron yang sama, dan panjang molekul yang sama. Dayatarik van der Waals (baik antara gaya dispersi dan dayatarik dipol-dipol) pada keduanya akan sama.

Bagaimanapun, etanol memiliki atom hirogen yang tertarik secara langsung pada oksigen – dan oksigen tersebut masih memiliki dua pasangan mandiri seperti pada molekul air. Ikatan hidrigen dapat terjadi antara molekul etanol, meskipun tidak seefektif pada air. Ikatan hidrogen terbatas oleh fakta bahwa hanya ada satu atom hidrogen pada tiap molekul etanol dengan cukup muatan +.

Pada metoksimetana, pasangan mandiri pada oksigen masih terdapat disana, tetapi hidrogen tidak cukup + untuk pembentukan ikatan hidrogen. Kecuali pada beberapa kasus yang tidak

Page 5: Ikatan Antarmolekul

biasa, atom hidrogen tertarik secara langsung pada atom yang sangat elektronegatif untuk menjadikan ikatan hidrogen.

Titik didih etanol dan metoksimetana menunjukkan pengaruh yang dramatis bahwa ikatan hidrogen lebih melekat pada molekul etanol:

etanol (dengan ikatan hidrogen) 78.5°Cmetiksimetana (tanpa ikatan hidrogen) -24.8°C

Ikatan hidrogen pada etanol menghasilkan titik didih sekitar 100°C.

Sangat penting untuk merealisasikan bahwa ikatan hidrogen eksis pada penambahan (in addition) dayatarik van der Waals. Sebagai contoh, semua molekul berikut ini mengandung jumlah elektron yang sama, dan dua yang pertama memiliki panjang yang sama. Titik didih yang paling tinggi butan-1-ol berdasarkan pada penambahan ikatan hidrogen.

Dengan membandingkan dua alkohol (yang mengandung gugus -O-H), kedua titik didih adalah tinggi karena penambahan ikatan hidrogen berdasarkan pada tertariknya hidrogen secara langsung pada oksigen ? tetapi sebenarnya tidak sama.

Titik didih 2-metilproan-1-ol tidak cukup tinggi seperti butan-1-ol karena percabangan pada molekul menjadikan dayatarik van der Waals kurang efektif dibandingkan pada butan-1-ol yang lebih panjang.

Ikatan hidrogen pada molekul organik yang mengandung nitrogen

Ikatan hidrogen juga terjadi pada molekul organik yang mengandung gugus N-H – pendeknya terjadi juga ada amonia. Contohnya adalah molekul sederhana seperti CH3NH2 (metilamin) sampai molekul yang panjang seperti protein dan DNA.

Dua untai double helix yang terkenal pada DNA berikatan satu sama lain melalui ikatan hidrogen antara atom hidrogen yang tertarik oleh nitrogen pada salah satu untai, dan pasangan mandiri pada nitrogen atau oksigen yang lain yang terletai pada untai yang lain

Ikatan kimia adalah sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Penjelasan mengenai gaya tarik menarik ini sangatlah rumit dan dijelaskan oleh elektrodinamika kuantum. Dalam prakteknya, para kimiawan biasanya bergantung pada teori kuantum atau penjelasan kualitatif yang kurang kaku (namun lebih mudah untuk dijelaskan) dalam menjelaskan ikatan kimia. Secara umum, ikatan kimia yang kuat diasosiasikan dengan transfer elektron antara dua atom yang berpartisipasi. Ikatan kimia

Page 6: Ikatan Antarmolekul

menjaga molekul-molekul, kristal, dan gas-gas diatomik untuk tetap bersama. Selain itu ikatan kimia juga menentukan struktur suatu zat.

Kekuatan ikatan-ikatan kimia sangatlah bervariasi. Pada umumnya, ikatan kovalen dan ikatan ion dianggap sebagai ikatan "kuat", sedangkan ikatan hidrogen dan ikatan van der Waals dianggap sebagai ikatan "lemah". Hal yang perlu diperhatikan adalah bahwa ikatan "lemah" yang paling kuat dapat lebih kuat daripada ikatan "kuat" yang paling lemah.

Contoh model titik Lewis yang menggambarkan ikatan kimia anatara karbon C, hidrogen H, dan oksigen O. Penggambaran titik lewis adalah salah satu dari usaha awal kimiawan dalam menjelaskan ikatan kimia dan masih digunakan secara luas sampai sekarang.

Page 7: Ikatan Antarmolekul

Daftar isi [sembunyikan]

1 Tinjauan 2 Sejarah 3 Teori ikatan valensi 4 Teori orbital molekul 5 Perbandingan antara teori ikatan valensi dan teori orbital molekul 6 Ikatan dalam rumus kimia 7 Ikatan kuat kimia

o 7.1 Ikatan kovalen o 7.2 Ikatan polar kovalen o 7.3 Ikatan ion o 7.4 Ikatan kovalen koordinat o 7.5 Ikatan pisang o 7.6 Ikatan 3c-2e dan 3c-4e o 7.7 Ikatan tiga elektron dan satu elektron o 7.8 Ikatan aromatik o 7.9 Ikatan logam

8 Ikatan antarmolekul o 8.1 Dipol permanen ke dipol permanen o 8.2 Ikatan hidrogen o 8.3 Dipol seketika ke dipol terimbas (van der Waals) o 8.4 Interaksi kation-pi

9 Elektron pada ikatan kimia 10 Lihat pula 11 Referensi 12 Pranala luar

[sunting] Tinjauan

Elektron yang mengelilingi inti atom bermuatan negatif dan proton yang terdapat dalam inti atom bermuatan positif, mengingat muatan yang berlawanan akan saling tarik menarik, maka dua atom yang berdekatan satu sama lainnya akan membentuk ikatan.

Dalam gambaran yang paling sederhana dari ikatan non-polar atau ikatan kovalen, satu atau lebih elektron, biasanya berpasangan, ditarik menuju sebuah wilayah di antara dua inti atom. Gaya ini dapat mengatasi gaya tolak menolak antara dua inti atom yang positif, sehingga atraksi ini menjaga kedua atom untuk tetap bersama, walaupun keduanya masih akan tetap bergetar dalam keadaan kesetimbangan. Ringkasnya, ikatan kovalen melibatkan elektron-elektron yang dikongsi dan dua atau lebih inti atom yang bermuatan positif secara bersamaan menarik elektron-elektron bermuatan negatif yang dikongsi.

Dalam gambaran ikatan ion yang disederhanakan, inti atom yang bermuatan positif secara dominan melebihi muatan positif inti atom lainnya, sehingga secara efektif menyebabkan satu atom mentransfer elektronnya ke atom yang lain. Hal ini menyebabkan satu atom bermuatan positif dan yang lainnya bermuatan negatif secara keseluruhan. Ikatan ini dihasilkan dari

Page 8: Ikatan Antarmolekul

atraksi elektrostatik di antara atom-atom dan atom-atom tersebut menjadi ion-ion yang bermuatan.

Semua bentuk ikatan dapat dijelaskan dengan teori kuantum, namun dalam prakteknya, kaidah-kaidah yang disederhanakan mengijinkan para kimiawan untuk memprediksikan kekuatan, arah, dan polaritas sebuah ikatan. Kaidah oktet (Bahasa Inggris: octet rule) dan teori VSEPR adalah dua contoh kaidah yang disederhanakan tersebut. Ada pula teori-teori yang lebih canggih, yaitu teori ikatan valens yang meliputi hibridisasi orbital dan resonans, dan metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: Linear combination of atomic orbitals molecular orbital method) yang meliputi teori medan ligan. Elektrostatika digunakan untuk menjelaskan polaritas ikatan dan efek-efeknya terhadap zat-zat kimia.

[sunting] Sejarah

Artikel utama untuk bagian ini adalah: Sejarah kimia dan Sejarah molekul

Spekulasi awal dari sifat-sifat ikatan kimia yang berawal dari abad ke-12 mengganggap spesi kimia tertentu disatukan oleh sejenis afinitas kimia. Pada tahun 1704, Isaac Newton menggarisbesarkan teori ikatan atomnya pada "Query 31" buku Opticksnya dengan mengatakan atom-atom disatukan satu sama lain oleh "gaya" tertentu.

Pada tahun 1819, setelah penemuan tumpukan volta, Jöns Jakob Berzelius mengembangkan sebuah teori kombinasi kimia yang menekankan sifat-sifat elektrogenativitas dan elektropositif dari atom-atom yang bergabung. Pada pertengahan abad ke-19 Edward Frankland, F.A. Kekule, A.S. Couper, A.M. Butlerov, dan Hermann Kolbe, beranjak pada teori radikal, mengembangkan teori valensi yang pada awalnya disebut "kekuatan penggabung". Teori ini mengatakan sebuah senyawa tergabung berdasarkan atraksi kutub positif dan kutub negatif. Pada tahun 1916, kimiawan Gilbert N. Lewis mengembangkan konsep ikatan elektron berpasangan. Konsep ini mengatakan dua atom dapat berkongsi satu sampai enam elektron, membentuk ikatan elektron tunggal, ikatan tunggal, ikatan rangkap dua, atau ikatan rangkap tiga.

Dalam kata-kata Lewis sendiri:

Page 9: Ikatan Antarmolekul

“ An electron may form a part of the shell of two different atoms and cannot be said to belong to either one exclusively. ”

Pada tahun yang sama, Walther Kossel juga mengajukan sebuah teori yang mirip dengan teori Lewis, namun model teorinya mengasumsikan transfer elektron yang penuh antara atom-atom. Teori ini merupakan model ikatan polar. Baik Lewis dan Kossel membangun model ikatan mereka berdasarkan kaidah Abegg (1904).

Pada tahun 1927, untuk pertama kalinya penjelasan matematika kuantum yang penuh atas ikatan kimia yang sederhana berhasil diturunkan oleh fisikawan Denmark Oyvind Burrau.[1] Hasil kerja ini menunjukkan bahwa pendekatan kuantum terhadap ikatan kimia dapat secara mendasar dan kuantitatif tepat. Namun metode ini tidak mampu dikembangkan lebih jauh untuk menjelaskan molekul yang memiliki lebih dari satu elektron. Pendekatan yang lebih praktis namun kurang kuantitatif dikembangkan pada tahun yang sama oleh Walter Heitler and Fritz London. Metode Heitler-London menjadi dasar dari teori ikatan valensi. Pada tahun 1929, metode orbital molekul kombinasi linear orbital atom (Bahasa Inggris: linear combination of atomic orbitals molecular orbital method), disingkat LCAO, diperkenalkan oleh Sir John Lennard-Jones yang bertujuan menurunkan struktur elektronik dari molekul F2 (fluorin) dan O2 (oksigen) berdasarkan prinsip-prinsip dasar kuantum. Teori orbital molekul ini mewakilkan ikatan kovalen sebagai orbital yang dibentuk oleh orbital-orbital atom mekanika kuantum Schrödinger yang telah dihipotesiskan untuk atom berelektron tunggal. Persamaan ikatan elektron pada multielektron tidak dapat diselesaikan secara analitik, namun dapat dilakukan pendekatan yang memberikan hasil dan prediksi yang secara kualitatif cukup baik. Kebanyakan perhitungan kuantitatif pada kimia kuantum modern menggunakan baik teori ikatan valensi maupun teori orbital molekul sebagai titik awal, walaupun pendekatan ketiga, teori fungsional rapatan (Bahasa Inggris: density functional theory), mulai mendapatkan perhatian yang lebih akhir-akhir ini.

Pada tahun 1935, H. H. James dan A. S. Coolidge melakukan perhitungan pada molekul dihidrogen.Berbeda dengan perhitungan-perhitungan sebelumnya yang hanya menggunakan fungsi-fungsi jarak antara elektron dengan inti atom, mereka juga menggunakan fungsi yang secara eksplisit memperhitungkan jarak antara dua elektron.[2] Dengan 13 parameter yang dapat diatur, mereka mendapatkan hasil yang sangat mendekati hasil yang didapatkan secara eksperimen dalam hal energi disosiasi. Perluasan selanjutnya menggunakan 54 parameter dan memberikan hasil yang sangat sesuai denganhasil eksperimen. Perhitungan ini meyakinkan komunitas sains bahwa teori kuantum dapat memberikan hasil yang sesuai dengan hasil eksperimen. Namun pendekatan ini tidak dapat memberikan gambaran fisik seperti yang terdapat pada teori ikatan valensi dan teori orbital molekul. Selain itu, ia juga sangat sulit diperluas untuk perhitungan molekul-molekul yang lebih besar.

[sunting] Teori ikatan valensi

Artikel utama untuk bagian ini adalah: Teori ikatan valensi

Pada tahun 1927, teori ikatan valensi dikembangkan atas dasar argumen bahwa sebuah ikatan kimia terbentuk ketika dua valensi elektron bekerja dan menjaga dua inti atom bersama oleh karena efek penurunan energi sistem. Pada tahun 1931, beranjak dari teori ini, kimawan Linus Pauling mempublikasikan jurnal ilmiah yang dianggap sebagai jurnal paling penting dalam sejarah kimia: "On the Nature of the Chemical Bond". Dalam jurnal ini, berdasarkan

Page 10: Ikatan Antarmolekul

hasil kerja Lewis dan teori valensi ikatan Heitler dan London, dia mewakilkan enam aturan pada ikatan elektron berpasangan:

1. Ikatan elektron berpasangan terbentuk melalui interaksi elektron tak-berpasangan pada masing-masing atom.

2. Spin-spin elektron haruslah saling berlawanan.

3. Seketika dipasangkan, dua elektron tidak bisa berpartisipasi lagi pada ikatan lainnya.

4. Pertukaran elektron pada ikatan hanya melibatkan satu persamaan gelombang untuk setiap atom.

5. Elektron-elektron yang tersedia pada aras energi yang paling rendah akan membentuk ikatan-ikatan yang paling kuat.

6. Dari dua orbital pada sebuah atom, salah satu yang dapat bertumpang tindih paling banyaklah yang akan membentuk ikatan paling kuat, dan ikatan ini akan cenderung berada pada arah orbital yang terkonsentrasi.

Buku teks tahun 1939 Pauling: On the Nature of Chemical Bond menjadi apa yang banyak orang sebut sebagai "kitab suci" kimia modern. Buku ini membantu kimiawan eksperimental untuk memahami dampak teori kuantum pada kimia. Namun, edisi 1959 selanjutnya gagal untuk mengalamatkan masalah yang lebih mudah dimengerti menggunakan teori orbital molekul. Dampak dari teori valensi ini berkurang sekitar tahun 1960-an dan 1970-an ketika popularitas teori orbital molekul meningkat dan diimplementasikan pada beberapa progam komputer yang besar. Sejak tahun 1980-an, masalah implementasi teori ikatan valensi yang lebih sulit pada program-program komputer telah hampir dipecahkan dan teori ini beranjak bangkit kembali.

[sunting] Teori orbital molekul

Artikel utama untuk bagian ini adalah: Teori orbital molekul

Teori orbital molekul (Bahasa Inggris: Molecular orbital tehory), disingkat MO, menggunakan kombinasi linear orbital-orbital atom untuk membentuk orbital-orbital molekul yang menrangkumi seluruh molekul. Semuanya ini seringkali dibagi menjadi orbital ikat, orbital antiikat, dan orbital bukan-ikatan. Orbital molekul hanyalah sebuah orbital Schrödinger yang melibatkan beberapa inti atom. Jika orbital ini merupakan tipe orbital yang elektron-elektronnya memiliki kebolehjadian lebih tinggi berada di antara dua inti daripada di lokasi lainnya, maka orbital ini adalah orbital ikat dan akan cenderung menjaga kedua inti bersama. Jika elektron-elektron cenderung berada di orbital molekul yang berada di lokasi lainnya, maka orbital ini adalah orbital antiikat dan akan melemahkan ikatan. Elektron-elektron yang berada pada orbital bukan-ikatan cenderung berada pada orbital yang paling dalam (hampir sama dengan orbital atom), dan diasosiasikan secara keseluruhan pada satu inti. Elektron-elektron ini tidak menguatkan maupun melemahkan kekuatan ikatan.

Page 11: Ikatan Antarmolekul

[sunting] Perbandingan antara teori ikatan valensi dan teori orbital molekul

Pada beberapa bidang, teori ikatan valensi lebih baik daripada teori orbital molekul. Ketika diaplikasikan pada molekul berelektron dua, H2, teori ikatan valensi, bahkan dengan pendekatan Heitler-London yang paling sederhana, memberikan pendekatan energi ikatan yang lebih dekat dan representasi yang lebih akurat pada tingkah laku elektron ketika ikatan kimia terbentuk dan terputus. Sebaliknya, teori orbital molekul memprediksikan bahwa molekul hidrogen akan berdisosiasi menjadi superposisi linear dari hidrogen atom dan ion hidrogen positif dan negatif. Prediksi ini tidak sesuai dengan gambaran fisik. Hal ini secara sebagian menjelaskan mengapa kurva energi total terhadap jarak antar atom pada metode ikatan valensi berada di atas kurva yang menggunakan metode orbital molekul. Situasi ini terjadi pada semua molekul diatomik homonuklir dan tampak dengan jelas pada F2 ketika energi minimum pada kurva yang menggunakan teori orbital molekul masih lebih tinggi dari energi dua atom F.

Konsep hibridisasi sangatlah berguna dan variabilitas pada ikatan di kebanyakan senyawa organik sangatlah rendah, menyebabkan teori ini masih menjadi bagian yang tak terpisahkan dari kimia organik. Namun, hasil kerja Friedrich Hund, Robert Mulliken, dan Gerhard Herzberg menunjukkan bahwa teori orbital molekul memberikan deskripsi yang lebih tepat pada spektrokopi, ionisasi, dan sifat-sifat magnetik molekul. Kekurangan teori ikatan valensi menjadi lebih jelas pada molekul yang berhipervalensi (contohnya PF5) ketika molekul ini dijelaskan tanpa menggunakan orbital-orbital d yang sangat krusial dalam hibridisasi ikatan yang diajukan oleh Pauling. Logam kompleks dan senyawa yang kurang elektron (seperti diborana) dijelaskan dengan sangat baik oleh teori orbital molekul, walaupun penjelasan yang menggunakan teori ikatan valensi juga telah dibuat.

Pada tahun 1930, dua metode ini saling bersaing sampai disadari bahwa keduanya hanyalah merupakan pendekatan pada teori yang lebih baik. Jika kita mengambil struktur ikatan valensi yang sederhana dan menggabungkan semua struktur kovalen dan ion yang dimungkinkan pada sekelompok orbital atom, kita mendapatkan apa yang disebut sebagai fungsi gelombang interaksi konfigurasi penuh. Jika kita mengambil deskripsi orbital molekul sederhana pada keadaan dasar dan mengkombinasikan fungsi tersebut dengan fungsi-fungsi yang mendeskripsikan keseluruhan kemungkinan keadaan tereksitasi yang menggunakan orbital tak terisi dari sekelompok orbital atom yang sama, kita juga mendapatkan fungsi gelombang interaksi konfigurasi penuh. Terlihatlah bahwa pendekatan orbital molekul yang sederhana terlalu menitikberatkan pada struktur ion, sedangkan pendekatan teori valensi ikatan yang sederhana terlalu sedikit menitikberatkan pada struktur ion. Dapat kita katakan bahwa pendekatan orbital molekul terlalu ter-delokalisasi, sedangkan pendekatan ikatan valensi terlalu ter-lokalisasi.

Sekarang kedua pendekatan tersebut dianggap sebagai saling memenuhi, masing-masing memberikan pandangannya sendiri terhadap masalah-masalah pada ikatan kimia. Perhitungan modern pada kimia kuantum biasanya dimulai dari (namun pada akhirnya menjauh) pendekatan orbital molekul daripada pendekatan ikatan valensi. Ini bukanlah karena pendekatan orbital molekul lebih akurat dari pendekatan teori ikatan valensi, melainkan karena pendekatan orbital molekul lebih memudahkan untuk diubah menjadi perhitungan numeris. Namun program-progam ikatan valensi yang lebih baik juga tersedia.

Page 12: Ikatan Antarmolekul

[sunting] Ikatan dalam rumus kimia

Bentuk atom-atom dan molekul-molekul yang 3 dimensi sangatlah menyulitkan dalam menggunakan teknik tunggal yang mengindikasikan orbital-orbital dan ikatan-ikatan. Pada rumus molekul, ikatan kimia (orbital yang berikatan) diindikasikan menggunakan beberapa metode yang bebeda tergantung pada tipe diskusi. Kadang-kadang kesemuaannya dihiraukan. Sebagai contoh, pada kimia organik, kimiawan biasanya hanya peduli pada gugus fungsi molekul. Oleh karena itu, rumus molekul etanol dapat ditulis secara konformasi, 3-dimensi, 2-dimensi penuh (tanpa indikasi arah ikatan 3-dimensi), 2-dimensi yang disingkat (CH3–CH2–OH), memisahkan gugus fungsi dari bagian molekul lainnnya (C2H5OH), atau hanya dengan konstituen atomnya saja (C2H6O). Kadangkala, bahkan kelopak valensi elektron non-ikatan (dengan pendekatan arah yang digambarkan secara 2-dimensi) juga ditandai. Beberapa kimiawan juga menandai orbital-orbital atom, sebagai contoh anion etena−4 yang dihipotesiskan (\

/C=C/\ −4) mengindikasikan kemungkinan pembentukan ikatan.sehingga

terjadi ikatan rangkap dua antara banci2 dgn germo.wkwkwk iya kan gan...

[sunting] Ikatan kuat kimiaPanjang ikat dalam pmdan energi ikat dalam kJ/mol.Panjang ikat dapat dikonversikan menjadi Ådengan pembagian dengan 100 (1 Å = 100 pm).Data diambil dari [1].

IkatanPanjang

(pm)Energi

(kJ/mol)

H — Hidrogen

H–H 74 436

H–C 109 413

H–N 101 391

H–O 96 366

H–F 92 568

H–Cl 127 432

H–Br 141 366

C — Karbon

C–H 109 413

C–C 154 348

Page 13: Ikatan Antarmolekul

C=C 134 614

C≡C 120 839

C–N 147 308

C–O 143 360

C–F 135 488

C–Cl 177 330

C–Br 194 288

C–I 214 216

C–S 182 272

N — Nitrogen

N–H 101 391

N–C 147 308

N–N 145 170

N≡N 110 945

O — Oksigen

O–H 96 366

O–C 143 360

O–O 148 145

O=O 121 498

F, Cl, Br, I — Halogen

F–H 92 568

F–F 142 158

F–C 135 488

Cl–H 127 432

Page 14: Ikatan Antarmolekul

Cl–C 177 330

Cl–Cl 199 243

Br–H 141 366

Br–C 194 288

Br–Br 228 193

I–H 161 298

I–C 214 216

I–I 267 151

S — Belerang

C–S 182 272

Ikatan-ikatan berikut adalah ikatan intramolekul yang mengikat atom-atom bersama menjadi molekul. Dalam pandangan yang sederhana dan terlokalisasikan, jumlah elektron yang berpartisipasi dalam suatu ikatan biasanya merupakan perkalian dari dua, empat, atau enam. Jumlah yang berangka genap umumnya dijumpai karena elektron akan memiliki keadaan energi yang lebih rendah jika berpasangan. Teori-teori ikatan yang lebih canggih menunjukkan bahwa kekuatan ikatan tidaklah selalu berupa angka bulat dan tergantung pada distribusi elektron pada setiap atom yang terlibat dalam sebuah ikatan. Sebagai contohnya, karbon-karbon dalam senyawa benzena dihubungkan satu sama lain oleh ikatan 1.5 dan dua atom dalam nitrogen monoksida NO dihubungkan oleh ikatan 2,5. Keberadaan ikatan rangkap empat juga diketahui dengan baik. Jenis-jenis ikatan kuat bergantung pada perbedaan elektronegativitas dan distribusi orbital elektron yang tertarik pada suatu atom yang terlibat dalam ikatan. Semakin besar perbedaan elektronegativitasnya, semakin besar elektron-elektron tersebut tertarik pada atom yang berikat dan semakin bersifat ion pula ikatan tersebut. Semakin kecil perbedaan elektronegativitasnya, semakin bersifat kovalen ikatan tersebut.

[sunting] Ikatan kovalen

Artikel utama untuk bagian ini adalah: Ikatan kovalen

Ikatan kovalen adalah ikatan yang umumnya sering dijumpai, yaitu ikatan yang perbedaan elektronegativitas (negatif dan positif) di antara atom-atom yang berikat sangatlah kecil atau hampir tidak ada. Ikatan-ikatan yang terdapat pada kebanyakan senyawa organik dapat dikatakan sebagai ikatan kovalen. Lihat pula ikatan sigma dan ikatan pi untuk penjelasan LCAO terhadap jenis ikatan ini.

[sunting] Ikatan polar kovalen

Page 15: Ikatan Antarmolekul

Artikel utama untuk bagian ini adalah: Ikatan polar kovalen

Ikatan polar kovalen merupakan ikatan yang sifat-sifatnya berada di antara ikatan kovalen dan ikatan ion.

[sunting] Ikatan ion

Artikel utama untuk bagian ini adalah: Ikatan ion

Ikatan ion merupakan sejenis interaksi elektrostatik antara dua atom yang memiliki perbedaan elektronegativitas yang besar. Tidaklah terdapat nilai-nilai yang pasti yang membedakan ikatan ion dan ikatan kovalen, namun perbedaan elektronegativitas yang lebih besar dari 2,0 bisanya disebut ikatan ion, sedangkan perbedaan yang lebih kecil dari 1,5 biasanya disebut ikatan kovalen.[3] Ikatan ion menghasilkan ion-ion positif dan negatif yang berpisah. Muatan-muatan ion ini umumnya berkisar antara -3 e sampai dengan +3e.

[sunting] Ikatan kovalen koordinat

Artikel utama untuk bagian ini adalah: Ikatan kovalen koordinat

Ikatan kovalen koordinat, kadangkala disebut sebagai ikatan datif, adalah sejenis ikatan kovalen yang keseluruhan elektron-elektron ikatannya hanya berasal dari salah satu atom, penderma pasangan elektron, ataupun basa Lewis. Konsep ini mulai ditinggalkan oleh para kimiawan seiring dengan berkembangnya teori orbital molekul. Contoh ikatan kovalen koordinat terjadi pada nitron dan ammonia borana. Susunan ikatan ini berbeda dengan ikatan ion pada perbedaan elektronegativitasnya yang kecil, sehingga menghasilkan ikatan yang kovalen. Ikatan ini biasanya ditandai dengan tanda panah. Ujung panah ini menunjuk pada akseptor elektron atau asam Lewis dan ekor panah menunjuk pada penderma elektron atau basa Lewis

[sunting] Ikatan pisang

Artikel utama untuk bagian ini adalah: Ikatan pisang

Ikatan pisang adalah sejenis ikatan yang terdapat pada molekul-molekul yang mengalami terikan ataupun yang mendapat rintangan sterik, sehingga orbital-orbital ikatan tersebut dipaksa membentuk struktur ikatan yang mirip dengan pisang. Ikatan pisang biasanya lebih rentan mengalami reaksi daripada ikatan-ikatan normal lainnya.

[sunting] Ikatan 3c-2e dan 3c-4e

Dalam ikatan tiga-pusat dua-elektron, tiga atom saling berbagi dua elektron. Ikatan sejenis ini terjadi pada senyawa yang kekurangan elektron seperti pada diborana. Setiap ikatan mengandung sepasang elektron yang menghubungkan atom boron satu sama lainnya dalam bentuk pisang dengan sebuah proton (inti atom hidrogen) di tengah-tengah ikatan, dan berbagi elektron dengan kedua atom boron. Terdapat pula Ikatan tiga-pusat empat-elektron yang menjelaskan ikatan pada molekul hipervalen.

Page 16: Ikatan Antarmolekul

[sunting] Ikatan tiga elektron dan satu elektron

Ikatan-ikatan dengan satu atau tiga elektron dapat ditemukan pada spesi radikal yang memiliki jumlah elektron gasal (ganjil). Contoh paling sederhana dari ikatan satu elektron dapat ditemukan pada kation molekul hidrogen H2

+. Ikatan satu elektron seringkali memiliki energi ikat yang setengah kali dari ikatan dua elektron, sehingga ikatan ini disebut pula "ikatan setengah". Namun terdapat pengecualian pada kasus dilitium. Ikatan dilitium satu elektron, Li2

+, lebih kuat dari ikatan dilitium dua elektron Li2. Pengecualian ini dapat dijelaskan dengan hibridisasi dan efek kelopak dalam. [4]

Contoh sederhana dari ikatan tiga elektron dapat ditemukan pada kation dimer helium, He2+,

dan dapat pula dianggap sebagai "ikatan setengah" karena menurut teori orbital molekul, elektron ke-tiganya merupakan orbital antiikat yang melemahkan ikatan dua elektron lainnya sebesar setengah. Molekul oksigen juga dapat dianggap memiliki dua ikatan tiga elektron dan satu ikatan dua elektron yang menjelaskan sifat paramagnetiknya.[5]

Molekul-molekul dengan ikatan elektron gasal biasanya sangat reaktif. Ikatan jenis ini biasanya hanya stabil pada atom-atom yang memiliki elektronegativitas yang sama.[5]

[sunting] Ikatan aromatik

Artikel utama untuk bagian ini adalah: Aromatisitas

Pada kebanyakan kasus, lokasi elektron tidak dapat ditandai dengan menggunakan garis (menandai dua elektron) ataupun titik (menandai elektron tungga). Ikatan aromatik yang terjadi pada molekul yang berbentuk cincin datar menunjukkan stabilitas yang lebih.

Pada benzena, 18 elektron ikatan mengikat 6 atom karbon bersama membentuk struktur cincin datar. "Orde" ikatan antara dua atom dapat dikatakan sebagai (18/6)/2=1,5 dan seluruh ikatan pada benzena tersebut adalah identik. Ikatan-ikatan ini dapat pula ditulis sebagai ikatan tunggal dan rangkap yang berselingan, namun hal ini kuranglah tepat mengingat ikatan rangkap dan ikatan tunggal memiliki kekuatan ikatan yang berbeda dan tidak identik.

[sunting] Ikatan logam

Artikel utama untuk bagian ini adalah: Ikatan logam

Pada ikatan logam, elektron-elektron ikatan terdelokalisasi pada kekisi (lattice) atom. Berbeda dengan senyawa organik, lokasi elektron yang berikat dan muatannya adalah statik. Oleh karena delokalisai yang menyebabkan elektron-elektron dapat bergerak bebas, senyawa ini memiliki sifat-sifat mirip logam dalam hal konduktivitas, duktilitas, dan kekerasan.

[sunting] Ikatan antarmolekul

Terdapat empat jenis dasar ikatan yang dapat terbentuk antara dua atau lebih molekul, ion, ataupun atom. Gaya antarmolekul menyebabkan molekul saling menarik atau menolak satu sama lainnya. Seringkali hal ini menentukan sifat-sifat fisik sebuah zat (seperti pada titik leleh).

Page 17: Ikatan Antarmolekul

[sunting] Dipol permanen ke dipol permanen

Artikel utama untuk bagian ini adalah: Gaya antarmolekul

Perbedaan elektronegativitas yang bersar antara dua atom yang berikatan dengan kuat menyebabkan terbentuknya dipol (dwikutub). Dipol-dipol ini akan saling tarik-menarik ataupun tolak-menolak.

[sunting] Ikatan hidrogen

Artikel utama untuk bagian ini adalah: Ikatan hidrogen

Ikatan hidrogen bisa dikatakan sebagai dipol permanen yang sangat kuat seperti yang dijelaskan di atas. Namun, pada ikatan hidrogen, proton hidrogen berada sangat dekat dengan atom penderma elektron dan mirip dengan ikatan tiga-pusat dua-elektron seperti pada diborana. Ikatan hidrogen menjelaskan titik didih zat cair yang relatif tinggi seperti air, ammonia, dan hidrogen fluorida jika dibandingkan dengan senyawa-senyawa yang lebih berat lainnya pada kolom tabel periodik yang sama.

[sunting] Dipol seketika ke dipol terimbas (van der Waals)

Artikel utama untuk bagian ini adalah: Gaya van der Waals

Dipol seketika ke dipol terimbas, atau gaya van der Waals, adalah ikatan yang paling lemah, namun sering dijumpai di antara semua zat-zat kimia. Misalnya atom helium, pada satu titik waktu, awan elektronnya akan terlihat tidak seimbang dengan salah satu muatan negatif berada di sisi tertentu. Hal ini disebut sebagai dipol seketika (dwikutub seketika). Dipol ini dapat menarik maupun menolak elektron-elektron helium lainnya, dan menyebabkan dipol lainnya. Kedua atom akan seketika saling menarik sebelum muatannya diseimbangkan kembali untuk kemudian berpisah.

[sunting] Interaksi kation-pi

Artikel utama untuk bagian ini adalah: Interaksi kation-pi

Interaksi kation-pi terjadi di antara muatan negatif yang terlokalisasi dari elektron-elektron pada orbital π dengan muatan positif.

[sunting] Elektron pada ikatan kimia

Banyak senyawa-senyawa sederhana yang melibatkan ikatan-ikatan kovalen. Molekul-molekul ini memiliki struktur yang dapat diprediksi dengan menggunakan teori ikatan valensi, dan sifat-sfiat atom yang terlibat dapat dipahami menggunakan konsep bilangan oksidasi. Senyawa lain yang mempunyai struktur ion dapat dipahami dengan menggunakan teori-teori fisika klasik.

Page 18: Ikatan Antarmolekul

Pada kasus ikatan ion, elektron pada umumnya terlokalisasi pada atom tertentu, dan elektron-elektron todal bergerak bebas di antara atom-atom. Setiap atom ditandai dengan muatan listrik keseluruhan untuk membantu pemahaman kita atas konsep distribusi orbital molekul. Gaya antara atom-atom secara garis besar dikarakterisasikan dengan potensial elektrostatik kontinum (malaran) isotropik.

Sebaliknya pada ikatan kovalen, rapatan elektron pada sebuah ikatan tidak ditandai pada atom individual, namun terdelokalisasikan pada MO di antara atom-atom. Teori kombinasi linear orbital yang diterima secara umum membantu menjelaskan struktur orbital dan energi-energinya berdasarkan orbtial-orbital dari atom-atom molekul. Tidak seperti ikatan ion, ikatan kovalen bisa memiliki sifat-sifat anisotropik, dan masing-masing memiliki nama-nama tersendiri seperti ikatan sigma dan ikatan pi.

Atom-atom juga dapat membentuk ikatan-ikatan yang memiliki sifat-sifat antara ikatan ion dan kovalen. Hal ini bisa terjadi karena definisi didasari pada delokalisasi elektron. Elektron-elektron dapat secara parsial terdelokalisasi di antara atom-atom. Ikatan sejenis ini biasanya disebut sebagai ikatan polar kovalen. Lihat pula elektronegativitas.

Oleh akrena itu, elektron-elektron pada orbital molekul dapat dikatakan menjadi terlokalisasi pada atom-atom tertentu atau terdelokalisasi di antara dua atau lebih atom. Jenis ikatan antara dua tom ditentukan dari seberapa besara rapatan elektron tersebut terlokalisasi ataupun terdelokalisasi pada ikatan antar atom.

Struktur banyak senyawa anorganik dapat dijelaskan dengan menggunakan teori VSEPR atau secara sederhana dengan teori valensi. Namun, beberapa senyawa anorganik yang tidak masuk dalam kelompok ini sangat penting baik dari sudut pandang teori maupun praktis. Beberapa senyawa ini akan didiskusikan di bawah ini.

AMONIA

Amonia NH3 seolah diturunkan dari metana dengan menggantikan atom karbon dengan atom nitrogen dan salah satu atom hidrogen dengan pasangan elektron bebas. Jadi, amonia memiliki seolah struktur tetrahedral. Namun untuk memahami struktur amonia, anda harus mempertimbangkan inversi atom nitrogen. Perilaku amonia sangat mirip dengan payung yang tertiup sehingga terbalik. Halangan inversinya hanya 5,8 kkal mol-1, dan inversi amonia pada suhu kamar sangat cepat (Gambar 4.10).

Secara prinsip, atom nitrogen dari amina yang mengikat tiga atom atau gugus yang berbeda dapat merupakan pusat asimetrik sebab nitrogen memiliki empat substituen termasuk pasangan elektron bebas. Namun karena adanya inversi ini, atom nitrogen tidak dapat menjadi pusat asimetrik..

DIBORAN

Page 19: Ikatan Antarmolekul

Diharapkan reaksi antara magnesium borida dan air akan menghasilkan boron trihidrida BH3. Namun, yang didapatkan adalah diboran B2H6. Nampaknya senyawa ini tidak dapat dijelaskan dengan teori valensi sederhana, dan banyak sekalai usaha telah dilakukan untuk mengelusidasi anomali ini.

Mg3B2 + 6H2O → 3Mg(OH)2 + B2H6 (4.1)

Kini telah dibuktikan bahwa senyawa ini memiliki struktur aneh sebagai beikut.

Kerangka molekulnya adalah jajaran genjang yang terbentuk dari dua atom boron dan dua atom hidrogen, dan atom hidrogen terikat pada dua atom boron disebut dengan hidrogen jembatan. Empat ikatan B-H terminal secara esensi terbentuk dari tumpang tindih orbital 1s hidrogen dan orbital hibrida boron. Sebaliknya, ikatan jembatan B—H—B adalah ikatan tiga pusat, dua elektron yang terbetuk dari hibridisasi hidrogen 1s dan dua orbital hibrida boron. Keberadaan ikatan seperti ini dikonfirmasi dengan mekanika kuantum.

SENYAWA GAS MULIA

Lama sekali dipercaya bahwa gas mulia hanya ada sebagai molekul monoatomik, dan tidak membentuk senyawa. Kimiawan Kanada Neil Bartlett (1932-) menemukan spesi ionik [O2]+

[PtF6]- dengan mereaksikan oksigen dengan platina heksafluorida PtF6. Ia beranggapan reaksi yang mirip dengan ini yakni reaksi antara xenon dan PtF6 akan berlangsung karena energi ionisasi pertama xenon dekat nilainya dengan energi ionisasi perrtama molekul oksigen. Di tahun 1962 ia berhasil mendapatkan senyawa gas mulia pertama Xe(PtF6)x, (x = 1, 2).

Kemudian menjadi jelas bahwa gas mulia membentuk senyawa biner dengan oksigen dan fluorin yang keduanya memiliki keelektronegativan tinggi. XeF2 adalah molekul linear dengan kelebihan elektron, sementara XeF4 merupakan satu-satunya senyawa unsur berbentuk bujur sangkar. XeF6 berbentuk oktahedron terdistorsi, dan di dekat titik lelehnya, senyawa ini ada sebagai kristal [XeF5]+F-.

FEROSEN

Ferosen adalah senyawa terdiri atas dua cincin sikopentadienil yang melapisi kedua sisi atom Fe dan senyawa ini merupakan contoh pertama kelompok senyawa yang disebut dengan senyawa sandwich (Gambar 4.12).

Page 20: Ikatan Antarmolekul

D awal tahun 1950-an , rekasi antara siklopentadienilmagnesium bromida dan FeCl3 anhidrat dilakukan dengan harapan akan dihasilkan turuanan fulvalena. Namun, senyawa dengan struktur (C6H5)2Fe yang diperoleh. Struktur senyawa ini didapatkan sangat unik: delapan belas elektron, dua belas dari dua molekul siklopentadienil (masing-masing enam elektron) dan enam dari kulit terluar Fe. Jadi, konfigurasi elektron gas mulia dicapai dan kestabilannya kira-kira sepadan. Kedua cincin siklopentadienail berputar layaknya piringan CD musik.

Latihan

4.1 Struktur senyawa inorganik; teori VSEPR.

Sarankan struktur senyawa anorganik berikut: (a) SeF6 (b) N2O (c) ClO- (d) CF3Cl (C atom pusat)

Jawab (a) oktahedron (b) linear (c) linear (d) tetrahedron

4.2 Isomer benzen tersubstitusi

Rumus molekul senyawa yang mengandung satu cincin benzen adalah C8H10. Gambarkan struktur isomer-isomer yang mungkin untuk senyawa ini.

Jawab: senyawa C8H10 mengandung satu cincin benzen dapat berupa etilbenzen C6H5C2H5 atau xylen C6H4(CH3)2. Xylena akan memiliki tiga isomer posisi, yakni, o-, m- dan p-xylene.

4.3 Isomer geometri

Baik asam fumarat dan maleat memiliki rumus HOOCCH=CHCOOH dan merupakan pasangan isomer geometri. Dengan pemanasan ke 150°C, asam maleat kehilangan satu mol H2O menghasilkan anhidrat maleat sementara asam fumarat tidak akan berubah menjadi anhidrat maleat sampai pemanasan pada 300°C. Dengan menggunakan data ini, jelaskan struktur kedua senyawa.

Jawab: lihat teks di halaman

4.4 Struktur senyawa kompleks platina

Diamindikhloroplatina [PtCl2(NH3)2] memiliki struktur bujur sangkar. Prediksikan struktur isomer-isomernya yang mungkin.

Page 21: Ikatan Antarmolekul

Dua isomer, bentuk cis- dan trans, mungkin ada. Struktur bujur sangkar planar disebabkan oleh hibridisasi dsp2. Isomer cis merupakan obat antikanker yang terkenal.

4.5. Stereoisomer gula

Senyawa yang memiliki empat atom karbon, HOCH2CHOHCHOHCHO, adalah gula yang kesederhanaanya sebanding dengan gliseraldehida.

(a) Ada berapa atom karbon asimetrik dalam molekul ini?(b) Gambarkan rumus struktur semua stereoisomer gula ini seperti yang ditunjukan dalam gambar 4.5.

Jawab (a) Ada dua. Dalam struktur di bawah ini, atom karbon asimterik ditandai dengan *. (b) Dua pasang enantiomer dengan jelas ditandai.

4.6 Stereoisomer gula

Glukosa, HOCH2(CHOH)4CHO, memiliki enam atom karbon dan merupakan salah satu senawa alam yang berlimpah.

(a) Ada berapa atom karbon asimetrik dalam molekul ini? (b) Gambarkan rumus struktur semua stereoisomer gula ini seperti yang ditunjukan dalam gambar 4.5.

Jawab: (a) Empat. Di struktur di bawah in, atom karbon asimetrik ditandai dengan *. (b) Jumlah stereoisomer adalah 24 = 16. Struktur delapan isomer ditunjukkan di bawah ini.

Page 22: Ikatan Antarmolekul

Bagi masing-masing isomer di atas, anda dapat menggambarkan pasangan enantiomernya sebagai berikut:

4.7 Analisis konformasional konformer

Dalam kasus 1,2-dikhloroetana, bentuk trans lebih stabil daripada bentuk gauche. Di pihak lain, dalam kasus etilen glikol (1,2-etanadiol; digunakan secara luas sebagai cairan antibeku) bentuk gauche lebih stabil daripada bentuk trans walaupun struktur molekulnya sangat mirip dengan 1,2dikhloroetana. Jelaskan.

Jawab: Dalam bentuk gauche etilen glikol ikatan hidrogen intramolekul akan terjadi dan menstabilkan struktur. Ikatan semacam ini tidak ada dalam bentuk trans.

Struktur senyawa anorganikDitulis oleh Yoshito Takeuchi pada 11-08-2008

Struktur banyak senyawa anorganik dapat dijelaskan dengan menggunakan teori VSEPR atau secara sederhana dengan teori valensi. Namun, beberapa senyawa anorganik yang tidak masuk dalam kelompok ini sangat penting baik dari sudut pandang teori maupun praktis. Beberapa senyawa ini akan didiskusikan di bawah ini.

AMONIA

Page 23: Ikatan Antarmolekul

Amonia NH3 seolah diturunkan dari metana dengan menggantikan atom karbon dengan atom nitrogen dan salah satu atom hidrogen dengan pasangan elektron bebas. Jadi, amonia memiliki seolah struktur tetrahedral. Namun untuk memahami struktur amonia, anda harus mempertimbangkan inversi atom nitrogen. Perilaku amonia sangat mirip dengan payung yang tertiup sehingga terbalik. Halangan inversinya hanya 5,8 kkal mol-1, dan inversi amonia pada suhu kamar sangat cepat (Gambar 4.10).

Secara prinsip, atom nitrogen dari amina yang mengikat tiga atom atau gugus yang berbeda dapat merupakan pusat asimetrik sebab nitrogen memiliki empat substituen termasuk pasangan elektron bebas. Namun karena adanya inversi ini, atom nitrogen tidak dapat menjadi pusat asimetrik..

DIBORAN

Diharapkan reaksi antara magnesium borida dan air akan menghasilkan boron trihidrida BH3. Namun, yang didapatkan adalah diboran B2H6. Nampaknya senyawa ini tidak dapat dijelaskan dengan teori valensi sederhana, dan banyak sekalai usaha telah dilakukan untuk mengelusidasi anomali ini.

Mg3B2 + 6H2O → 3Mg(OH)2 + B2H6 (4.1)

Kini telah dibuktikan bahwa senyawa ini memiliki struktur aneh sebagai beikut.

Kerangka molekulnya adalah jajaran genjang yang terbentuk dari dua atom boron dan dua atom hidrogen, dan atom hidrogen terikat pada dua atom boron disebut dengan hidrogen jembatan. Empat ikatan B-H terminal secara esensi terbentuk dari tumpang tindih orbital 1s hidrogen dan orbital hibrida boron. Sebaliknya, ikatan jembatan B—H—B adalah ikatan tiga pusat, dua elektron yang terbetuk dari hibridisasi hidrogen 1s dan dua orbital hibrida boron. Keberadaan ikatan seperti ini dikonfirmasi dengan mekanika kuantum.

SENYAWA GAS MULIA

Lama sekali dipercaya bahwa gas mulia hanya ada sebagai molekul monoatomik, dan tidak membentuk senyawa. Kimiawan Kanada Neil Bartlett (1932-) menemukan spesi ionik [O2]+

[PtF6]- dengan mereaksikan oksigen dengan platina heksafluorida PtF6. Ia beranggapan reaksi

Page 24: Ikatan Antarmolekul

yang mirip dengan ini yakni reaksi antara xenon dan PtF6 akan berlangsung karena energi ionisasi pertama xenon dekat nilainya dengan energi ionisasi perrtama molekul oksigen. Di tahun 1962 ia berhasil mendapatkan senyawa gas mulia pertama Xe(PtF6)x, (x = 1, 2).

Kemudian menjadi jelas bahwa gas mulia membentuk senyawa biner dengan oksigen dan fluorin yang keduanya memiliki keelektronegativan tinggi. XeF2 adalah molekul linear dengan kelebihan elektron, sementara XeF4 merupakan satu-satunya senyawa unsur berbentuk bujur sangkar. XeF6 berbentuk oktahedron terdistorsi, dan di dekat titik lelehnya, senyawa ini ada sebagai kristal [XeF5]+F-.

FEROSEN

Ferosen adalah senyawa terdiri atas dua cincin sikopentadienil yang melapisi kedua sisi atom Fe dan senyawa ini merupakan contoh pertama kelompok senyawa yang disebut dengan senyawa sandwich (Gambar 4.12).

D awal tahun 1950-an , rekasi antara siklopentadienilmagnesium bromida dan FeCl3 anhidrat dilakukan dengan harapan akan dihasilkan turuanan fulvalena. Namun, senyawa dengan struktur (C6H5)2Fe yang diperoleh. Struktur senyawa ini didapatkan sangat unik: delapan belas elektron, dua belas dari dua molekul siklopentadienil (masing-masing enam elektron) dan enam dari kulit terluar Fe. Jadi, konfigurasi elektron gas mulia dicapai dan kestabilannya kira-kira sepadan. Kedua cincin siklopentadienail berputar layaknya piringan CD musik.

Latihan

4.1 Struktur senyawa inorganik; teori VSEPR.

Sarankan struktur senyawa anorganik berikut: (a) SeF6 (b) N2O (c) ClO- (d) CF3Cl (C atom pusat)

Jawab (a) oktahedron (b) linear (c) linear (d) tetrahedron

4.2 Isomer benzen tersubstitusi

Rumus molekul senyawa yang mengandung satu cincin benzen adalah C8H10. Gambarkan struktur isomer-isomer yang mungkin untuk senyawa ini.

Page 25: Ikatan Antarmolekul

Jawab: senyawa C8H10 mengandung satu cincin benzen dapat berupa etilbenzen C6H5C2H5 atau xylen C6H4(CH3)2. Xylena akan memiliki tiga isomer posisi, yakni, o-, m- dan p-xylene.

4.3 Isomer geometri

Baik asam fumarat dan maleat memiliki rumus HOOCCH=CHCOOH dan merupakan pasangan isomer geometri. Dengan pemanasan ke 150°C, asam maleat kehilangan satu mol H2O menghasilkan anhidrat maleat sementara asam fumarat tidak akan berubah menjadi anhidrat maleat sampai pemanasan pada 300°C. Dengan menggunakan data ini, jelaskan struktur kedua senyawa.

Jawab: lihat teks di halaman

4.4 Struktur senyawa kompleks platina

Diamindikhloroplatina [PtCl2(NH3)2] memiliki struktur bujur sangkar. Prediksikan struktur isomer-isomernya yang mungkin.

Dua isomer, bentuk cis- dan trans, mungkin ada. Struktur bujur sangkar planar disebabkan oleh hibridisasi dsp2. Isomer cis merupakan obat antikanker yang terkenal.

4.5. Stereoisomer gula

Senyawa yang memiliki empat atom karbon, HOCH2CHOHCHOHCHO, adalah gula yang kesederhanaanya sebanding dengan gliseraldehida.

(a) Ada berapa atom karbon asimetrik dalam molekul ini? (b) Gambarkan rumus struktur semua stereoisomer gula ini seperti yang ditunjukan dalam gambar 4.5.

Jawab (a) Ada dua. Dalam struktur di bawah ini, atom karbon asimterik ditandai dengan *. (b) Dua pasang enantiomer dengan jelas ditandai.

Page 26: Ikatan Antarmolekul

4.6 Stereoisomer gula

Glukosa, HOCH2(CHOH)4CHO, memiliki enam atom karbon dan merupakan salah satu senawa alam yang berlimpah.

(a) Ada berapa atom karbon asimetrik dalam molekul ini? (b) Gambarkan rumus struktur semua stereoisomer gula ini seperti yang ditunjukan dalam gambar 4.5.

Jawab: (a) Empat. Di struktur di bawah in, atom karbon asimetrik ditandai dengan *. (b) Jumlah stereoisomer adalah 24 = 16. Struktur delapan isomer ditunjukkan di bawah ini.

Bagi masing-masing isomer di atas, anda dapat menggambarkan pasangan enantiomernya sebagai berikut:

4.7 Analisis konformasional konformer

Dalam kasus 1,2-dikhloroetana, bentuk trans lebih stabil daripada bentuk gauche. Di pihak lain, dalam kasus etilen glikol (1,2-etanadiol; digunakan secara luas sebagai cairan antibeku) bentuk gauche lebih stabil daripada bentuk trans walaupun struktur molekulnya sangat mirip dengan 1,2dikhloroetana. Jelaskan.

Page 27: Ikatan Antarmolekul

Jawab: Dalam bentuk gauche etilen glikol ikatan hidrogen intramolekul akan terjadi dan menstabilkan struktur. Ikatan semacam ini tidak ada dalam bentuk trans.

Bentuk gauche Bentuk trans

4.8 ikatan dalam diboran Jelaskan ikatan dalam diboran. Jawab: lihat teks halaman.

Selingan — Senyawa dengan struktur yang menarik

Terdapat sejumlah senyawa organik dengan struktur menarik dan unik. Contoh yang baik adalah kuban C8H8 dengan struktur yang hampir kubus. Walaupun banyak teknik telah dicoba, molekul tetrahedral, tetrahedran C8H8, belum pernah disintesis. Sudut ikatan ∠C-C-C terlalu berbeda dari sudut tetrahedral normal, dan mungkin inilah alasan mengapa sintesisnya belum dapat dilakukan.

kuban tetrahedrandemi kesederhanaan label atom dan ikatan C-H tidak digambarkan

Deret lain senyawa dengan struktur menarik dan aneh adalah katenan, cincin molekul yang penuh teka-teki. Bagaimana dua cincin saling mengait walaupun tidak ada ikatan antar keduanya. Bagaimana kimiawan dapat mensintesis senyawa semacam ini? Sungguhh ini merupakan prestasi pakung gemilang yang dicapai kimia organik sintetik.

Page 28: Ikatan Antarmolekul

Gambar skematik katenan

Sejak penemuannya di akhir abad 20, fuleren C60 telah menarik perhatian baik kimiawan teoritis maupun praktis. Bolanya dibentuk oleh kombinasi heksagon dan pentagon, dan sungguh sangat mirip dengan bola sepak. Menarik untuk dicatat bahwa keberadaan fulerene telah diprediksikan jauh sebelumnya oleh kimiawan Jepang Eiji Osawa.

SENYAWA KARBON DAN IKATAN KIMIA

Scribd

Upload a Document

Search Documents

Explore

Documents

Books - Fiction Books - Non-fiction Health & Medicine Brochures/Catalogs Government Docs How-To Guides/Manuals Magazines/Newspapers Recipes/Menus School Work + all categories

kereaktifan

Page 30: Ikatan Antarmolekul
Page 31: Ikatan Antarmolekul
Page 32: Ikatan Antarmolekul
Page 33: Ikatan Antarmolekul
Page 34: Ikatan Antarmolekul
Page 35: Ikatan Antarmolekul
Page 36: Ikatan Antarmolekul
Page 37: Ikatan Antarmolekul
Page 38: Ikatan Antarmolekul
Page 39: Ikatan Antarmolekul
Page 40: Ikatan Antarmolekul
Page 41: Ikatan Antarmolekul
Page 42: Ikatan Antarmolekul
Page 43: Ikatan Antarmolekul
Page 44: Ikatan Antarmolekul
Page 45: Ikatan Antarmolekul
Page 46: Ikatan Antarmolekul
Page 47: Ikatan Antarmolekul
Page 48: Ikatan Antarmolekul
Page 49: Ikatan Antarmolekul
Page 50: Ikatan Antarmolekul
Page 51: Ikatan Antarmolekul
Page 52: Ikatan Antarmolekul
Page 53: Ikatan Antarmolekul
Page 54: Ikatan Antarmolekul
Page 55: Ikatan Antarmolekul
Page 56: Ikatan Antarmolekul
Page 57: Ikatan Antarmolekul
Page 58: Ikatan Antarmolekul
Page 59: Ikatan Antarmolekul
Page 60: Ikatan Antarmolekul
Page 61: Ikatan Antarmolekul
Page 62: Ikatan Antarmolekul
Page 63: Ikatan Antarmolekul
Page 64: Ikatan Antarmolekul
Page 65: Ikatan Antarmolekul
Page 66: Ikatan Antarmolekul
Page 67: Ikatan Antarmolekul
Page 68: Ikatan Antarmolekul
Page 69: Ikatan Antarmolekul
Page 70: Ikatan Antarmolekul
Page 71: Ikatan Antarmolekul
Page 72: Ikatan Antarmolekul
Page 73: Ikatan Antarmolekul
Page 74: Ikatan Antarmolekul
Page 75: Ikatan Antarmolekul

Tabel 2.5. Komponen

Page 76: Ikatan Antarmolekul

penyusun Minyak BumiFraksi minyak bumidengan kisaran titik didih (

Page 77: Ikatan Antarmolekul

0

C )Jumlah atom karbon dalammolekul Kegunaan< 20 C1

Page 78: Ikatan Antarmolekul

– C4

Natural gas20 – 60 C5

– C6

Page 79: Ikatan Antarmolekul

Petroleum ether, solvent60 – 100 C6

– C7

Page 80: Ikatan Antarmolekul

Ligroin, solvent40 – 200 C5

– C10

Page 81: Ikatan Antarmolekul

Gasoline175 – 325 C12

– C18

Page 82: Ikatan Antarmolekul

Kerosene, Jet fuel250 – 400 > C12

Gas oil, Fuel oil, Diesel oil Non

Page 83: Ikatan Antarmolekul

volatil liquid > C20

Lubricating oil, Grease Non volatil solid > C20

Page 84: Ikatan Antarmolekul

Parraffin wax, asphalt, tar SOAL-SOAL LATIHAN

1. Tuliskan nama sistematik

Page 85: Ikatan Antarmolekul

(IUPAC) dari senyawa-senyawa berikut :a. CH3

CH(C2

Page 86: Ikatan Antarmolekul

H5

)CH(CH3

)CH2

CH

Page 87: Ikatan Antarmolekul

3

b. CH3

CH(CH3

)CH2

Page 88: Ikatan Antarmolekul

CH3

cCH3

CHCH3

CH

Page 89: Ikatan Antarmolekul

2

C H C H3

CH3

dCH3

CHCH

Page 90: Ikatan Antarmolekul

3

eCH3

CH(CH3

)2

CH

Page 91: Ikatan Antarmolekul

2

CH3

f CH2

(CH2

)

Page 92: Ikatan Antarmolekul

3

CH(CH3

)2

2. Tuliskan rumus molekul dari senyawa-

Page 93: Ikatan Antarmolekul

senyawa berikut :a. 3-etilpentana b. 2,3,4-trimetildekanac. 4-isopropilnonan

Page 94: Ikatan Antarmolekul

a d. 1,1-dimetilsiklopropanae. Isopropilsikloheksana f. Isopentana4. Tuliskan nama

Page 95: Ikatan Antarmolekul

sistematik dari senyawa bisikloalkana berikut :a bc

21

Page 96: Ikatan Antarmolekul
Page 97: Ikatan Antarmolekul
Page 98: Ikatan Antarmolekul
Page 99: Ikatan Antarmolekul
Page 100: Ikatan Antarmolekul
Page 101: Ikatan Antarmolekul

3. Tuliskan struktur molekul dan nama sistematik dari senyawa-senyawa yang

Page 102: Ikatan Antarmolekul

memilikirumus molekul sebagai berikut :a.

C5

Page 103: Ikatan Antarmolekul

H12

yang hanya memiliki hidrogen primer. b.

Page 104: Ikatan Antarmolekul

C5

H12

yang hanya memiliki satu

Page 105: Ikatan Antarmolekul

hidrogen tersier.c.

C5

H12

Page 106: Ikatan Antarmolekul

yang hanya memiliki hidrogen primer dan hidrogen sekunder.d.

Page 107: Ikatan Antarmolekul

C5

H10

yang hanya memiliki

Page 108: Ikatan Antarmolekul

hidrogen sekunder.e.

C6

H14

Page 109: Ikatan Antarmolekul

yang hanya memiliki hidrogen primer dan hidrogen tersier.4. Ada empat senyawa

Page 110: Ikatan Antarmolekul

sikloalkana yang dapat diubah manjadi metilsiklopentanamelalui proses hidrogenasi

Page 111: Ikatan Antarmolekul

katalitik. Sebutkan keempat senyawa tersebut dantuliskan persamaan

Page 112: Ikatan Antarmolekul

reaksinya !5. Ada tiga senyawa alkilhalida yang dapat diubah manjadi isopentana

Page 113: Ikatan Antarmolekul

melalui proses pengolahan dalam larutan asam berair dengan katalis Zn. Sebutkan

Page 114: Ikatan Antarmolekul

keempat senyawatersebut dan tuliskan persamaan reaksinya !22

BAB III

Page 115: Ikatan Antarmolekul

STEREOKIMIA 3.1. Isomer Konstitusional dan Stereoisomer

Banyak faktor yang menyebabkan

Page 116: Ikatan Antarmolekul

timbulnya variasi dalam struktur senyawaorganik. Selain akibat jumlah atom atau jenis atom

Page 117: Ikatan Antarmolekul

dalam molekul, pola ikatan danstruktur ruang juga membuat senyawa organik

Page 118: Ikatan Antarmolekul

memiliki banyak variasi. Adanyasenyawa-senyawa organik yang memiliki rumus melekul sama

Page 119: Ikatan Antarmolekul

tetapi berbeda dalamhubungan ikatannya atau berbeda susunan ruangnya disebut isomer

Page 120: Ikatan Antarmolekul

(ke-isomeran).Isomer dapat dibedakan menjadi dua kelompok besar, yaitu

Page 121: Ikatan Antarmolekul

isomer konstitusionaldan isomer ruang (stereoisomer). Isomer konstitusional

Page 122: Ikatan Antarmolekul

memiliki ciri perbedaanhubungan ikatan atom-atomnya. Isomer konstitusional dapat dibagi

Page 123: Ikatan Antarmolekul

lagi menjadi dua,yaitu isomer struktural dan isomer fungsional. Contoh isomer

Page 124: Ikatan Antarmolekul

struktural adalah n-butanadengan 2-metilpropana, atau 1-butanol dengan 2-

Page 125: Ikatan Antarmolekul

butanol. Sedangkan contoh isomer fungsional adalah 1-butanol dengan dietileter. Jadi

Page 126: Ikatan Antarmolekul

isomer fungsional menyatakansenyawa dengan rumus molekul sama tetapi memiliki gugus

Page 127: Ikatan Antarmolekul

fungsi yang berbeda. Untuk senyawa-senyawa yang memiliki rumus molekul sama tetapi susunan

Page 128: Ikatan Antarmolekul

ruangnya berbeda,digunakan istilah stereoisomer. Stereoisomer dapat dibagi menjadi dua,

Page 129: Ikatan Antarmolekul

yaitu enantiomer dan diastereomer. Enantiomer digunakan untuk

Page 130: Ikatan Antarmolekul

menyataan hubungan antara dua molekulyang merupakan bayangan cermin antara

Page 131: Ikatan Antarmolekul

molekul satu dengan molekul yang lain.Sementara diastereomer kebalikan dari enantiomer,

Page 132: Ikatan Antarmolekul

yaitu isomer ruang antar molekulyang tidak merupakan bayangan cermin satu

Page 133: Ikatan Antarmolekul

sama lain. Isomer cis dan trans termasuk dalam golongan diastereomer.

Page 134: Ikatan Antarmolekul

Contoh isomer struktural

dengandenganH3

C CH2

CH2

Page 135: Ikatan Antarmolekul

CH2

CH3

H3

C CH2

Page 136: Ikatan Antarmolekul

CH CH3

CH3

CH3

C CH3

Page 137: Ikatan Antarmolekul

CH3

CH3

H3

C CH2

Page 138: Ikatan Antarmolekul

CH2

O H C H3

CH CH3

OHpentana2-metilbutana

Page 139: Ikatan Antarmolekul

2,2-dimetilpropana1-propanol2-propanoldengan

23

Page 140: Ikatan Antarmolekul

Contoh isomer fungsional

H3

C CH2

Page 141: Ikatan Antarmolekul

O CH3

H3

C CH2

CH2

Page 142: Ikatan Antarmolekul

OHH3

C C O C H3

OH3

C CH2

Page 143: Ikatan Antarmolekul

C OHOmetiletileter1-propanolmetiletanoatasam propanoatdengandengan

Page 144: Ikatan Antarmolekul

Contoh enantiomerH C O H CH2

OHCHOD-gliseraldehidHCHOCH2

Page 145: Ikatan Antarmolekul

OHCHOL-gliseraldehidH C O H C2

H5

CH2

Page 146: Ikatan Antarmolekul

OHHCHOC2

H5

CH2

Page 147: Ikatan Antarmolekul

OH2R-butanol2S-butanoldengandengan

Contoh diastereomerH C OH CCHOdenganD-

Page 148: Ikatan Antarmolekul

eritrosaHCHOCCHOD-treosaHCH2

OHOHCH2

OHH OHC2

H5

Page 149: Ikatan Antarmolekul

HHH3

CdenganHC2

H5

HH3

Page 150: Ikatan Antarmolekul

Ctrans-2-butenacis-2-butena

24

Page 151: Ikatan Antarmolekul
Page 152: Ikatan Antarmolekul
Page 153: Ikatan Antarmolekul

3.2. Struktur 3-D, proyeksi Newman

Page 154: Ikatan Antarmolekul

dan proyeksi Fischer

Untuk memudahkan kita dalam mempelajari stereokimia,

Page 155: Ikatan Antarmolekul

kita perlu menguasaiteknik menggambar molekul yang lazim digunakan. Ada tiga teknik

Page 156: Ikatan Antarmolekul

menggambar yanglazim digunakan adalah menggambar struktur 3-D (tiga dimensi),

Page 157: Ikatan Antarmolekul

proyeksi Newman, dan proyeksi Fischer.Struktur 3-D pertama kali diperkenalkan

Page 158: Ikatan Antarmolekul

berdasarkan fakta bahwa atom karbonsp3

mempunyai bentuk tetrahedral

Page 159: Ikatan Antarmolekul

dengan sudut keempat ikatannya

≈1090

Page 160: Ikatan Antarmolekul

. Dua atomatau gugus atom disekitar atom karbon pusat, yang berada dalam bidang kertas,digamba

Page 161: Ikatan Antarmolekul

rkan dengan garis biasa. Atom atau gugus atom ketiga digambarkan dengan

Page 162: Ikatan Antarmolekul

garis putus-putus yang bermakna mengarah ke belakang (menjauhi pembaca).

Page 163: Ikatan Antarmolekul

Sedangkan atomatau gugus atom keempat yang mengarah ke depan kearah pembaca

Page 164: Ikatan Antarmolekul

ditgambarkan dengangaris tebal.H CHHHHHHH

St r u k t u r Le w i s S t r u

Page 165: Ikatan Antarmolekul

k t u r 3 - D Sementara proyeksi Newman adalah bentuk lain dari struktur 3-D,

Page 166: Ikatan Antarmolekul

dimana duaatom karbon bertetangga yang manjdi pusat perhatian,

Page 167: Ikatan Antarmolekul

digambar berhimpit sehingga posisi masing-masing atom atau gugus atom disekitar kedua

Page 168: Ikatan Antarmolekul

atom karbon tersebut tampak dengan jelas. Salah satu manfaat teknik menggambar struktur 3-D

Page 169: Ikatan Antarmolekul

dan proyeksi Newmanadalah pada penentuan konfigurasi absolut suatu senyawa.

Page 170: Ikatan Antarmolekul

CH2

OHSHFH3

CClHOCH2

OHF SHClCH3

HOCH

Page 171: Ikatan Antarmolekul

3

OHClHSCH2

OHF

ATAU Struktur3-DProyeksi Newman25

Page 172: Ikatan Antarmolekul
Page 173: Ikatan Antarmolekul
Page 174: Ikatan Antarmolekul
Page 175: Ikatan Antarmolekul
Page 176: Ikatan Antarmolekul
Page 177: Ikatan Antarmolekul
Page 178: Ikatan Antarmolekul
Page 179: Ikatan Antarmolekul
Page 180: Ikatan Antarmolekul
Page 181: Ikatan Antarmolekul
Page 182: Ikatan Antarmolekul
Page 183: Ikatan Antarmolekul
Page 184: Ikatan Antarmolekul
Page 185: Ikatan Antarmolekul
Page 186: Ikatan Antarmolekul