6-2014 rancangan peledakan bawah tanah

Upload: faisalrhman

Post on 07-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    1/91

    GMS ©

    Ganda M. Simangunsong 

    Fakultas Teknik Pertambangan & Perminyakan ITB

    6. Underground Blast Design

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    2/91

    GMS ©

    Introduction 

    • There are two reasons to go underground andexcavate:

    1. to use the excavated space, e.g. for storage,transport etc.

    2. to use the excavated material, e.g. mining andquarrying operations.

    • In both cases tunneling forms an integral part of theentire operation.

    • The main difference between tunnel blasting andbench blasting is that tunnel blasting is done towardsone free surface while bench blasting is done towardstwo or more free surface.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    3/91

    GMS ©

    Introduction (cont.)

    Underground vs. Open Pit Blast Design:

     – One free face – explosive consumption is higher thanopen pit blast design

     – Environmental constraint – toxic fumes

     – Small burden at area of Cut –  „Desensitization 75-200 mm; and sympathetic detonation

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    4/91

    GMS ©

    Introduction (cont.)

    Open Pit Blast Design ?

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    5/91

    GMS ©

    Introduction (cont.)

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    6/91

    GMS ©

    Blasting Round

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    7/91GMS ©

    Look Out

    Empirical guidance

    L = 10 cm + 3 cm/m X Hole depth

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    8/91GMS ©

    CUT

    Various types of Cut (Langefors & Kihlström, 1978)

    • Wedge cut or V-cut

    • Pyramid or diamond cut

    • Drag cut

    • Fan cut

    • Burn cut

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    9/91GMS ©

    Wedge Cut or V Cut

    • Blasthole are drilled at an angle to theface in a uniform wedge formation sothat the axis of symmetry is at thecentre line of the face.

    • The cut displaces a wedge of rock out

    of the face in the initial blast and thiswedge is widened to the full width ofthe drift in subsequent blasts, eachblast being fired with detonators ofsuitable delay time.

    • This type of cut is particularly suitedto large size drifts, which have welllaminated or fissured rocks. Holeplacement should be carefullypreplanned and the alignment of each

    hole should be accurately drilled.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    10/91GMS ©

    Pyramid or Diamond Cut

    • The pyramid or diamondcut is a variation of thewedge cut where theblastholes for the initial

    cavity may have a line ofsymmetry alonghorizontal axis as well as

    the vertical axis

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    11/91GMS ©

    Drag Cut

    • The drag cut is particularly suitable in small sectionaldrifts where a pull of up to 1 m is very useful

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    12/91GMS ©

    Fan Cut

    • The fan cut is one-halfof a wedge cut and isapplicable mainly where

    only one machine isemployed in a narrowdrive.

    • Generally the depth ofpull obtainable is limited

    to 1.5 m

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    13/91GMS ©

    Burn Cut•

    A series of parallel holes aredrilled closely spaced at rightangles to the face. One hole ormore at the centre of the faceare uncharged. This is called theburn cut.

    • The uncharged holes are often oflarger diameter than the chargedholes and form zones ofweakness that assist theadjacent

    charged holes in breaking out theground.

    • Since all holes are at right angles to the face, hole placementand alignment are easier than in other types of cuts. The burncut is particularly suitable for use in massive rock such as

    granite, basalt etc.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    14/91GMS ©

    Rock factor, c

    Q = 0.3 kg/m3

    C = 1.2Q = 0.36

    Example

    Ø= 32 mm

    B

    1.3BB=K= 0.5-1.0 m

    0-1 m

    The rock constant is an empirical measure of the

    amount of explosive needed for loosening 1 m3 of rock

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    15/91GMS ©

    Rock Factor, c

    c?

    t?

    RMR ?

    C = 0.50 + 2.60( t/ c)0.5 + 13 t/ c, kg/m

    3

    For first trial C=0.4 kg/m3

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    16/91

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    17/91GMS ©

    Process (cuts)

    B1

    A1

    B2

    A2• Define reamer/uncharged hole

    • Define 1st cut

    • Define 2nd cut andothers

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    18/91

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    19/91

    GMS ©

    Process (1st Cut)

    6. Define stemming length, hs

    hs = 10 d

    7. End

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    20/91

    GMS ©

    Process (2nd Cut …) 

    1. Define opening width from the 1st cut, A1

    A1 = 20.5 B1

    2. Define 2nd burden, B2

    B2 = 8.8 x 10-2 [(A1 l   WSRANFO)0.5]/ d c

    3. Define stemming, hs

    hs = 10 d

    4. Sub End

    5. Repeat point 1 to 3 to find geometry of 3rd cut andso on until the opening width is less than the squareroot of advance (=I0.5) or Burden stoping/lifter .

    6. End

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    21/91

    GMS ©

    Process (Lifters)

    1. Define corrected rock factor, c‟  

    c‟ = c + 0.05 …… Bn>1.4

    c‟ = c + 0.07/B …… Bn

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    22/91

    GMS ©

    Process (Stoping)1. Define corrected rock factor, c‟  

    c‟ = c + 0.05 …… Bn>1.4

    c‟ = c + 0.07/B …… Bn

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    23/91

    GMS ©

    Process (Contours)

    If normal, follow geometry of the downward stoping

    If smooth blasting is required, :

    1. Define spacing, S

    S = (15-16) d

    2. Defind burden, B

    B = S/0.8

    3. Defind charge concentration, l   l   = 90 d2

    4. No stemming is required (fully charged)

    5. End

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    24/91

    GMS ©

    Hole types Numberof holes

    Charge perhole

    Totalcharge

    1st cut

    2nd cut

    3rd-4th cut

    Lifters

    Roof

    Wall

    Stoping

    4

    4

    8

    5

    8

    6

    5

    1.59

    2.62

    3.76

    3.20

    1.77

    3.20

    3.20

    6.37

    10.48

    29.36

    16.00

    14.16

    19.20

    16.00

    Total charge

    Opening areaAdvance

    Specific charge

    Total number of holes

    Hole depth

    Specific drilling

    111.6 kg

    19.5 m23.0 m

    1.9 kg/m3

    40

    3.2 m

    2.2 m/m3

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    25/91

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    26/91

    GMS ©

    Faktor Perencanaan Cut

    • Diameter lubang besar (kosong)

    • Burden

    • Charge concentration

    Ketepatan pemboran, terutama untuk lubang-lubangledak paling dekat dengan lubang besar/kosong

    • Bila menggunakan beberapa lubang kosong, hitungdahulu diameter lubang samaran (fictious diameter )

    D = d√n 

    • D = diameter lubang samaran

    • d = diameter lubang kosong

    • n = jumlah lubang

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    27/91

    GMS ©

    Kemajuan Per Round

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    28/91

    GMS ©

    Perhitungan

    • Agar peledakan berhasil dengan baik (cleaned blast ),

     jarak antara lubang ledak dengan lubang kosong,

    tidak boleh lebih besar daripada 1,5  lubang kosong.

    • Apabila jaraknya lebih besar hanya akan menimbulkan

    kerusakan (breakage) dan jika jaraknya terlalu dekat

    ada kemungkinan lubang ledak bertemu denganlubang besar kosong

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    29/91

    GMS ©

    a < 1,5  lubang kosong – cleaned blast

    a > 1,5  - kerusakan breakage

    a 50 ms

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    30/91

    GMS ©

    Jarak lubang tembak ke lubangkosong

    a = 1,5• a = jarak antara titik pusat lingkaran lubang besar

    dengan lubang tembak• b = diameter lubang besar

    • Jika gunakan beberapa lubang kosong,

    a = 1,5 D• D = diameter samaran

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    31/91

    GMS ©

    Pemuatan Lubang Tembak DalamBujursangkar Pertama

    • Muatan BP (charge concentration) sedikit → batuan

    tidak akan terbongkar.

    • Muatan BP banyak tidak akan terjadi blow out  melalui

    lubang kosong sehingga terjadi pemadatan kembalibatuan yang telah terpecahkan dan efisiensi

    kemajuan rendah.

    • Kebutuhan muatan BP untuk berbagai jarak C-C

    (pusat ke pusat) antara lubang kosong dan lubangtembak terdekat dapat dihitung menggunakan grafik

    berikut

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    32/91

    GMS ©

    Muatan BP Fungsi Jarak Pusat – PusatLubang Untuk Berbagai Diameter Lubang

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    33/91

    GMS ©

    Perhitungan Untuk BujursangkarSelanjutnya

    • Perhitungan bujursangkar dalam cut  yang tersisa sama denganbujursangkar pertama. Peledakan pada bujursangkar sisamengarah ke bukaan segiempat bukan bukaan sirkular. Sudutledakan (angle of break ) jangan terlalu kecil.

    • Dalam perhitungan “burden” (B) sama dengan lebar (W) dari

    bukaan:

    B = W

    • Dengan grafik perkirakan muatan bahan peledak minimum danburden maksimum untuk bermacam-macam lebar bukaan.Muatan bahan peledak ini adalah muatan untuk semua kolom

    lubang tembak.• Apabila diperlukan peledakan pada bagian dasar yang susah

    diledakkan (constricted bottom) harus digunakan muatan dasaryang besarnya dua kali charge concentration (lc) dan tingginya1,5 B.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    34/91

    GMS ©

    Muatan Fungsi Burden MaksimumUntuk Berbagai Lebar Bukaan

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    35/91

    GMS ©

    Stemming Cut

    • Panjang kolom lubang bor yang tidak diisi bahan peledak.

    ho = 0,5 B

    Perhitungan berikut utk  lubang tembak 38 mm … 

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    36/91

    GMS ©

    Merencanakan Cut

    Bujursangkar I

    • a = 1,5  

    • W1 = a √2 

     mm 76 89 102 127 159

    a mm 110 130 150 190 230

    W1 mm 150 180 210 270 320

    Bujursangkar II

    • B1  = W1

    • C – C = 1,5 W1 

    • W2  = 1,5 W1 √2 

     mm 76 89 102 127 159

    W1 mm 150 180 210 270 320

    C-C mm 225 270 310 400 480

    W2 mm 320 380 440 560 670

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    37/91

    GMS ©

    Merencanakan Cut

    Bujursangkar III

    • B2  = W2

    • C – C = 1,5 W2

    • W3  = 1,5 W2 √2 

     mm 76 89 102 127 159

    W2 mm 320 380 440 560 670

    C  – C 480 570 660 840 1.000

    W3 mm 670 800 930 1.180 1.400

    Bujursangkar IV

    • B3  = W 3

    • C – C = 1,5 W3

    • W4  = 1,5 W3 √2 

     mm 76 89 102 127 159

    W3 mm 320 380 440 560 670C  – C 480 570 660 840 1.000

    W4 mm 670 800 930 1.180 1.400

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    38/91

    GMS ©

    Geometri Bujursangkar

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    39/91

    GMS ©

    Round Stoping & Contour

    • Lubang lantai (floor holes)

    • Lubang dinding (wall holes)

    • Lubang atap (roof holes)

    • Lubang stoping arah pemecahan ke atas danhorisontal

    • Lubang stoping arah pemecahan ke bawah

    • Untuk menghitung burden (B) dan muatan untuk

    bermacam-macam bagian dari round  dan Contour  dapat dipakai grafik berikut … 

    Burden Fungsi Muatan BP Pada Berbagai

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    40/91

    GMS ©

    Burden Fungsi Muatan BP Pada BerbagaiDiameter Lubang Tembak & Jenis BP

    G t i P b & P l d k R d

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    41/91

    GMS ©

    Geometri Pemboran & Peledakan Round -Normal Profile Blasting

    Part of time

    round

    Burden 

    (m)

    Spacing

    (m)

    Height bottom

    charge 

    (m)

    Charge concentration

    Stemming 

    (m)Bottom 

    (kg/m)

    (Column) 

    (kg/m)

    Floor 1 x B 1.1 x B 1/3 x H lb 1.0 x lb 0.2 x B

    Wall 0.9 x B 1.1 x B 1/6 x H lb 0.4 x lb 0.5 x B

    Roof 0.9 x B 1.1 x B 1/6 x H lb 0.3 x lb 0.5 x B

    Stoping :

    Upwards 1 x B 1.1 x B 1/3 x H lb 0.5 x lb 0.5 x B

    Horisontal 1 x B 1.1 x B 1/3 x H lb 0.5 x lb 0.5 x B

    Downwards 1 x B 1.2 x B 1/3 x H lb 0.5 x lb 0.5 x B

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    42/91

    GMS ©

    Number of Holes

    Check – Recheck!

    Sumber: USACE, 1997

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    43/91

    GMS ©

    Specific Charge

    Check – Recheck!

    Sumber: USACE, 1997

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    44/91

    GMS ©

    Initiation Sequence

    • The Cut is fired using millisecond delay. Since the rockremoved between each hole in the cut and the centralempty hole must be blown out to provide expansion roomfor the rock removed by the next charge, a long enoughinterval between these holes is needed.

    • The recommended delay is 75 - 100 millliseconds.

    • 1st and 2nd cuts are recommended to adopt one dalayper hole. Other holes are fired with one delay for twoholes.

    • Stoping holes are recommended to adopt 100 – 500milliseconds delay.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    45/91

    GMS ©

    Typical Initiation (cont.)

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    46/91

    GMS ©

    Initiation Sequence (cont.)

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    47/91

    GMS ©

    Shafts

    • Shafts are either driven downwards, sink

    shafts/shaft sinking, or upward, raise shafts.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    48/91

    GMS ©

    Shaft Sinking

    • Shaft sinking is one of the most difficult and risky blasting jobs as the work area is normally wet, narrow, and noisy.Furthermore, the drilling and blasting crews are exposed tofalling objects.

    • The advance is slow as the rock has to be removed

    between each blast with special equipment which haslimited capacity. The blasted rock must be well fragmentedto suit the excavation equipment.

    • The design of the cross section of the shaft principallydepends on the quality of the rock. Nowadays most of the

    shaft are made with circular cross section which givesbetter distribution of the rock pressure, thus decreasing theneed for reinforcement, especially in deep shafts.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    49/91

    GMS ©

    Shaft Sinking

    • An important requirement in shaftsinking is to provide optimumfragmentation of the rock so thatit can be cleared quickly from the

    congested shaft-face area.• Blasting operation is carried out

    against gravity, and the scatter of

    the broken rock is confined in theshaft. It is common to use

    generous distribution ofexplosives hroughout the rockusing a large number of smalldiameter (35 – 42 mm) shotholes.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    50/91

    GMS ©

    Shaft Sinkingwith benching method

    • The most common drilling &blasting methods are benchingand blasting with pyramid cut.

    • The benching method is fastand efficient method as the

    time-consuming cleaning of thefloor between blast can beminimized. It is easy also tokeep the shaft free from wateras a pump can always be

    placed in the lower blasted partof the shaft. The drilling &charging pattern is similar tothat of smaller surface blasting.

    Sh f Si ki

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    51/91

    GMS ©

    Shaft Sinkingwith pyramid cut

    • Shaft sinking with pyramidcut is similar to tunnelblasting with V-cuts. Thedrilling is done with a drillring which is composed of

    a circular I-beam to whichthe drilling machines arefixed. The drilling may befixed to the shaft wallswith bolts. Due to

    construction of the drillring, the cut will beconical.

    Sh f Si ki

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    52/91

    GMS ©

    Shaft Sinkingwith pyramid cut

    • The number of holesN required for sinkinga shaft of crosssectional area A in m2 

    is given by:N = 2.5A + 22

    • The drilling patternsfor shaft sinking arebasically the same as

    those used intunneling butgenerally the cone cutis favoured

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    53/91

    GMS ©

    Shaft Sinking 

    • The explosives used in shaft sinking must always bewater resistant. Even if the ground is dry, the flushingwater from the drilling machines will always stay inthe blastholes.

    • The powder factor in shaft sinking is rather high,ranging from 2.0 kg/m3 to 4.0 kg/m3 (Olofsson).

    • Nonel type detonators are increasingly preferred forinitiation.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    54/91

    GMS ©

    Raise Shafts

    • Older methods:

     – Timbered shafts

     – Open shafts – up to 25 m, not recommended

    • Modern methods:

     – Boliden elevator type Jora

     – Alimak Raise Climber

     – Longhole drilling

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    55/91

    GMS ©

    Timbered Shaft

    • The rise shaft is driven verticallyand divided into two sections bya timber wall which is extendedbefore each blast.

    • When the round is fired, one

    section is filled with rock. Theblasted rock will then act as aworking platform for the nextround.

    • The second section is used as

    ladder-way and fortransportation of equipment, drillsteel, explosive and timber. Theventilation is also placed which iscovered during blasting.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    56/91

    GMS ©

    Timbered Shaft

    • Timbered rise shafts havebeen driven up close to 100m, but normally themaximum height should notexceed 60 m.

    • The cross section area isusually 4 m2, and theadvance per round approx.2.2 m.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    57/91

    GMS ©

    JORA lift method

    • 1950‟s Boliden ABdeveloped the JORA lift.

    • A large hole, diameter 110to 150 mm, is drilled froman upper level in the center

    of the intended shaft.

    • The drilling and chargingare carried out fromplatform on the top of thelift cage and some scaling

    can be done from the cagewith protection of theplatform.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    58/91

    GMS ©

    JORA lift method

    • The large hole is used as cuthole in the blasting of theround.

    • Due to the large size of thecut hole, advances of up to4 m are obtained.

    • The area is approx. 4 m2.

    • Maximum height is 100 m.

    • Free space above the shaft

    is needed for the drilling ofthe large hole and forplacing of the lifting gear.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    59/91

    GMS ©

    ALIMAK raise climber

    • Introduced in 1957.

    • The equipment consists of a riseclimber with a working platform,which cover practically theentire area of the shaft. Under

    the platform there is a cage fortransport of personnel, materialand equipment.

    • The rise climber is propelled bya rack and pinion system along

    a special guide rail.• The rail system incorporated a

    tube system for the air andwater supply of the drillingequipment.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    60/91

    GMS ©

    ALIMAK raise climber

    • The platform is equipped with aprotective roof under which theblaster stands during scaling anddrilling operation.

    • The air driven raise climber maybe used for up to 150 m shaftlength, electric drive up to 900 m.For longer shafts diesel-hydraulicdriven climber are used.

    The area normally 4 m2

    , butinclined (60o) shafts have beendriven full face up to 36 m2.

    • The long term advance is approx.3.5 m/day or 70-90 m per month.

    Sh ft i i

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    61/91

    GMS ©

    Shaft raisingby long hole drilling

    • Drilling is done downwards with parallel holes and thewhole are is drilled at the same time.

    • Great precision in drilling and charging is a must and thelack of precision has earlier limited the practical height to25 – 30 m.

    • Safe - All drilling and charging work is carried out from safelocation.

    • Two different cut are used:

     – Large hole cut

     –

    Crater cut

    Long hole d illing

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    62/91

    GMS ©

    Long hole drillingwith large hole cut 

    • The large hole cut is still the mostcommon one.

    • The drill holes in the round have adiameter of 50 to 75 mm and thecentral large hole is reamed to a

    diameter of 102 to 203 mm.• The charging is done from the upper

    level. A piece of wood is lowered downon a rope, and when the wood ispasses the lower mouth of the hole

    the rope is tightened and the piece ofwood forms a plug for the lower partof the hole.

    • The hole should not be stemmed asthe stemming may sinter and block

    the hole for the subsequent blast.

    Long hole drilling

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    63/91

    GMS ©

    Long hole drillingwith crater blasting 

    • The crater blasting is usedonly for the cut section toopen a hole of approx. 1 m2,then normal stoping will

    follow.

    • The crater consists of fiveholes, one center hole andfour edge holes. The centerhole is blasted first

    whereupon the edge holes areblasted one by one withdifferent delays.

    Long hole drilling

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    64/91

    GMS ©

    Long hole drillingwith crater blasting 

    • Before charging the holesare plugged with apiece ofwood, which is lowered downfrom the upper surface on arope and secured to the

    lower surface.• The hole is then filled with

    sand to the calculated levelof explosive charge. Thecharge should have a

    diameter close to that of thehole.

    • The charge is then stemmedwith water.

    Long hole drilling

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    65/91

    GMS ©

    Long hole drillingwith crater blasting 

    Livingstone‟s theories: 

    L = 6 x D (mm)

    Lopt = 0.5 x Lcrit (mm)

    Lcrit = S x Q1/3; (mm);

    S : Strain energy (1.5)

    Q = (3 x d3 x phi x P)/2; kg;

    P : Charging density (kg/liter)

    Lopt = 0.5 x S x ((3 x phi x d)/2)1/3 x d x 10 (mm)

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    66/91

    GMS ©

    Ring Blasting

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    67/91

    GMS ©

    Ring Blasting 

    Ring Blasting

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    68/91

    GMS ©

    Ring BlastingToe spacing estimation 

    • Spacing can be estimated as 2 times fractured zone (S = 2 x Rf )

    Damage Zone (Hustrulid, 1999) 

    Ring Blasting

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    69/91

    GMS ©

    Ring BlastingDesign Example

    Ring Blasting

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    70/91

    GMS ©

    Ring BlastingDesign Example

    Ring Blasting

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    71/91

    GMS ©

    Ring BlastingDesign Example

    Ring Blasting

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    72/91

    GMS ©

    Ring BlastingDesign Example – JKSimBlast

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    73/91

    GMS ©

    Blast Damage

    • The prediction of damage to the rock mass is a veryimportant factor to evaluate the quality of the excavationprocess in tunneling, so that it would allow theoptimization of explosive charges utilized in successiveblasting rounds, as well as lowering risks of instability

    from rock loosening, less support costs and water inflows.• When an explosive charge detonate inside a borehole

    several zones can be distinguished in the surroundingrock: 1) Zone of crushing, 2) Zone of radial cracking, 3)Zone of extension and expansion of fractures and 4)

    Elastic Zone, where no cracks are formed.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    74/91

    GMS ©

    Blast Damage (cont.)

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    75/91

    GMS ©

    Overbreak  Extend

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    76/91

    GMS ©

    Excavation Damaged Zone

    • Deviations of that perimeter from their outside and insidelimits are called overbreak and underbreak respectively,with the word backbreak used when overbreak isexcessive.

    • The factors influencing the magnitude of EDZ can

    conveniently be grouped into two categories, which arerock mass characteristics (geological factors) andexplosive (blasting factors)

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    77/91

    GMS ©

    Measuring EDZ

    There are currently three methods of actually measuringexcavation profiles:

    • surveying techniques,

    • laser based, and

    • photographic light sectioning method (LSM).

    The principle of the method is to project a radial light to theperimeter of the underground opening so that light raysintersect the perimeter contour of the cavity. The image of thisperimeter is then saved in digitized form to allow furthercomputerized analysis.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    78/91

    Measuring EDZ

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    79/91

    GMS ©

    Measuring EDZusing PPF and Q

    PPF = (Pe.Ee)/Vrp

    PPF : Perimeter Powder Factor (PPF)

    Pe: Weight of explosive charges used in theperimeter blast holes (kg)

    Ee: Unit explosive energy (kcal/kg)

    Vrp: Excavated volume of annulus (m3)

    M i EDZ

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    80/91

    GMS ©

    Measuring EDZ

    EDZo : Damage for Overbreak (index)

    EDZu : Damage for Underbreak (index)

    a, b, c, a´, b´, c´ are coefficients whose values are obtained bymeans of multiple regression statistics correlating Rock MassQuality Q and Perimeter Powder Factor (PPF) with observedOverbreak and Underbreak.

    These predictive equations are site specific, but can readily becalibrated to suit other projects, where the rock and blastingconditions differ from the present case.

    EDZo = (-a + b.PPF – c.log Q)/100

    EDZu = (a´– b´.PPF + c´.log Q)/100

    Polynomial 2D

    Model First

    Order

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    81/91

    GMS ©

    Polynomial 2D Model, First order

    i2i1oi   yb xbb z ˆ    

     

    ni

    1i

    i2

    ni

    1i

    i1o

    ni

    1i

    i   yb xbnb z 

     

    ni

    1i

    ii2

    ni

    1i

    2i1

    ni

    1i

    io

    ni

    1i

    ii   y xb xb xb z  x

     

    ni

    1i

    2i2

    ni

    1i

    ii1

    ni

    1i

    io

    ni

    1i

    ii   yb y xb yb z  y

     yz 

     z  x

     z 

    b

    b

    b

     y y x y

     y x x x

     y xn

    2

    1

    o

    2

    2

    Measuring EDZ

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    82/91

    GMS ©

    Measuring EDZusing PPV

    PPV = k (R/W1/3)-n

    PPV : Peak Particle Velocity (mm/s)

    R: Distance (m)

    W: Weight explosive per delay (kg)

    D C it i i PPV

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    83/91

    GMS ©

    Damage Criteria using PPV

    References PPV (mm/s) Notes

    Bauer & Calder (1970) 635 – 2540 Radial cracking/break up rock mass

    Langefors & Kuhlstrom (1973) 305 – 610 New cracks/Fall in tunnels

    Oriard (1982) 635 Most rock mass damaged

    Rustan et. al. (1985) 1000 - 3000 Rock damageMeyer & Dunn (1995) 600 Major damage

    Bogdanhoff (1996) 2000 - 2500 Tunnel damaged

    Murthy & Dey (2003) 2050 Tunnel damaged (basaltic formation)

    Or use tensile strength?t =  C PPV

    Damage Criteria using PPV in

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    84/91

    GMS ©

    g gUG Coal Mines

    (a) Major damage: fall of rock/coal blocks from roof and/or pillars.(b) Minor damage: detachment of loosened chips from roof and/or pillars.(c) No damage: no visual damage.

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    85/91

    GMS ©

    FOR YOUR REFERENCES …. 

    Supplement

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    86/91

    GMS ©

    Rock Tunnelling Quality Index, Q

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    87/91

    GMS ©

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    88/91

    GMS ©

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    89/91

    GMS ©

    Bienia ski (1989)

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    90/91

    GMS ©

    Bieniawski (1989)

  • 8/18/2019 6-2014 Rancangan Peledakan Bawah Tanah

    91/91

    END

    Discussion ….