universiti putra malaysia colloid-surface …psasir.upm.edu.my/10513/1/fp_2000_8_a.pdfsifat...

25
UNIVERSITI PUTRA MALAYSIA COLLOID-SURFACE CHARACTERISTICS AND AMELIORATION PROBLEMS OF SOME VOLCANIC SOILS IN WEST SUMATRA, INDONESIA DIAN FIANTIS FP 2000 8

Upload: trankien

Post on 20-Aug-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

    

UNIVERSITI PUTRA MALAYSIA

COLLOID-SURFACE CHARACTERISTICS AND AMELIORATION PROBLEMS OF SOME VOLCANIC SOILS IN WEST SUMATRA,

INDONESIA

DIAN FIANTIS

FP 2000 8

COLLOID-SURFACE CHARACTERISTICS AND AMELIORATION PROBLEMS OF SOME VOLCANIC SOILS IN WEST SUMATRA,

INDONESIA

DIAN FIANTIS

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2000

COLLOID-SURFACE CHARACTERISTICS AND AMELIORATION PROBLEMS OF SOME

VOLCANIC SOILS IN WEST SUMATRA, INDONESIA

By

DIAN FIANTIS

Thesis Submitted in Fulfilment of the Requirements for the Degree Doctor of Philosophy in the Faculty of Agriculture

Universiti Putra Malaysia

June 2000

DEDICATION

This thesis is dedicated to my beloved parents

Hj. Suarni

and

late H. Zubir Latif

who always supported and encouraged me to do the best.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of

Doctor of Philosophy

COLLOID-SURFACE CHARACTERISTICS AND AMELIORATION PROBLEMS OF SOME

VOLCANIC SOILS IN WEST SUMATRA, INDONESIA

By

DIAN FIANTIS

June 2000

Chairman : Prof. Dr. J. Shamshuddin

Faculty : Agriculture, UPM

Co-chairman : Prof. Dr. E. Van Ranst

Faculty : Science, Ghent University, Belgium.

111

Andisols from elevational transects at Mt. Marapi and Mt. Pasaman in

West Sumatra, Indonesia were studied to characterize their physico-chemical and

mineralogical properties. These soils are developed under a udic, isothermic and

isohyperthermic climatic regime. They have dark epipedons with high contents of

organic carbon and low bulk densities « 0.9 Mg m-3). All the nine pedons

studied were found to meet the physical and chemical criteria of andic materials.

Major minerals in the sand fraction are quartz, plagioclase, hornblende,

augite, hypersthene, olivine and volcanic glass. Some of the volcanic glass is

coated with amorphous materials. Allophane, cristobalite, feldspars and halloysite

IV

are major minerals in the clay fraction. Some soils contain imogolite. Halloysite

exists as tubular crystals. Gibbsite is found in Mt. Pasaman soils, while opaline

silica is present in the surface horizons of Mt. Marapi soils.

The P sorption characteristics of the soils were described using Langmuir

and Freundlich equations. The Langmuir phosphorus sorption maxima ranged

from 856 to 2,05 1 mg P ki' and the Freundlich phosphurus sorption maxima

ranged from 300 to 2,500 mg P kg"'. Mt. Pasaman soils have higher P sorption

than Mt. Marapi soils due to higher allophane content in the former soils. By

using stepwise regression analysis, the combination of AID, SiD, FeD and AId

predicted more than 88 % of the variation in the P sorption. The external P

requirements were between 300 to 2,700 mg P kg"' for Mt. Marapi soils and

between 2,300 to 7,800 mg P kg"' for Mt. Pasaman soils.

Superphosphate and Ca-silicate applications have some effects on the

soils. pHD changed after these amendments were applied. Phosphate application

lowered pHD and increased CEC. Application of Ca-silicate increased pHD

initially. Later it decreased. Application of Ca-silicate at 1 20 t ha"l decreased P

sorption by 96 % while the external P requirement was reduced by 90 %.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Dokto Falsafah

SIFAT-SIFAT PERMUKAAN KOLOID DAN MASALAH AMELIORASI PADA TANAH VULKANIK DI SUMATRA BARAT, INDONESIA

Oleh

DIAN FIANTIS

June 2000

Pengurusi : Prof. Dr. J. Shamshuddin

Faculti : Pertanian, UPM

Pengurusi-bersama : Prof. Dr. E. Van Ranst

FakuIti : Sains, Ghent University, Belgium.

Sifat fizik-kimia dan mineralogi tanah Andisols daripada beberapa ketinggian

di Gunung Marapi dan Gunung Pasaman di daerah Sumatra Barat, Indonesia telah

dikaji. Tanah ini terjadi dalam keadaan regim kelembaban udic, isothermik dan

isohipertermik. Tanah mempunyai epipedon yang gelap dengan karbon organik

tinggi dan ketumpatan pukal rendah « 0.9 Mg m<3). Kesemua 9 pedon yang dikaji

memenuhi kriteria sifat fizik dan kimia andik.

Mineral utama yang dijumpai dalam bahagian pasir ialah kuarsa, plagioklas,

homblen, augit, hypersten, olivin dan gelas vulkan. Sebahagian daripada gelas

vulkan dilapisi oleh bahan amorfus. Allophan, kristobalit, feldspars dan halo is it

merupakan mineral utama yang terdapat dalam bahagian lempung. Ada beberapa

VI

tanah mengandung imogolit. Haloisit wujud dalam bentuk kristal tiup. Gibsit

dijumpai dalam tanah Gunung Pasaman, manakala silika opal wujud di permukaan

tanah Gunung Marapi.

Ciri-ciri jerapan P tanah dij elaskan dengan persamaan Langmuir dan

Freundlich. Jerapan maks'mum P bagi model Langmuir berkisar pada nilai 856 -

2,05 1 mg P kg-I dan jerapan maksimum P bagi Freundlich pula ialah 300 - 2,500 mg

P kg- I . Tanah Gunung Pasaman mempunyai jerapan P yang lebih tinggi jika

dibandingkan dengan tanah Gunung Marapi. Dengan menggunakan regresi,

kombinasi Alo, Sio, Feo dan AId dapat meramalkan lebih 88 % daripada variasi

jerapan P . Keperluan P ialah antara 300 ke 2,700 mg P kg- I untuk tanah Gunung

Marapi dan antara 2,300 ke 7,800 mg P kg- I untuk tanah Gunung Pasaman.

Aplikasi superphosphat dan Ca-silikat mempunyai kesan kepada tanah. pHo

berubah selepas aplikasi bahan ini. Aplikasi fosfat menurunkan pHo dan menaikan

KPK. Aplikasi Ca-silikat meningkatkan pHo pada mulanya. Kemudian ianya turun.

Aplikasi 1 20 t ha- I Ca-silikat menurunkan jerapan P sebanyak 96 % manakala

keperluan P menurun sebanyak 90 %.

vii

ACKNOWLEDGEMENTS

This work hopes to contribute to our limited knowledge concerning the nature

and properties of well-drained volcanic ash soils in the humid tropics, in general, and

in the West Sumatra of Indonesia, in particular. This thesis is based on my intensive

field and laboratory works in the last couple of years. The completion of this thesis

would have been impossible without the a�:)istance and direct involvement of so

many kindhearted individuals. Thus, I am very much indebted to my present as well

as to my previous mentors. I have no way of repaying such a debt except to express

my sincerest gratitude.

Foremost, I am very grateful to my promoters, Prof. Dr. J. Shamshuddin,

Deputy Dean, Faculty of Agriculture, UPM, Malaysia, and Prof. Dr. E. Van Ranst,

Director, Laboratory For Soil Science, Ghent University, Belgium, for their strong

support, patient guidance and for the very enriching and thought-provoking

discussions and lectures. They were always there for us and provide everything we

need in the laboratory. With them around, we, their students felt there was nothing

we could not overcome even when the going became very tough. I benefited to a

great deal from their long and extensive research experience on tropical soils .

To Assoc. Prof. Dr. Siti Zauyah Darns and Dr. Che Fauziah Ishak members

of the Supervisory Committee for their comments and suggestions which contribute a

lot to the improvement of the final manuscript. They also went to my sampling sites

despite the difficult terrain and heavy rains in Mt. Marapi and Mt. Pasaman. There

VIII

were also few words of encouragement from those seSSIons, and I was always

grateful for the time spent with them.

For the scholarship, I am indebted to Flemish Inter-University Council

( Vl .I .R), Belgium through Ph.D. Twinning Program between Universiteit Gent and

UPM and Prof. Dr. G. Stoops, Director of ITC for the Land Resources Universiteit

Gent, for accepting me in his project immediately after completing my M.Sc study. I

am honored to be one of his students in Geological Institute of the University of

Ghent Belgium. The administrative support from the Universitas Andalas Padang is

also gratefully acknowledged.

Next, I wish to thank some of my prevIOUS teachers who have also

contributed to and influenced my present understanding of the soil as a natural body.

To Bapak Ir. I . N. Dt. R. Imbang of Universitas Andalas Padang from whom I

received my first lesson in soil genesis and classification and guided me with my B .

Sc. thesis. To Bapak Prof. Dr. Fachri Ahmad, former Rector of Universitas Andalas,

now the vice governor of West Sumatra province who introduced me to volcanic ash

soils and supported me ever since I was his student and encourage me to go further

on my study abroad. I am also indebted to Prof. Dr. K. H. Tan of University of

Georgia, Athens USA, for his guidance and valuable soil description during sampling

and endless hours of discussion about many aspects of soil science.

I gratefully acknowledge the International Foundation for Science ( IFS) of

Sweden for the research grant on "Managing of volcanic ash soils from West

IX

grateful to the Foundation for sponsonng my participation to the 1 6th World

Congress of Soil Science in Montpellier, France, on August 2 1 -27, 1 998 .

Thanks also to my friends, Mr. Somjate Pratummintra of Thailand, who

always there for me and my sons. He is not only my best friend, he is also my son's

best buddy. We really appreciate everything you have done for us during these last

four years. We will miss your tom yam or other Thai's food. I am grateful to Mr.

Renato Boniao of the Philippines, for his generosity in helping my English and smart

discussion during our laboratory works and preparation of our final thesis. I am

hoping that our friendship will last forever.

Many other people have also contributed to the completion of this work

through their cooperation, help or advice. In UPM, Serdang they are : En. Azali Md

Sab, Kak Nomi, Kak Fauziah (both from analitical and micromorphology labs.), En.

Abdul Rahim and En. Jamil , En. Ramli and Bapak Ibrahim Shamshuddin.

Acknowledgement is also due to Mrs. N. Vindevogel and Ms. M. Duchene for their

helping hands during soil analyses in the laboratory of Soil Science, Ghent

University. Also to Mr. 1. De Weirdt for facilitating all of the XRDA. I sincerely

honored Dr. G. Baert for his invaluable assistance during my tenure in Gent.

I wish to express my heartfelt thanks to my beloved husband .'Nelson' and

our precious sons: Tito and Irfan for their patience and understanding. Finally, my

deepest gratitude goes to my parents, sisters and brothers for their encouragement

and help during my studies and away from home.

I certify that an Examination Committee met on June 8th , 2000 to conduct the final examination of Dian Fiantis on her Doctor of Philosophy thesis entitled "Colloid­Surface Characteristics and Amelioration Problems of Some Volcanic Soils in West Sumatra, Indonesia" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1 980 and Universiti Pertanian Malaysia (Higher Degree) Regulation. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

AZIZAH HASHIM, Ph.D. Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

SHAMSHUDDIN JUSOP, Ph.D. Professor \ Deputy Dean Faculty of Agriculture Universiti Putra Malaysia (Member)

ERIC VAN RANST, Ph.D. Professor Faculty of Sciences Ghent University, Belgium (Member)

SITI ZAUYAH DARUS, Ph.D. Associate Professor \ Head of Department Department of Land Management Faculty of Agriculture Universiti Putra Malaysia (Member)

CHE F AUZIAH ISHAK, Ph.D. Faculty of Agriculture University Putra Malaysia (Member)

ESWARAN PADMANABHAN, Ph.D. Faculty of Resource Science and Technology Universiti Malaysia Sarawak (External Examiner)

HAZALI MOHA YIDIN, Ph.D. ProfessorlDeputy Dean of Graduate School, Universiti Putra Malaysia

Date 2 7 JUN 2000

xi

This thesis submitted to the Senate of Universiti Putra Malaysia and was accepted as fulfilment of the requirements for the degree of Doctor of Philosophy.

KAMIS�WAG, Ph.D. Associate Professor Dean of Graduate School, Universiti Putra Malaysia

Date 1 3 JUL 2000

xii

I hereby declare that this thesis is based on my original work except for quotations and citations which, have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

signed

Candidate.

DIAN FIANTIS

Date: 2 6 JUN 2000

X1ll

TABLE OF CONTENTS

Page

DEDICATION . . . . . . . . . ......... ... ... ...... ...... ... ...... ....................... .... 11 ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. III ABSTRAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACKNOWLEDGEMENTS . . . ... ... . .. . ........ ...... . ..... ... . .. ..... . . . . ... ... ... VB APPROV AL SHEETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x DECLARATION FORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xll LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv LIST OF FIGURES ............ ...... ...... ............ ........... .... ...... ..... ... XVlll

CHAPTER

I INTRODUCTION 1.1 Effects of Volcanic Ash on Soils 1.1 The Need for More Information on West Sumatra's Volcanic Ash Soils 1.2 Objectives of the Study 1.3

II PHYSICAL ENVIRONMENT OF STUDY SITE 2.1 Geographical Location of Volcanic Ash Soils 2.1 Geology of West Sumatra 2.3 Climate 2.9 Vegetation 2.13

III LITERATURE REVIEW 3.1 Classification of Volcanic Ash Soils 3.1 Characteristics of Volcanic Ash Soils 3.4

Physical Properties 3.4 Chemical Properties 3.5 Mineralogical Properties 3.10

Utilization of Volcanic Ash Soils 3.l6

IV MATERIALS AND METHODS 4.1 The Soils for the Study 4.1

Soil Sampling 4.2 Soil Preparation and Place of Analyses 4.2

Methods of Analyses 4.2 Physical Analyses 4.2 Routine Chemical Analyses 4.4 Surface Reactivity 4.6 Charge Characteristics 4.8 Mineralogical Analyses 4.9

Laboratory Experiments 4.14

v

VI

VII

XIV

Application of Calcium Silicate and Superphosphate 4.14 Data Collection 4.14

RESULTS AND DISCUSSION Composition of the Parent Material of the Soils Polarized Microscopy of Sand Fraction Morphological Properties

Soil Horizons Soil Color Soil Texture Structure Consistence

Soil Classification Diagnostic Surface and subsurface Horizons Soil Taxonomy World Reference Base for Soil Resources (WRB)

Mineralogical Properties Quantitative Analyses

Selective Dissolution Total Elemental Analysis

Qualitative Analyses X-ray Diffraction (XRD) Analysis Infrared Absorption Spectroscopy (IR) Differential Thermal Analysis (DTA) Scanning Electron Microscopy (SEM)

Chemical Properties Surface Reactivity P Sorption Isotherm Surface Charge Properties

Physical Properties Effects of Calcium Silicate and Superphosphate Applications on the soils

Point zero of charge (pHo) Soil pH Phosphate Sorption Isotherm Exchange Properties

PRACTICAL IMPLICATIONS MANAGEMENT

SUMMARY AND CONCLUSIONS

ON SOIL

5 .1 5 .1 5 .3 5.6 5.6 5 .7 5.8 5.9 5.9

5.11 5 .11 5 .15 5.17 5 .20 5.20 5 .20 5 .45 5 .53 5.53 5.68 5 .73 5 .76 5.83 5.97

5 .113 5.134 5.146

5.169 5 .169 5.178 5 .181 5 .201

6.1

7.1

REFERENCES APPENDICES

R. l A. ! B . l BIODATA OF AUTHORS

Table

2 . 1 .

2 .2 .

5. 1 .

5 .2.

5 . 3 .

5 .4.

5 . 5 .

5 .6 .

5 .7 .

5 . 8 .

5 .9

5 . 1 0.

5 . 1 1 .

5 . l 2 .

5 . 1 3 .

5 . l 4.

5 . 1 5 .

LIST OF TABLES

Climatic data of Mt. Marapi area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Climatic data of Mt. Pasaman area . . . . . . . . . . . . . . . . . . . . . . . . . " . . . . . . . .

Elemental composition of the parent materials . . . . . . . . . . . . . .. . . . . .

Mineral distribution in sand fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Requirements for the melanic fulvic, mollie, umbric and ochric horizons (Soil Survey Staff, 1 998; F AO, ISRIC and ISSS, 1 998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Identification of the diagnostic surface horizon according to WRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Family name of the studied soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Classification in the studied soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acid oxalate dissolution and estimated content of allophane, imogolite and ferrihydrite in fine earth fraction . . . . . . . . . . . . . . . . . . . .

Acid oxalate dissolution of sand particles and estimated content of allophane and ferrihydrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acid oxalate dissolution of silt fraction and estimated content of allophane and ferrihydrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acid oxalate dissolution of clay fraction and estimated content of allophane and ferrihydrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Na-pyrophosphate dissolution in fine earth fraction . . . . . . . . . . . . . . .

DCB dissolution of the fine earth fraction . . . . . . . . . . . . . . . . . . . . . . . . . . .

Statistical analysis of extractable Si, A l and Fe . . . . . . . . . . . . . . . . . . . . .

Mean difference of Si, Al and Fe in the studied soils . . . . . . . . . . . . . .

Total elemental composition of the fine earth . . . . . . . . . . . . . . . . . . . . . .

xv

Page

2. 1 0

2. 1 0

5 . 1

5 .4

5 . 1 3

5 . 1 4

5 . 1 7

5 . 1 8

5 .2 1

5 .25

5 .27

5 .29

5 .32

5 .37

5.42

5 .44

5 .45

5 . 1 6.

5 . 1 7.

5 . 1 8 .

5 . 1 9.

Recalculated of total elemental composition of fine earth and some molar ratios after substracting with H20, H20' and P20S

Recalculated of total elemental composition of fine earth and some molar ratios after substracting with H20, H20', P20S and short-range order constituents . . . " . . . . . . . " . . . . . . . . . . . . . . . . . . . . . . . . "

Surface reactivity parameters in the studied soils . . . . . . . . . . . . . . . ' "

Correlation coefficients between surface reactivity parameters in the studied soils . . . . . . . . . . . . . . . . . . . . . . . . ' " . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 .20. Correlation coefficients between P Retention and the surface

XVI

5 .47

5 .48

5 .98

5 .99

reactivity parameters . . . . . . . . . . . . . . . . . . . . . . " . . . . . . ' " . . . . . . . . . . . . . . . . . . 5 . 1 1 2

5 .2 1 . P sorption isotherm parameters of soils from Mt. Marapi . . . . . . . . . 5 . 1 1 4

5 .22. P sorption isotherm parameters of soils from Mt. Pasaman . . . . . . 5 . 1 1 4

5 .23 Multiple regression analysis of the effect of various aluminium, iron oxide fractions and OH release on the phosphate sorption maximum of Langmuir isotherm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 23

5 .24. Multiple regression analysis of the effect of various aluminium, iron oxide fractions and OH release on the P requirement for plant growth (PRP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 25

5 .25 . Multiple regression analysis of the effect of various aluminium, iron oxide fractions and OH release on the phosphate sorption maximum of Freundlich isotherm (PSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 32

5 .26. Correlation coefficient between surface charge properties parameters and soil components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 3 8

5 .27. Particle-size distribution of the studied soils . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 47

5 .28 . Correlation coefficients between soil constituents and particle size classes obtained by different methods . . . . . . . . . . . . . . . . . . . . . . . .. . 5 . 1 49

5 .29. Summary of statistical analyses between bulk density and soil constituents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 58

5 .30. Particle density and porosity of the studied soils . . . . . . . . . . . . . . . . . . 5 . 1 59

5 . 3 1 . Water storage of the studied soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . I 64

XVll

5 .32 . Effect of amendments on pH H20 after 2 and 6 months . . . . . . . . . . 5 . 1 79

5 . 33 . Effect of amendments on L\ pH after 2 and 6 months . . . . . . . . . . . . . . 5 . 1 80

5 .34 Equilibrium parameters of P sorption isotherm at 25°C . . . . . . . . . . . 5 . 1 83

Figure

2. 1

2.2

2.3

2 .4

2 .5

5 . 1

5 . 2

5 .3

5 .4

5 . 5

5 .6

5 .7

5 .8

5 .9

LIST OF FIGURES

A map showing the location of Mt. Marapi and Mt. Pasaman in the Barisan Mountain Range in Sumatra . . . . . . . . . . . . . . . . . . . . .

A map showing the geology of Mt. Marapi and its surrounding area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A map showing the geology of Mt. Pasaman and its surrounding area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Precipitation and evaporation in Padang Panjang station . . . . . .

Precipitation and evaporation in Sukamenanti station . . . . . . . . .

(A). Relationship between allophane in silt and fine earth . . . (B). Relationship between ferrihydrite in silt and fine earth . .

Relationship between Alp/Alo ratio with (A) allophane and (B) Alp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between (Alp+Fep)/Cp and (A) allophane and Sio content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between Cp and (A) organic carbon and (B) Alp or Fep . . . • • . . • • . . . • • • . . . . . . • . • . • • • . . . . . . . . • . • . . . . . . . • . . . . • . . . • • . • . • . • . .

Depth function of DCB extractable Al and Fe in (A) P I M, (B). P III M, (C) P VII P and (D) P IX P . . . . . . . . . . . . . . . . . . . . . . . .

Depth functions of four types of extractable Al in (A) P II M, (B). P V M, (C). P VI P and CD) P VIII P . . . . . . . . . . . . . . . . . . .

Depth function of four type of extractable Fe in (A) P II M, (B). P V M, (C) P VI P and (D) P IX P . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between claYr content and (A) CaO, (B) Na20 and (C) K20 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between clayr contents (A) Si02, (B) Ah03 and (C) Fe203 contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xviii

Page

2.2

2.6

2.8

2 . 1 1

2. 1 1

5 .28 5 .28

5 .33

5 .34

5 .35

5 .38

5 .40

5 .4 1

5 . 50

5 . 51

5 . 1 0

5 . 1 1

5 . 1 2

5 . 1 3

5 . 1 4

5 . 1 5

5 . 1 6

5 . 1 7

5 . 1 8

5 . 1 9

5 .20

5 . 2 1

5 .22

5 .23

5 .24

5 .25

5 .26

XRD patterns of the silt fraction from P III M . . . . . . . . . . . . . . . . . .

XRD patterns of the silt fraction from P IX P . . . . . . . . . . . . . . . . . .

XRD patterns of the silt fraction from P V M . . . . . . . . . . . . . . . . . .

XRD patterns of the clay fraction from P 1M . . . . . . . . . . . . . . . . . .

XRD patterns of the clay fraction from P V M . . . . . . . . . . . . . . . . . .

XRD patterns of the clay fraction from P IX P . . . . . . . . . . . . . . . . . .

Effect of chemical pretreatment on clay mineral XRD characteristics of Ah horizon, P 1M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Effect of chemical pretreatment on clay mineral XRD characteristics of Ah horizon, P VIII P . . . . . . . . . . . . . . . . . . . . . . . . . . .

Infrared spectra of the clay fraction from P 1M . . . . . . . . . . . . . . . .

Infrared spectra of the clay fraction from P IX P . . . . . . . . . . . . . . .

Effects of chemical and heat treatment upon clay mineral IR characteristics of Ah horizon, P 1M . . . . . . . . . . . . . . . . . . . . . . . . . .

Effects of chemical and heat treatment upon clay mineral IR characteristics of Ah horizon, P VIII P . . . . . . . . . . . . . . . . . . . . . .

DT A curves of clay fraction from P I I M . . . . . . . . . . . . . . . . . . . . . . . .

DT A curves of clay fraction from P VII P . . . . . . . . . . . . . . . . . . . . . . .

Electron micrographs of four morphological type of volcanic glass (A) bubble, (B) curved platy, (C) fibrous and (D) berry-like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SEM image of amorphous surface coating of volcanic ash particles of Mt. Marapi (A) overview of samples,. (B) particles partly coated, (C) fine-textured coating material and (D) details of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Effect of ammonium oxalate dissolution on the surface of sand particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XIX

5 .54

5 . 55

5 .56

5 . 59

5 .60

5 .63

5 .65

5 .66

5 .68

5 .69

5.71

5 .72

5 .74

5 .75

5 .77

5 .79

5 .80

5 .27

5 .28

5 .29

5 .30

5 . 3 1

5 . 32

5 .33

5 . 34

5 . 35

5 .36

5 .37

5 .38

5 . 39

5 .40

5 .4 1

5 .42

An electron micrograph and EDX spectrum showing feldspars weathering to tubular halloysite . . . . . . . . . . . . . . . . . . . . . . .

Behavior of pH with depth in the studied soils . . . . . . . . . . . . . . . . .

Relationship between pH with allophane, Base Saturation (BS) and organic carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between � pH with (A) allophane, (B) Alo, (C) ferrihydrite and (D) Alp + Fep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Behavior of organic carbon (O.C) and total nitrogen with soil depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between organic carbon and allophane content. .

Relationship between total nitrogen and (A) organic carbon and (B) allophane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Forms and status of phosphorus in the southern toposequence of Mt. Marapi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Forms and status of phosphorus in the northern toposequence of Mt. Marapi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Forms and status of phosphorus in the Mt. Pasaman soils . . . .

Effect o f ammonium oxalate and Na-pyrophosphate dissolution on soil pH (A) after 2 minutes and (B) after 24 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between OH release and (A) allophane, (B) organic carbon and (e) ferrihydrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between OH release and (A) oxalate extractable AI, (B) pyrophosphate extractable Al and (D) DeB extractable Al . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between P retention and (A) oxalate extractable AI, (B) oxalate extractable Si . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Effect o f ammonium oxalate dissolution on P retention . . . . . .

Relationship between P retention and (A) pH NaF, (B) OH release and (e) fluoride reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xx

5.82

5 . 84

5 .85

5 . 87

5 . 89

5 .90

5 .92

5 .95

5 .96

5 .97

5 . 1 02

5 . 1 05

5 . 1 06

5 . 1 08

5 . 1 1 0

5 . 1 1 2

5 .43

5 .44

5 .45

5 .46

5 .47

5 .48

5 .49

5 .50

5 . 5 1

5 . 52

5 . 53

5 . 54

5 . 5 5

5 . 56

Amount of P adsorbed with increasing concentration of soil from P II M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Amount of P adsorbed with increasing concentration of soil from P V M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Amount of P adsorbed with increasing concentration of soil from P VIII P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P sorption isotherm of soil in P II M according to Langmuir equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P sorption isotherm of soil in P V M according to Langmuir equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P sorption isotherm of soil in P VIII P according to Langmuir equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between P sorption maximum (PSM) with (A) allophane and (B) organic carbon . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between P sorption maximum with (A) oxalate extractable AI, (B) DCB extractable Al and (C) Pyrophosphate extractable Al . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between P sorption maximum (PSM) of Langmuir equation with OH release after (A) 2 minutes and (B) 24 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between P requirement and (A) oxalate extractable Al and (B) oxalate extractable Si .................. .

Relationship between P requirement and (A) allophane and (B) organic carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P sorption isotherm of soil in P II M according to Freundlich equation . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P sorption isotherm of soil in P V M according to Freundlich equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P sorption isotherm of soil in P VIII P according to Freundlich equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XXI

5 . 1 1 7

5 . 1 1 7

5 . 1 1 7

5 . 1 1 9

5 . 1 1 9

5 . 1 1 9

5 . 1 20

5 . 1 22

5 . 1 23

5 . 1 26

5 . 1 27

5 . 1 29

5 . 1 29

5 . 1 29

5 .57

5 . 58

5 . 59

5 .60

5 . 6 1

5 .62

5 .63

5 .64

5 .65

5 .66

5 .67

5 .68

5 .69

5 .70

(A). PSM according to Langmuir and Freundlich isotherms . . .

(B). Relationship between PSM Langmuir and Freundlich isotherms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between CEC with (A) organic carbon and (B) allophane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contribution of organic and inorganic matter on CEC value fror.') (A) surface and (B) subsurface horizons . . . . . . . . . . . . . . . . . .

Relationship between sum of basic cations and allophane . . . .

Relationship between sum of basic cation and (A) oxalate extractable AI, (P) pyrophosphate extractable Al and (C) DCB extractable Al . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(A). Comparison of sum of basic cations between compulsive exchange and NH40Ac methods . . . . . . . . . . .

(B). relationship between these two methods . . . . . . . . . . . . . . . . .

Relationship between pHo and allophane (A) before and (B) after oxalate dissolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between clay resin with (A) ferrihydrite, (B) AId + Fed; clay hmp with (C) allophane and (D) organic carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Relationship between silt resin with (A) ferrihydrite, (B) AId + Fed; clay hmP with (C) organic carbon and (D) Ald+Fed . . . .

Relationship between clay dispersion index hmp/resin with (A) allophane, (B) organic carbon; clay hmp with (C) allophane and (D) organic carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Distribution of the bulk density in the studied soils . . . . . . . . . . .

Relationship between bulk density and (A) organic carbon, (B) allophane, (C) Alo + Feo and (D) Alp + Fep . . . . . . . . . . . . . . . . . .

Relationship between particle density and (A) allophane and (B) organic carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Relationship between total porosity and (A) organic carbon and (B) allophane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XXII

5 . 1 3 1

5 . 1 35

5 . 1 36

5 . 1 3 8

5 . 1 40

4. 1 42

5 . 1 45

5 . 1 49

5 . 1 5 1

5 . 1 54

5 . 1 56

5 . 1 57

5 . 1 60

5 . 1 62

xxiii

5 . 7 1 Relationship between available water and (A) allophane, (B) organic carbon, (C) bulk density and CD) ferrihydrite o o . . . 5 . 1 66

5 .72 Soil water profiles and distribution of water storage in CA) P I M, (B) P II M, (C) P VIII P and (D) P IX P o o o o o o o o o o o o o o o o o o . 5 . 1 67

5 .73 Relationship water content at 1 500 kPa and (A) allophane, (B) organic carbon, (C) ferrihydrite and (D) bulk density . . . . . . 5 . 1 68

5 .74 Effect of Ca-silicate application and incubation time on pHo . . 5 . 1 70

5 .75 Effect of P fertilizer application and incubation time on pHo . . 5 . 1 7 1

5 . 76 Effect of Ca-silicate and P Fertilizer application on pHo . . . . . . . 5 . 1 76

5 .77 Relationship between P sorption maximum (kl ) with pH H20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 85

5 . 78 Relationship between Ca-silicate and binding energy . . . . . . . . . 5 . 1 85

5 .79 Effect of Ca-silicate application on the amount of P sorbed needed to provide 0.2 ppm P in soil solution . . . . . . . . . . . . . . . . . . . . 5 . 1 87

5 . 80 P sorption isotherm of the incubated soil from P II M o o . . . . . . . 5. 1 88

5 . 8 1 P sorption isotherm o f the incubated soil from P V M o o . . . . . . . 5 . 1 89

5 . 82 P sorption isotherm of the incubated soil from P VI P . . . . . . . . . 5 . 1 90

5 . 83 P sorption isotherm of the incubated soil from P VII P o o o o o o . . . 5 . 1 9 1

5 . 84 Langmuir P sorption isotherm of the incubated soil from P II M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 92

5 . 85 Langmuir P sorption isotherm of the incubated soil from P V M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 93

5 . 86 Langmuir P sorption isotherm of the incubated soil from P VI P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 94

5 . 87 Langmuir P sorption isotherm of the incubated soil from P VII P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 95

5 .88 Freundlich P sorption isotherm of the incubated soil from P II M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . 1 97