siti fadilah juhanpsasir.upm.edu.my/id/eprint/67448/1/fs 2018 33 ir.pdf · larvasida dengan...

46
UNIVERSITI PUTRA MALAYSIA SYNTHESIS OF 2-ARYLDIHYDROBENZOFURAN NEOLIGNANS AND 2- ARYLBENZOFURAN NEOLIGNANS AND THEIR LARVICIDAL ACTIVITIES SITI FADILAH JUHAN FS 2018 33

Upload: others

Post on 06-Jan-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS OF 2-ARYLDIHYDROBENZOFURAN NEOLIGNANS AND 2-ARYLBENZOFURAN NEOLIGNANS AND THEIR LARVICIDAL

ACTIVITIES

SITI FADILAH JUHAN

FS 2018 33

Page 2: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

SYNTHESIS OF 2-ARYLDIHYDROBENZOFURAN NEOLIGNANS

AND 2-ARYLBENZOFURAN NEOLIGNANS AND THEIR

LARVICIDAL ACTIVITIES

By

SITI FADILAH JUHAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra

Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of

Philosophy

January 2018

Page 3: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

All material contained within the thesis, including without limitation text, logos, icons,

photographs and all other artwork, is copyright material of Universiti Putra Malaysia

unless otherwise stated. Use may be made of any material contained within the thesis for

non-commercial purposes from the copyright holder. Commercial use of material may only

be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Page 4: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy

SYNTHESIS OF 2-ARYLDIHYDROBENZOFURAN NEOLIGNANS AND 2-

ARYLBENZOFURAN NEOLIGNANS AND THEIR LARVICIDAL ACTIVITIES

By

SITI FADILAH JUHAN

January 2018

Chair: Siti Mariam Mohd Nor, PhD

Faculty: Science

2-Aryldihydrobenzofuran neolignans (tomentosanan A, ficusal, tomentosanan B) and 2-

arylbenzofuran neolignans (zanthocapensole, zanthocapensate) have been isolated from

the plants were synthesized and evaluated for their larvicidal activities against

Crocidolimia binotalis. Two Heck coupling methods have been developed are using an

activated C-I bond of iodovanillin or non-activated C-H bond of vanillin and alkene of

cinnamic acid derivatives or methyl cinnamate derivatives. Heck coupling reaction

between iodovanillin or vanillin with a series of cinnamic acid derivatives lead to the

formation of eleven new compounds and four known compounds are 2-

aryldihydrobenzofuran neolignan, 3-arylbenzofuran neolignans, 2-arylbenzofuran

neolignans and stilbenes. The reaction involves a series of methyl cinnamate derivatives

has resulted in the formation of five new compounds and three known compounds are

lignans, neolignans, 2,3-diarylbenzofuran neolignan and coumarins. Both methods have

been developed then have applied to the synthesis of five natural products of 2-

arydihydrobenzofuran neolignans and 2-arylbenzofuran neolignans. All the targeted

dihydrobenzofuran neolignans have synthesized as a single enantiomer form namely (+)-

tomentosanan A, (+)-ficusal and (+)-tomentosanan B. Two routes have utilized to

synthesize zanthocapensole and zanthocapensate and only their derivatives have been

obtained from both routes. The selected compounds have been obtained from the Heck

methods development and syntheses part have tested for larvicidal activity by using

Crocidolomia binotalis larvae and azadirachtin as the commercial standard (LD50 = 2.818).

The results indicate some of the compounds have significant activity such as

dihydrobenzofuran neolignan, benzofuran neolignans, lignans, neolignans, stilbene and

coumarin. Among all active compounds, (2E,3E)-dimethyl 2,3-bis(4-hydroxy-3,5-

dimethoxybenzylidene)succinate (lignan) and methyl-3-(4-hydroxy-3-methoxyphenyl)-2-

{2-methoxy-4[(E)-3-methoxy-3-oxo-prop-1-enyl]phenoxy}-prop-2-enoate (neolignan)

have showed the strongest activity with LD50=1.678 mg/L and LD50=2.218 mg/L,

respectively.

Page 5: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

SINTESIS BAGI 2-ARILDIHIDROBENZOFURAN NEOLIGNAN DAN 2-

ARILBENZOFURAN NEOLIGNAN DAN AKTIVITI LARVASIDA MEREKA

Oleh

SITI FADILAH JUHAN

Januari 2018

Pengerusi: Siti Mariam Mohd Nor, PhD

Fakulti: Sains

2-Arildihidrobenzofuran neolignan (tomentosanan A, fikusal, tomentosanan B) dan 2-

arilbenzofuran neolignan (zantokapensol, zantokapensat) yang telah diasingkan daripada

tumbuh-tumbuhan telah disintesis dan dianalisis untuk aktiviti larvasida mereka terhadap

Crocidolomia binotalis. Dua kaedah penggandingan Heck telah dibangunkan

menggunakan ikatan aktif C-I yang diaktifkan daripada iodivanillin atau ikatan tidak

aktif C-H daripada vanillin dan alkena dari terbitan asid sinamik atau terbitan metil

sinamat. Tindak balas penggandingan Heck antara iodovanillin atau vanillin dengan siri

terbitan asid sinamik membawa kepada pembentukan sebelas sebatian baharu dan empat

sebatian diketahui iaitu 2-arildihidrobenzofuran neolignan, neolignan 3-arilbenzofuran,

2-arilbenzofuran neolignan dan stilben. Tindak balas yang melibatkan siri terbitan metil

sinamat telah menghasilkan pembentukan lima sebation baharu dan tiga sebatian

diketahui iaitu lignan, neolignan, 2,3-diarilbenzofuran neolignan dan kumarin. Kedua-

dua kaedah yang telah dibangunkan kemudiannya telah digunakan dalam sintesis lima

hasil semula jadi 2-arildihidrobenzofuran neolignan dan 2-arilbenzofuran neolignan.

Semua sebatian sasaran dihidrobenzofuran neolignan telah disintesis sebagai enantiomer

tunggal iaitu (+)-tomentosanan A, (+)-fikusal dan (+)-tomentosanan B. Dua laluan yang

telah digunakan untuk mensintesis zantokapensol dan zantokapensat dan hanya terbitan

mereka diperolehi daripada kedua-dua laluan. Sebatian terpilih yang telah diperolehi

daripada pembangunan kaedah Heck dan bahagian sintesis telah diuji untuk aktiviti

larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai

piawai komersial (LD50 = 2.818). Hasilnya menunjukkan bahawa beberapa sebatian

mempunyai aktiviti yang penting seperti neolignan dihidrobenzofuran, neolignan

benzofuran, lignan, neolignan, stilben dan kumarin. Di antara semua sebatian aktif,

(2E,3E)-dimethyl 2,3-bis(4-hydroxy-3,5-dimethoxybenzylidene)succinate (lignan) dan

methyl-3-(4-hydroxy-3-methoxyphenyl)-2-{2-methoxy-4[(E)-3-methoxy-3-oxo-prop-

1-enyl]phenoxy}-prop-2-enoate(neolignan) telah menunjukkan aktiviti terkuat dengan

masing-masing LD50 = 1.678 mg/L dan LD50 = 2.218 mg/L.

Page 6: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

iii

ACKNOWLEDGEMENTS

Firstly, all praises to the Mighty Allah, the Gracious and the Beneficent for the strength

and blessing in this study. Appreciation goes to everybody who directly or in directly

assisted me in finishing this project and thesis.

A big honor and thanks to my supervisor Dr. Siti Mariam Mohd Nor for her guidance

and advice all along the way until the completion of this project. Thank you for your

willingness to give me your time for discussion and helping me to understand the concept

and several good techniques used in this project. My gratitude also goes to my committee

members, Dr. Nur Kartinee Mohd Kassim (UPM), Dr. Siti Munirah Mohd Faudzi (UPM)

and Dr. Mohd Shukri Mat Ali (MARDI) for their valuable time and comments.

An appreciation also goes to Pn. Siti Noor Aishikin Abdul Hamid (MARDI) and Pn.

Fatimah Harun (MARDI) who directly gave me a valuable lesson in carrying out

larvicidal bioassay, Pn. Rusnani Amiruddin (UPM) for IR analyses and En. Zainal

Abidin Kassim (UPM) for MS analyses. My gratitude also goes to the Centre for

Research and Instrumentation (CRIM) UKM for the polarimeter analysis, Malaysia

Genome Institute for Circular Dichrosim analysis and Research Management &

Innovation Complex (UM) for LCMS analysis. Without their help and commitment, this

work would not be finished on time.

Finally, my deepest appreciation is to my family especially to my mom, Kamariah

Binti Hj Talib and my dad, Juhan bin Had for their love, support and courage.

Page 7: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

Page 8: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

v

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The

members of the Supervisory Committee were as follows:

Siti Mariam Mohd Nor, PhD

Senior Lecturer

Faculty of Science

Universiti Putra Malaysia

(Chairperson)

Nur Kartinee Binti Kassim, PhD

Senior Lecturer

Faculty of Science

Universiti Putra Malaysia

(Member)

Siti Munirah Binti Mohd Faudzi, PhD

Senior Lecturer

Faculty of Science

Universiti Putra Malaysia

(Member)

Mohd Shukri Bin Mat Ali, PhD

Deputy Director and Principal Research Officer

Malaysian Agricultural Research and Development Institute

Malaysia

(Member)

___________________________

ROBIAH BINTI YUNUS, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

Page 9: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

vi

Declaration by graduate student

I hereby confirm that:

this thesis is my original work;

quotations, illustrations and citations have been duly referenced;

this thesis has not been submitted previously or concurrently for any other degree

at any other institutions;

intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research)

Rules 2012;

written permission must be obtained from supervisor and the office of Deputy Vice-

Chancellor (Research and Innovation) before thesis is published (in the form of

written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports,

lecture notes, learning modules or any other materials as stated in the Universiti

Putra Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies)

Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research)

Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date: __________________

Name and Matric No.: _________________________________________

Page 10: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

vii

Declaration by Members of Supervisory Committee

This is to confirm that:

the research conducted and the writing of this thesis was under our supervision;

supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:

Name of Chairman of

Supervisory

Committee:

Signature:

Name of Member of

Supervisory

Committee:

Signature:

Name of Member of

Supervisory

Committee:

Signature:

Name of Member of

Supervisory

Committee:

Page 11: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

viii

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

APPROVAL iv

DECLARATION vi

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SCHEME xvii

LIST OF ABBREVIATIONS xx

CHAPTER

1 INTRODUCTION 1

1.1 Dihydrobenzofuran neolignans and

Benzofuran neolignans

1

1.2 Retrosynthetic analysis of targeted

compounds

2

1.3 The pesticidal/insecticidal activity of lignans

and neolignans

4

1.4 Problem statement and hypothesis 6

1.5 Objectives 7

2 LITERATURE REVIEW 8

2.1 Furan and lignan family 8

2.2 Biosynthesis of lignans 10

2.3 Synthesis of dihydrobenzofuran neolignans 15

2.3.1 Heck Coupling 15

2.3.2 Enantioselective cycloetherification 16

2.3.3 Radical-based dimerizations (SET

reagent)

16

2.3.4 Oxidative dimerization (HRP

enzyme)

17

2.4 Synthesis of benzofuran neolignans 19

2.4.1 Sonogashira coupling 19

2.4.2 Palladium-catalyzed annulation 20

2.4.3 Intramolecular oxidative Heck

cyclization

21

2.4.4 Other method on synthesizing

benzofuran

22

2.5 The bioactivity of dihydrobenzofuran

neolignans

23

2.6 The bioactivity of benzofuran neolignans 28

2.7 The pesticide and insecticide active

compounds

32

Page 12: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

ix

2.8 Life cycle of Crocidolomia binotalis 37

3 MATERIALS AND METHODS 39

3.1 General 39

3.2 Experimental procedure for synthesis 39

3.2.1 Halogenation 40

3.2.2 Heck Coupling 41

3.2.3 Esterification 42

3.2.4 Reduction 42

3.2.5 Demethylation 43

3.3 Experimental data for synthesis 42

3.3.1 Heck coupling method development 42

3.3.2 Synthesis of tomentosanan A 55

3.3.3 Synthesis of ficusal 58

3.3.4 Synthesis of tomentosanan B 60

3.3.5 Synthesis of zanthocapensole and

zanthocapensate

63

3.4 Procedure for larvicidal activity 65

3.4.1 Rearing technique of Crocidolomia

binotalis using plant (cabbage)

66

3.4.2 Rearing technique of Crocidolomia

binotalis using artificial diet

66

3.4.3 Larvicidal bioassay of selected

synthesized compounds against

Crocidolomia binotalis larvae

68

3.4.4 LD50 determination of active

compounds

68

4 RESULTS AND DISCUSSION 72

4.1 General 72

4.2 Heck coupling method development 72

4.2.1 Synthesis of iodovanillin 75

4.2.2 Heck coupling between iodovanillin

and vanillin with cinnamic acid

derivatives

76

4.2.3 Synthesis of methyl cinnamate

derivatives

102

4.2.4 Heck coupling between vanillin and

iodovanillin with methyl cinnamate

derivatives

104

4.3 Synthesis of tomentosanan A 122

4.3.1 Synthesis of sinapyl alcohol 123

4.3.2 Heck coupling between vanillin and

iodovanillin with sinapyl alcohol

(Route 3)

126

4.3.3 Enzymatic coupling between

vanillin with sinapic acid and methyl

sinapate using horseradish

peroxidase

137

Page 13: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

x

4.4 Synthesis of ficusal and tomentosanan B 143

4.4.1 Synthesis of coniferyl alcohol 145

4.4.2 Coupling between vanillin and

iodovanillin with coniferyl alcohol

(Route 3)

147

4.4.3 Reduction of (+)-ficusal 157

4.4.4 Synthesis of vanillyl alcohol and

iodovanillyl alcohol

163

4.4.5 Coupling between vanillyl alcohol

and iodovanillyl alcohol with

coniferyl alcohol (Route 4)

163

4.4.6 Enzymatic coupling between

vanillin with ferulic acid and methyl

ferulate (Horseradish peroxidase)

164

4.5 Synthesis of zanthocapensole and

zanthocapensate

173

4.5.1 Synthesis of zanthocapensole and

zanthocapensate (Route 1)

175

4.5.2 Synthesis of zanthocapensole and

zanthocapensate (Route 2)

183

4.6 The larvicidal activity 186

4.6.1 Larvicidal bioassay of

dihydrobenzofuran neolignans

against Crocidolomia binotalis

186

4.6.2 Larvicidal bioassay of benzofuran

neolignans against Crocidolomia

binotalis

188

4.6.3 Larvicidal bioassay of lignans

against Crocidolomia binotalis

190

4.6.4 Larvicidal bioassay of neolignans

against Crocidolomia binotalis

191

4.6.5 Larvicidal bioassay of stilbenes and

coumarins against Crocidolomia

binotalis

193

5 CONCLUSION 196

REFERENCES 197

APPENDICES 210

BIODATA OF STUDENT 330

LIST OF PUBLICATIONS AND CONFERENCES 331

Page 14: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xi

LIST OF TABLES

Table Page

2.1 Summary of natural potential dihydrobenzofuran

neolignan compounds

25

2.2 Summary of natural potential benzofuran

neolignan compounds

31

3.1 Gradient flow for LCMS-QTOF 39

4.2.1 Reaction between iodovanillin (7) and ferulic acid

(53) using Pd(OAc)2 and Pd2(dba)3

78

4.2.2 Reaction between iodovanillin (7) and sinapic acid

(55) at different reaction time

78

4.2.3 Esterification of cinnamic acid derivatives 103

4.2.4 Esterification of ferulic acid (53) at different

reaction time

103

4.2.5 Esterification of sinapic acid (55) at different

reaction time

103

4.2.6 Coupling between iodovanillin (7) and methyl

ferulate (108) with different phase transfer agent

and reaction time.

107

4.2.7 Coupling between vanillin (56) and methyl

ferulate (108) with different catalyst and reaction

time.

109

4.3.1 Reduction of methyl sinapate (261) at different

reaction time and catalyst equivalence.

124

4.3.2 Reaction between vanillin (56) and sinapyl alcohol

(8) at different temperature.

126

4.3.3 Comparison table between synthesized (+)

tomentosanan A (271) and isolated (-)

tomentosanan A (1)

130

4.3.4 Reaction between vanillin (56) and methyl

sinapate (261) at different ratio using HRP

138

4.4.1 Reduction of methyl ferulate (108) using LiAlH4

at different reaction time and catalyst equivalence

146

4.4.2 Reaction between iodovanillin (7) and coniferyl

alcohol (9) at different reaction time

148

4.4.3 Comparison 1H NMR and 13C NMR between

synthesized and isolated (+)-ficusal (6)

150

4.4.4 CD comparison between the isolated and

synthesized compounds

158

4.4.5 Comparison table between synthesized (+)-

tomentosanan B (280) and isolated (-)-

tomentosanan B (3)

160

4.4.6 Reaction of methyl ferulate (108) using HRP at

different reaction condition and time

166

4.5.1 Demethylation of 3',4'-dimethoxyphenylacetylene

(15) at different reaction condition

176

4.5.2 Reaction between 3',4'-dimethoxyphenylacetylene

(15) and iodovanillin (7) at different reaction time

179

Page 15: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xii

4.5.3 Reaction between methyl ferulate (108) and 3’,4’-

dimethoxyphenyl acetylene (15) using different

catalyst and reaction time

185

4.6.1 Bioassay results of dihydrobenzfuran neolignans

against Crocidolomia binotalis

187

4.6.2 Bioassay results of benzofuran neolignans against

Crocidolomia binotalis

189

4.6.3 Bioassay results of lignans against Crocidolomia

binotalis

191

4.6.4 Bioassay results of neolignans against

Crocidolomia binotalis

192

4.6.5 Bioassay results of stilbenes and coumarins

against Crocidolomia binotalis

194

4.6.6 Comparison of LD50 data between different types

of compounds against Crocidolomia binotalis

195

Page 16: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xiii

LIST OF FIGURES

Figure Page

1.1 Structure of targeted neolignans 1

1.2 Structure of potential pesticidal/insecticidal lignans

and neolignans

6

2.1 Basic skeleton of furan, benzofuran and

dihydrobenzofuran

8

2.2 Phenylpropanoid unit, lignan and neolignan basic

structures

8

2.3 Subclasses of lignans 9

2.4 Examples of neolignan 10

2.5 Life cycle of Crocidolomia binotalis

(Sastrosiswojo and Setiawati, 1992)

38

3.1 Rearing Crocidolomia binotalis using plant 66

3.2 Ingredient for diet preparation 67

3.3 Rearing Crocidolomia binotalis using diet 67

3.4 Larvicidal bioassay of selected synthesized

compounds against Crocidolomia binotalis larvae

68

3.5 The Polo Plus software 71

4.2.1 1H NMR and 13C NMR spectra of 2-methoxy-4-

vinylphenol (246) and 2,6-dimethoxy-4-vinyl

phenol (249) (500 MHz, CDCl3)

81

4.2.2 1H NMR and 13C NMR spectra of 4-hydroxy-3-

methoxy-5-(1-(3-

methoxyphenyl)vinyl)benzaldehyde (240) (500

MHz, CDCl3)

83

4.2.3 HMBC correlation of compound 240 83

4.2.4 1H NMR spectra of 7-methoxy-3-

phenylbenzofuran-5-carbaldehyde (239), 7-

methoxy-3-(3-methoxy phenyl)benzofuran-5-

carbaldehyde (241), 7-methoxy -3-

(4methoxyphenyl)benzofuran-5-carbaldehyde

(242) and 3-(4-Hydroxy-3,5-dimethoxyphenyl)-7-

methoxybenzofuran-5-carbaldehyde (250) (500

MHz, CDCl3)

85

4.2.5 13C NMR spectra of 7-methoxy-3-

phenylbenzofuran-5-carbaldehyde (239), 7-

methoxy-3-(3-methoxy phenyl)benzofuran-5-

carbaldehyde (241), 7-methoxy -3-

(4methoxyphenyl)benzofuran-5-carbaldehyde

(242) and 3-(4-Hydroxy-3,5-dimethoxyphenyl)-7-

methoxybenzofuran-5-carbaldehyde (250) (125

MHz, CDCl3)

86

4.2.6 HMBC correlation of compounds 239, 241, 242

and 250

87

4.2.7 1H NMR spectra of 3-(4-hydroxy-3,5-dimethoxy

phenyl)-7-methoxybenzofuran-5- carbaldehyde

(250) and 2-(4-hydroxy-3,5-dimethoxystyryl)-3-(4-

89

Page 17: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xiv

hydroxy -3,5-dimethoxyphenyl)-7-

methoxybenzofuran-5-carbaldehyde (253) and 13C

NMR spectrum of 253 (500 MHz, CDCl3).

4.2.8 HMBC correlation of compound 253 90

4.2.9 1H NMR and 13C NMR spectra of 3-(3,4-

dihydroxy styryl)-4-hydroxy-5-

methoxybenzaldehyde (243) and 2-(5'-formyl-

2',5,6-trihydroxy-3'-methoxy[1,1'-biphenyl]-3-yl)-

7-methoxy-1-benzofuran-5-carbaldehyde (244)

(500 MHz, CD3OD)

94

4.2.10 1H NMR spectra of 3-(4-hydroxy-3-methoxy

styryl)-4-hydroxy-5-methoxybenzaldehyde (246),

4- formyl-2-methoxyphenyl-3-(4-hydroxy-3-

methoxystyryl)-4-hydroxy-5-methoxybenzoate

(247) and 2-(5'- formyl-2',6-dihydroxy-3',5-

dimethoxy[1,1'-biphenyl]-3-yl)-7-methoxy-1-

benzofuran-5-carbaldehyde (248) (500 MHz,

CDCl3)

95

4.2.11 13C NMR spectra of 3-(4-hydroxy-3-methoxy

styryl)-4-hydroxy-5-methoxybenzaldehyde (246),

4- formyl-2-methoxyphenyl-3-(4-hydroxy-3-

methoxystyryl)-4-hydroxy-5-methoxybenzoate

(247) and 2-(5'- formyl-2',6-dihydroxy-3',5-

dimethoxy[1,1'-biphenyl]-3-yl)-7-methoxy-1-

benzofuran-5-carbaldehyde (248) (125 MHz,

CDCl3)

96

4.2.12 1H NMR and 13C NMR spectra of 2-(4-hydroxy -

3,5-dimethoxyphenyl)-7-methoxybenzofuran-5-

carbaldehyde (2511) and 2,3-dihydro-2-(4-

hydroxy-3,5- dimethoxyphenyl)-7-

methoxybenzofuran-5-carbaldehyde (252) (500

MHz, CDCl3)

98

4.2.13 HMBC correlation of compounds 243, 244, 246,

247, 248 and 252

99

4.2.14 1H NMR and 13C NMR spectra of 3-(5-formyl-2-

hydroxy-3-methoxyphenyl)-7-methoxy-2-(3-

methoxy phenyl)benzofuran-5-carbaldehyde

(262) (500 MHz, CDCl3)

110

4.2.15 HMBC correlation of compound 262 110

4.2.16 1H NMR and 13C NMR spectra of 8-methoxy-4-(4-

methoxyphenyl)-2-oxo-2H-chromene-6-

carbaldehyde (263) and 4-(4-hydroxy-3-

methoxyphenyl)-8- methoxy-2-oxo-2H-chromene-

6-carbaldehyde (264) (500 MHz, CDCl3)

112

4.2.17 HMBC correlation of compound 263 and 264 113

4.2.18 1H NMR and 13C NMR spectra of 267 (500 MHz,

125 MHz, (CD3)2CO)

115

4.2.19 HMBC correlation of compound 267 116

4.2.20 1H NMR and 13C NMR spectra of (2E,3E)-

dimethyl 2,3-bis(4-hydroxy-3-

methoxybenzylidene)succinate (265) and (2E,3E)-

117

Page 18: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xv

dimethyl 2,3-bis(4-hydroxy-3,5-

dimethoxybenzylidene)succinate (266) (500 MHz,

CDCl3)

4.2.21 1H NMR and 13C NMR spectra of (2E,2’E)-3,3’-

[6,6’-dihydroxy-5,5’-dimethoxy-(1,1’-biphenyl)-

3,3’-diyl]diacrylate (268) (500 MHz, CDCl3)

118

4.2.22 1H NMR and 13C NMR spectra of methyl (Z)-3-(4-

hydroxy-3-methoxyphenyl)-2-{2-methoxy-4[(E)-

3- methoxy-3-oxoprop-1-enyl]phenoxy}-prop-2-

enoate (176) and (Z)-methyl 2-(4-formyl-2-

methoxy phenoxy)-3-(4-hydroxy-3,5-

dimethoxyphenyl) acrylate (269) (500 MHz,

CDCl3)

120

4.2.23 HMBC correlation of compound 268, 177, and

269.

121

4.3.1 1H NMR and 13NMR spectra of sinapyl alcohol (8)

and 3-(4-hydroxy-3,5-dimethoxyphenyl)propanal

(270) (500 MHz, CDCl3)

125

4.3.2 CD spectrum of (+)-tomentosanan A (271). 128

4.3.3 1H NMR and 13C spectra of (+)-tomentosanan A

(271) (500 MHz, CDCl3)

129

4.3.4 HMQC spectrum of (+)-tomentosanan A (271) 131

4.3.5 HMBC spectrum of (+)-tomentosanan A (271) 131

4.3.6 1H NMR and 13C NMR spectra of sinapaldehyde

(67) and 3,4-bis(4-hydroxy-3,5-

dimethoxyphenyl)hexa-2,4 -dienedial (272) (500

MHz, CDCl3)

134

4.3.7 1H NMR and 13C NMR spectra of 4-(3-hydroxy

propyl)-2,6-dimethoxyphenol (273), 2,5-bis(4-

hydroxy-3,5-dimethoxyphenyl)cyclohexane-1,4-

diol (274) (500 MHz, CDCl3)

136

4.3.8 HMBC correlation of compound 274 137

4.3.9 1H NMR and 13C NMR spectra of dimethyl-1,2-

dihydro-7-hydroxy-1-(4-hydroxy-3,5-

dimethoxyphenyl)-6,8-dimethoxynaphthalene-2,3-

dicarboxylate (275) (500 MHz, CDCl3)

139

4.3.10 HMBC correlation of compound 275 140

4.4.1 CD spectrum of (+)-ficusal (6) 148

4.4.2 1H NMR and 13C NMR spectra of (+) ficusal (6)

(500 MHz, (CD3)2CO)

149

4.4.3 COSY spectrum of (+)-ficusal (6) 151

4.4.4 NOESY spectrum of (+)-ficusal (6) 151

4.4.5 HMQC spectrum of (+)-ficusal (6) 152

4.4.6 HMBC spectrum of (+)-ficusal (6) 153

4.4.7 1H NMR and 13C NMR spectra of 4-(3-hydroxy

propyl)-2-methoxyphenol (276) and 3,4-dihydro-4-

hydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-

methoxy-2H-chromene-6-carbaldehyde (277) (500

MHz, (CDCl3).

156

4.4.8 HMBC correlation of compound 277 157

4.4.9 CD spectrum of (+)-tomentosanan B (280) 158

Page 19: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xvi

4.4.10 1H NMR and 13C NMR spectra of (+)-

tomentosanan B (280) (500 MHz, (CD3OD).

159

4.4.11 HMQC spectrum of (+)-tomentosanan B (280) 161

4.4.12 HMBC spectrum of (+)-tomentosanan B (280) 162

4.4.13 1H NMR and 13C NMR spectra of methyl 5-((E)-2-

(methoxycarbonyl)vinyl)-2,3-dihydro-2-(4-

hydroxy-3-methoxyphenyl)-7-methoxybenzofuran-

3-carboxylate (112) and dimethyl-1,2-dihydro-7-

hydroxy -1-(4-hydroxy-3-methoxyphenyl)-6-

methoxynaphthalene-2,3-dicarboxylate (281) (500

MHz, (CDCl3).

167

4.4.14 HMBC correlation of compounds 112 and lignan

281

168

4.4.15 1H NMR and 13C NMR spectra of 2,3-dihydro -2-

(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-

7-methoxybenzofuran-5-yl)acrylate (282) and 2,3-

dihydro-3-(hydroxymethyl)-5-((E)-3-hydroxyprop-

1-enyl)-7-methoxybenzofuran-2-yl)-2-

methoxyphenol (283) (500 MHz, (CDCl3).

171

4.4.16 HMBC correlation of compounds 282 and 283 172

4.5.1 1H NMR spectra of 3',4'-

dimethoxyphenylacetylene (15), 1-(3,4-

dimethoxyphenyl)ethanone (284), 1-(4- hydroxy-

3-methoxyphenyl)ethanone (285) and 1-(3,4-

dihydroxyphenyl)ethanone (286) (500 MHz,

CDCl3).

177

4.5.2 13C NMR spectra of 3',4'-

dimethoxyphenylacetylene (15), 1-(3,4-

dimethoxyphenyl)ethanone (284), 1-(4- hydroxy-

3-methoxyphenyl)ethanone (285) and 1-(3,4-

dihydroxyphenyl)ethanone (286) (125 MHz,

CDCl3).

178

4.5.3 1H NMR and 13C NMR spectra of 7-methoxy-2-

(3,4 -dimethoxyphenyl)benzofuran-5-carbaldehyde

(287) and 7-methoxy-2-(3,4-dimethoxyphenyl)-3-

(2-(3,4-di methoxyphenyl)ethynyl)benzofuran-5-

carbaldehyde (288) (500 MHz, CDCl3)

181

4.5.4 HMBC correlation of compounds 287 and 288 182

4.6.1 Coumarins insecticidal active compounds 193

Page 20: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xvii

LIST OF SCHEME

Scheme Page

1.1 Retrosynthetic analysis of (-)-tomentosanan A,

(-)-ficusal and (-)-tomentosanan B

3

1.2 Retrosynthetic analysis of zanthocapensole and

zanthocapensate

4

2.1 Metabolic pathways of formation cinnamic acid

derivative in plants

11

2.2 General phenylpropanoid and monolignol

pathway

12

2.3 The possible biosynthetic pathway for various

types of lignans

14

2.4 Synthesis of dihydrobenzofuran by Heck coupling

reaction

15

2.5 Synthesis of dihydrobenzofuran by the

enantioselective cycloetherefication reaction

16

2.6 Synthesis of dihydrobenzofuran neolignan by

using SET reagent

17

2.7 Synthesis of dihydrobenzofuran neolignans by

using enzyme catalyst

18

2.8 Synthesis of benzofuran neolignans by

Sonogashira coupling reaction

20

2.9 Synthesis of benzofuran neolignan by palladium-

catalysed annulation.

21

2.10 Synthesis of benzofurans by Intramolecular

oxidative Heck cyclization

22

2.11 Synthesis of benzofurans by using various method 23

3.1 LD50 determination (Polo Plus) 70

4.2.1 Heck method development using various

cinnamic acid derivatives and methyl cinnamate

derivatives

73

4.2.2 Mechanism for the formation of

dihydrobenzofuran ring using method 1 based on

Emrich and Larock (2004)

74

4.2.3 Mmechanism for the formation of

dihydrobenzofuran ring using method 2 based on

Kuram et al. (2013)

75

4.2.4 Synthesis of iodovanillin 76

4.2.5 Possible position for iodine substitution. 76

4.2.6 Reaction between iodovanillin and cinnamic acid

derivatives by applying method 1 (Pd(OAc)2,

Na2CO3, n-Bu4NBr, DMF, 100℃).

77

4.2.7 Reaction between vanillin and cinnamic acid

derivatives by applying method 2 (A: Pd(OAc)2,

1,10-phenanthroline, NaOAc, Cu(OAc)2.H2O,

1,4-dioxane, 110℃, 3d; B: Pd(OAc)2,

bathophenanthroline, AgOAc, Cu(OAc)2.H2O,

1,4-dioxane, 110℃, 3d).

79

Page 21: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xviii

4.2.8 Decarboxylation of ferulic acid (53) 82

4.2.9 Proposed mechanism for compounds 240

benzofuran neolignan 241 (method 1).

91

4.2.10 Proposed mechanism for benzofuran neolignan

241 (method 2).

92

4.2.11 Proposed mechanism for stilbene 246 100

4.2.12 Proposed mechanism for neolignan 248 from

stilbene 246

101

4.2.13 Proposed mechanism for dihydrobenzofuran

neolignan 252

102

4.2.14 Reaction between iodovanillin (7)and methyl

cinnamate derivatives (257, 258, 259, 260, 108

and 261) by applying method 1 (Pd(OAc)2,

Na2CO3, n-Bu4NBr, DMF, 100℃)

105

4.2.15 Reaction between iodovanillin (7) and methyl

ferulate (108) with base

106

4.2.16 Reaction of methyl sinapate (261) with base 106

4.2.17 Reaction between vanillin (56) and methyl

cinnamate derivatives (257, 258, 259, 260, 108

and 261) by applying method 2 (Pd(OAc)2, 1,10-

phenanthroline, NaOAc, Cu(OAc)2.H2O, 1,4-

dioxane, 110℃)

108

4.2.18 Reaction between methyl ferulate (108) with

vanillin (56) using method 1 and 108 with 7

using method 2

109

4.2.19 Proposed mechanism for compounds 263 (method

1)

114

4.2.20 Proposed mechanism for compounds 263 (method

2)

114

4.2.21 Predominant Diferulates from oxidative coupling

(Azarpira et al., 2011)

122

4.3.1 Synthesis plan of tomentosanan A 123

4.3.2 Reduction of sinapic acid (55) 123

4.3.3 Reduction of methyl sinapate (261) 124

4.3.4 Reaction between vanillin (56) and sinapyl

alcohol (8)

126

4.3.5 Reaction between iodovanillin (7) and sinapyl

alcohol (8)

127

4.3.6 Proposed mechanism of (+)-tomentosanan A

(271)

133

4.3.7 Reaction between vanillin (56) and sinapic acid

(55) using HRP

137

4.3.8 Reaction between vanillin (56) and methyl

sinapate (261) using HRP

138

4.3.9 Proposed mechanism of lignan 266 and neolignan

269 by oxidative coupling using HRP (initiation

and propagation step)

141

4.3.10 Proposed mechanism of lignan 266 and neolignan

269 by oxidative coupling using HRP

(termination step)

142

4.4.1 Synthesis plan for ficusal and tomentosanan B 144

Page 22: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xix

4.4.2 Reduction of ferulic acid (53) 145

4.4.3 Reduction of methyl ferulate (108) 146

4.4.4 Reaction between vanillin (56) and coniferyl

alcohol (9)

147

4.4.5 Reaction between iodovanillin (7) and coniferyl

alcohol (9)

147

4.4.6 Proposed mechanism for (+)-ficusal (6) 154

4.4.7 Reduction of (+)-ficusal (6) 157

4.4.8 Reduction of vanillin (56) and iodovanillin (7) 163

4.4.9 Reaction between vanillyl alcohol (278) with

coniferyl alcohol (9)

164

4.4.10 Reaction between iodovanillyl alcohol (279) with

coniferyl alcohol (9)

164

4.4.11 Reaction between vanillin (56) and ferulic acid

(53) using HRP

165

4.4.12 Reaction between vanillin (56) and methyl

ferulate (108) using HRP

165

4.4.13 Reaction of methyl ferulate (108) using HRP

(control)

166

4.4.14 Proposed mechanism of dihydrobenzofuran

neolignan 112 by oxidative coupling using HRP

169

4.4.15 Reduction of dihydrobenzofuran neolignan 112 170

4.5.1 Synthesis plan for zanthocapensole (4) and

zanthocapensate (5) (Route 1)

174

4.5.2 Synthesis plan for zanthocapensole (4) and

zanthocapensate (5) (Route 2)

175

4.5.3 Demethylation of 3',4'-dimethoxyphenylacetylene

(15)

176

4.5.4 Reaction between 3',4'-dimethoxyphenylacetylene

(15) and iodovanillin (7)

179

4.5.5 Proposed mechanism of 2-arylbenzofuran

neolignan 287

183

4.5.6 Reaction between ferulic acid (53) and 3’,4’-

dimethoxyphenylacetylene (15)

184

4.5.7 Halogenation of ferulic acid (53) 184

4.5.8 Reaction between methyl ferulate (108) and 3’,4’-

dimethoxyphenyl acetylene (15)

185

4.5.9 Halogenation of methyl ferulate (108) 186

Page 23: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

xx

LIST OF ABBREVIATIONS

% Percentage

𝛼 Alpha

𝛽 Beta

λ Wavelength

br Broad

𝛿 Chemical shift in ppm

c Concentration 13C Carbon-13

COSY Correlation Spectroscopy

CD Circular dichrosim

d Doublet

dd Double of dublet

dt Double of triplet

DI-MS Direct Injection-Mass Spectrometry

EIMS Electron Ionization Mass Spectrometry

EC50 Half maximal effective concentration

FT-IR Fourier Transform-Infrared Spectroscopy

GC-MS Gas Chromatography-Mass Spectrometry

h hour

HMBC Heteronuclear Multiple Bond Correlation

HMQC Heteronuclear Multiple Quantum Coherence 1H Proton-1

IR Infrared

IC50 Half maximal inhibitory concentration

LD50 Lethal dose

LCMS Liquid chromatography mass spectrometry

m Multiplet

m/z Mass per charge

M+ Molecular ion

mp Melting point

MS Mass spectroscopy

NMR Nuclear Magnetic Resonance

NEOSY Nuclear Overhauser Effect Spectroscopy

q Quartet

RT Room temperature

Rf Retention factor

s Singlet

t Triplet

TLC Thin Layer Chromatography

QTOF Quadrupole Time Of Flight

UV Ultraviolet

UATR Universal Attenuated Total Reflection

Hela Cervical cancer

HepG2 Liver hepatocelular carcinoma

A375-S2 Human melanoma cells (skin cancer)

HT1080 Fibrosarcoma cell (tumor cancer)

HL60 Human promyelocytic leukemia cells

Page 24: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

1

CHAPTER 1

INTRODUCTION

1.1 Dihydrobenzofuran Neolignans and Benzofuran Neolignans

Dihydrobenzofuran and benzofuran neolignans are common compounds that are found

in plants and appeared as a promising compound to study due to its potential bioactivity.

Some of their activities are antimicrobial (Kirilmis et al., 2007), anti-inflammatory

(Hwang et al., 2010; Tan et al., 2010; Lee et al., 2012), HIV integrase inhibitor (Abd-

Elazem et al., 2002), antioxidant and anticancer (Rakotondramanana et al., 2007). Other

reported biological activity of these compounds are insecticidal (González-Coloma et

al., 2002), anti-complement (Luo et al., 2013), pesticidal (Cutillo et al., 2003) and

antileishmanial (Miert et al., 2005). Five natural product compounds were studied in this

research where three of them are dihydrobenzofuran neolignans, (-)-tomentosanan A (2S,

3R) (1), (-)-ficusal (2S, 3R) (2) and (-)-tomentosanan B (2S, 3R) (3) while the other two

are benzofuran neolignans, zanthocapensole (4) and zanthocapensate (5) (Figure 1.1).

O

H

OCH3

O

OH OCH3

OH

OCH3

HO

OCH3

O

OH

OH

OCH3

H

OCH3

O

OH

OH

OCH3

O

(-)-Tomentosanan A (2S, 3R) (1) (-)-Tomentosanan B (2S, 3R) (3)(-)-Ficusal (2S, 3R) (2)

O

OCH3

HO

O

O

Zanthocapensole (4)

O

OCH3

H3CO

O

O

Zanthocapensate (5)

O

H

OCH3

O

OH

OH

OCH3

O

(+)-Ficusal (2R, 3S) (6)

2

33

2 2

2

3

3

Figure 1.1: Structure of targeted neolignans

2-Aryldihydrobenzofuran neolignans, (-)-tomentosanan A (1), (-)-ficusal (2) and (-)-

tomentosanan B (3) were isolated from the seed of Prunus tomentosa (Liu et al., 2014).

Compound 2 was reported to be isolated from several species such as leaves and stems

of Manglietia insignis (Shang et al., 2013), Acanthopanax senticosus (Li et al., 2015)

and the seed of Crataegus pinnatifida (Huang et al., 2015). Both 1 and 3 are in colorless

oil meanwhile compound 2 was isolated as pale yellow oil. Compounds 1 and 3 were

identified as new neolignans in 2014 by Liu and their co-worker. In contrast, its analog

(+)-ficusal (2R, 3S) (6) was isolated from leaves of Ficus microcarpa L.f. (Moraceace)

(Li and Kuo 2000), fruits of Vitex agnus-castus L (Chen et al., 2011), and Metasequoia

glyptostroboides Hu et Cheng (Taxodiaceae) (Zeng et al., 2013).

Compounds 1-3 shown strong antioxidant activity when tested against DPPH and ABTs

radical. The compound also displayed strong anti-inflammatory activity on nitric oxide

Page 25: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

2

(NO) production in murine microlia BV-2 with compound 2 gives the stronger activity

(IC50= 4.8 µM) compared to the standard drug used, minocycline (IC50= 19.7 µM) (Liu

et al., 2014). Some other activity that has been reported for compound 2 were antitumor

when tested upon human tumor cell lines of HL-60, SMMC-7721, MCF-7 and SW480

(Shang et al., 2013), tumor necrosis factor α (TNF-α) production by the PLS-induced

murine macrophage cell line RAW264.7 (Huang et al., 2015) and in vitro inhibitory

activities against protein tyrosine phosphatase 1B(PTP1B), human vaccina H1 related

protein (VHR) and protein phosphatase 1 (PP1) (Li et al., 2015). In addition, the

enantiomer of 1 (compound 6) found significantly inhibited MDA-MB-231 cells at 50

μM by 69.3% (Chung et al., 2012).

Zanthocapensole (4) and zanthocapensate (5) are 2-arylbenzofuran neolignans that were

isolated from methanol extract of African Zanthoxylum capense root which have been

ethnopharmacologically used to treat tuberculosis. They are analogs with the same

appearance as white amorphous solid and have a good antibacterial activity against gram-

positive (Staphylococcus aureus and Enterococcus aureus) and gram-negative

(Pseudomonas aeruginosa and Escherichia coli). Compounds 4 and 5 were tested on

human THP-1 macrophages and showed cytotoxicity at 72.3 µg/mol and 52.1 µg/mol,

respectively (Luo et al., 2013). Both neolignans also have been tested on HCT116 cells

and exhibited significant cytotoxicity activity.Compound 5 literally induced the highest

percentage of apoptosis after 24 hours exposure at 20 M (Mansoor et al., 2013).

1.2 Retrosynthetic Analysis of Targeted Compounds

The retrosynthetic analysis showed that (-)-tomentosanan A (1) can be produced by

coupling reaction between iodovanillin (7) and sinapyl alcohol (8) (Scheme 1.1).

Meanwhile, the synthesis of (-)-ficusal (2) can be achieved by coupling between

iodovanillin (7) with coniferyl alcohol (9) and further reduction resulted in production

of (-)-tomentosanan B (3). The (-)-tomentosanan B (3) could as well be directly

synthesized by coupling between iodovanilyl alcohol (10) with coniferyl alcohol (9).

Page 26: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

3

OHC

OCH3

O

OCH3

OH

OCH3

HO

OCH3

OH

OCH3

HO

OHC I

OH

OCH3

Heck

(-)-Tomentosonan A (1)Sinapyl alcohol (8)

+

Iodovanillin (7)

OHC

OCH3

O

OH

OCH3

HO

OH

OCH3

HOOHC I

OH

OCH3

Heck

Coniferyl alcohol (9)

+

OCH3

O

OH

OCH3

HO

(-)-Tomentosanan B (3)

Reduction

HO

(-)-Ficusal (2)

I

OH

OCH3

Iodovanillyl alcohol (10)

HO

Heck

Iodovanillin (7)

Reduction

OH

OCH3

HO

Coniferyl alcohol (9)

+

Scheme 1.1: Retrosynthetic analysis of (-)-tomentosanan A, (-)-ficusal and (-)-

tomentosanan B

The retrosynthetic analysis of zanthocapensole (4) and zanthocapensate (5) were

proposed in two routes (Scheme 1.2). The first route is proposed by coupling of 3’,4’-

dihydroxyphenylacetelyne (12) with iodovanillin (7) to produce an intermediate of 11

before proceeding with acetalation and Wittig reactions to get zanthocapensate (5) and

further reduce to obtain zanthocapensole (4). The second route was proposed by the

reaction between methyl iodoferulate (14) and 3,4-dimethoxyphenylacetylene (15) to

produce an intermediate of 13, in which further demethylation and acetalation results in

the synthesis of zanthocapensate (5).

Page 27: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

4

HO

OCH3

O

O

O

H3COOC

OCH3

O

O

O

H3COOC

OCH3

O

OCH3

OCH3

Reduction

Zanthocapensole (4)

Zanthocapensate (5)

OHC

OCH3

O

OH

OH

Wittig

AcetalationAcetalation

Demethylation

OCH3

OCH3

H3COOC I

OH

OCH3

+

Heck (Route 1)

3',4'-dimethoxyphenylacetylene (15)Methyl iodoferulate (14)

Heck (Route 2)

OHC

OH

OCH3

I

+

Iodovanillin (7)

OH

OH

3',4'-Dihydroxyphenylacetylene (12)

11 13

Scheme 1.2: Retrosynthetic analysis of zanthocapensole and zanthocapensate

1.3 The Pesticidal/Insecticidal Activity of Lignans and Neolignans

Pesticides are essential to control pest and disease infestations in crop plantation or food

production. However, resistance development of plant pathogens to conventional

pesticide along with toxic effects initiated researcher's interest towards developing

insecticide from natural origin. Pesticide mode of action is by targeting the systems or

enzymes in the pest. The targeted enzymes or system might be identical or similar to the

systems or enzymes in human beings thus, they pose risks to the human health and

environment. Plant-derived compounds are believed to exert low-toxicity and high

mortality target of insect population which would not cause ecosystem disturbance

(Emberger, 2015). Various phytochemicals have been investigated for insecticidal, insect

repellent and insect antifeedant activity such as diterpene ryanodanes and isoryanodanes

from Persea indica (Lauraceae), lignans from Machilus japonica (Lauraceae) and

diterpenoid alkaloids from Delphinium cardiopetalum (Ranunculaceae) (González-

Coloma et al., 2002).

Page 28: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

5

Crocidolomia binotalis (croci) is one of the agricultural pests that has been threatening

crops plantation. Croci also known as cabbage head caterpillar have a life cycle

completed depending on temperature and humidity approximately 28 days at a

temperature of 26-33℃ or 30-41 days at lower temperature 16-22℃. They are almost

exclusively found in hot humid highland tropics and constitute a more serious pest

problem during the dry season since heavy rains can drown small larvae. The percentage

of hatching could reach until 92% in each of their life cycles. If suitable control is not

undertaken, especially in the dry season, the yield loss caused by this pest may reach up

to 100% (Sastrosiswojo and Setiawati, 1992).

Croci is a serious pest in the highland area, especially for cabbage in Indonesia. The

study conducted in Indonesia showed that hand-picking leaves with the egg masses and

larvae were preferred to avoid the chemical spray (Shepard and Schellhorn 1994).

However, this method can only be applied in a small plantation area. The adult moth can

be killed by light traps, whereas its larva only can be killed by some type of commercial

pesticides such as dust DDT (10%) or carbaryl (10%) malathion, monocrotophos and

quinalphos. Some of the chemicals were already listed as the Persistent Organic

Pollutants (POPs) pesticides and already banned by the Stockholm convention.

Therefore, alternative methods to control insect pests through friendlier environment

approach need to be done.

Based on the previous study, podophyllotoxin (16) is one of the most popular precursors

that come from the lignan family that has potential as a pesticide. In 1978, Singh et al.

isolated an active constituent, namely, peltatin methyl ether A (deoxpodophyllotoxin)

which was toxic towards housefly (Musca domestica) and codling moth (Laspayressia

pomonella). Further study on podophyllotoxin derivatives found that podophyllotoxin

with pyridin ring (Di et al., 2007) and phenoxyanillin substituents (Liu et al., 2008) gave

greater insecticidal activity against Pieris rapae than podophyllotoxin itself. An ester of

2-chloropodophyllotoxin (Xu and Xiao, 2009) and hydrazone derivatives of

podophyllotoxin (Wang et al., 2014) also showed good insecticidal activities against the

oriental armyworm, Mythimna seperata.

Page 29: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

6

O

O

O

H3CO

OCH3

OCH3

OH

O

O

H3CO

OCH3

OH

OCH3

O

H3CO

OCH3

OCH3

OCH3

O

O

O OCH3

OCH3

O

O

O OCH3

OCH3

Licarin A (18)

(-)-Machilusin (20) (2R,3S,4R,5R)-2-(3,4-dimethoxyphenyl)-3,4-dimethyl-5-piperonyltetrahydrofuran (21)

(2S,3S)-2,3-dihydro-7-methoxy-3-methyl-2-(3,4-dimethoxyphenyl)-5-trans-(1-propenyl)-benzofuran (19)

Podophyllotoxin (16)

O

OO

O

O

HO

O

O

OH

Phrymarolin B (17)

Lignans Neolignans

Figure 1.2: Structure of potential pesticidal/insecticidal lignans and neolignans

Phymarolin B (17), a furan type lignan which was isolated from Phryma leptostachya

was evaluated for its insecticidal activity against the fourth instar larva of Mythimna

separata. The compound exhibited moderate activity with LC50 of 502 μg/mL (Xiao et

al., 2013). Another four furan type neolignans (18, 19, 20 and 21) from Machilus

japonica were identified to have insecticidal activities against neonate Spodoptera litura

larva with the significant EC50 of 0.20, 0.24, 0.19 and 0.13 μg/mL each by comparison

to the positive control used, azadirachtin (0.25 μg/mL) thus further confirms that this

specific group of compound have great potential as insecticide (González-Coloma et al.,

2002).

To date, there are limited study focusing on dihydrobenzofuran neolignan and fewer

investigations have been reported on benzofuran neolignan as pesticide. Therefore, it is

a great need to study and identify the potential of lignans and neolignans as pesticides as

the paradigm of agriculture needs.

1.4 Problem Statement and Hypothesis

Currently, the used of synthetic chemical pesticides is harmful towards human and

environment which lead to the development of insecticide resistence in insects

(Emberger, 2015), whereas the use of natural occurring pesticide from plant are eco-

friendly and less toxic but comes with limited resources (González-Coloma et al., 2002).

Therefore, it is important to study the synthetic chemical pesticide with the basic of

potential natural dihydrobenzofuran neolignans and benzofuran neolignans to produce a

more efficient, economical, safe and eco-friendly pesticides in Malaysia. Crocidolomia

binotalis was chosen as the target pest in this study since it is one of the most popular

pests other than Plutella xylostella, Spodoptera litura and Hellula undalis in Malaysia

Page 30: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

7

(Lim et al., 1996). Besides, this pest is one of the most common cabbage pests identified

in Cameron Highlands, Malaysia (Oii and Kelderman, 1979) and other crop plantation

area in Indonesia (Sastrosiswojo and Setiawati, 1992; Shepard and Schellhorn 1994).

All pesticides or insecticides as mentioned in 1.3 (page 7) have similar structure with the

targeted dihydrobenzofuran and benzofuran neolignans introduced in 1.1 (page 1).

Evidently, the structure of active pesticide/insecticide compound consist a 5-membered

heterocyclic; either dihydrofuran or tetrahydrofuran or two benzene rings. Furthermore,

substituent such as hydroxyl, methyl or methoxy and the presence of double bond and

acetal group also plays a significant role. All of these characteristics can be observed in

the structure of tomentosanan A (1) and tomentosanan B (3), ficusal (2 and 6),

zanthocapensole (4) and zanthocapensate (5). According to these facts, it can be deduced

that the targeted compounds might display the same activity, and the presence of furan

ring in their structures may enhance the insecticidal activity.

To the best of our knowledge, there are limited research on dihydrobenzofuran or

benzofuran neolignans as pesticide or insecticide. This is the first research which focuses

on the synthesis of neolignans 1-5. The findings of this investigation provide a paradigm

route to synthesize dihydrobenzofuran and benzofuran neolignans together with its

derivatives as well as their insecticidal activity.

1.5 Objectives

The synthesis of neolignan especially dihydrobenzofuran and benzofuran are crucial in

order to manufacture an efficient, safe and eco-friendly pesticides in Malaysia. This

research project aimed to search insecticidal compounds which can lead to the discovery

of insecticide candidates for Crocidolomia binotalis or for the future of agriculture

research. Therefore, three objectives were proposed for this research:

1. To develop the Heck coupling method in the synthesis of neolignans via

activated C-I bond of iodovanillin and non-activated C-H bond of vanillin.

2. To synthesize 2-aryldihydrobenzofuran and 2-arylbenzofuran neolignans

and their derivatives via the developed Heck coupling reaction.

3. To determine the larvicidal activities of all the intermediate compounds

and neolignans obtained.

Page 31: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

197

REFERENCES

Abd-elazem, I. S., Chen, H. S., Bates, R. B., Chih, R. and Huang, C. (2002). Isolation of

Two Highly Potent and Non-toxic Inhibitors of Human Immunodeficiency Virus

Type 1 (HIV-1) Integrase from Salvia miltiorrhiza. Antiviral Research 55: 91–

106.

Adam, W., Kurz, A. and Saha-Moller, C. R. (1999). DNA and 2’-Deoxyguanosine

Damaga in the Horseradish Peroxidase-Catalyzed Autoxidation of Aldehydes:

The Search for the Oxidizing Species. Free Radical Biology and Medicine

26(98): 566–579.

Akhtar, Y., Yeoung, Y, R. and Isman, Y. (2008). Comparative Bioactivity of Selected

Extracts from Meliaceae and some Commercial Botanical Insecticides against Two

Noctuid Caterpillars, Trichoplusia ni and Pseudaletia unipuncta. Phytochemistry

Reviews 7: 77–88.

Akita, H., Kawahara, E., Kishida, M. and Kato, K. (2006). Synthesis of Naturally

Occurring β-D-Glucopyranoside Based on Enzymatic β–Glycosidation. Journal of

Molecular Catalysis B: Enzymatic 40: 8–15.

Alford, B. L. and Hügel, H. M. (2013). Total Synthesis of (+)-Pentamethylsalvianolic

Acid C. Organic and Biomolecular Chemistry 11(16): 2724–7.

Aslam, S. N., Stevenson, P. C., Kokubun, T. and Hall, D. R. (2009). Antibacterial and

Antifungal Activity of Cicerfuran and Related 2-Arylbenzofurans and Stilbenes.

Microbiological Research 164: 191-195.

Azarpira, A., Lu, F. and Ralph, J. (2011). Reactions of Dehydrodiferulates with

Ammonia. Organic and Biomolecular Chemistry 9: 6779–6787.

Bang, H. B., Han, S. Y., Choi, D. H., Yang, D. M., Hwang, J. W., Lee, H. S. and Jun, J.

G. (2009). Facile Total Synthesis of Benzo[b]furan Natural Product XH-14.

Synthetic Communications 39(3): 506–515.

Benoit, M., Demoute, J., Plaisance, N., Mourioux, G. and Taliani, L. (1993). Insecticidal

Benzofuran Derivatives. United States Patent 5: 282-295.

Bovaird, J. H., Ngo, T. T., Lenhoff, H. M. and Matheson, H. O. (1982). Optimizing the

o-Phenylenediamine Assay for Horseradish Peroxidase : Effects of Phosphate and

pH, Substrate and Enzyme Concentrations, and Stopping Reagents. Clinical

Chemistry 28(12): 2423–2426.

Branco, M. C. and Gatehouse, A. G. (1997). Insecticide Resistance in Plutella xylostella

(L.) (Lepidoptera: Yponomeutidae) in the Federal District, Brazil. Anais Da

Sociedade Entomológica Do Brasil 26(1): 75–79.

Brown, H. C. and Krishnamurthy, S. (1979). Forty years of hydride reductions.

Tetrahedron 64(5): 567-607.

Page 32: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

198

Brown, A. E. and Ingianni, E. (2013). Pesticide Information Leaflet No.43: Mode of

Action of Insecticides and Related Pest Control Chemicals for Production

Agriculture, Ornamentals, and Turf. University of Maryland 43: 1–13.

Bunzel, M., Ralph, J. and Steinhart, H. (2004). Phenolic Compounds as Cross-Links of

Plant Derived Polysaccharides. Czech Journal of Food Sciences 22: 8–11.

Capinera, J. L. (2001). Handbook of Vegetable Pests 729. New York. Academic Press.

Céspedes, C. L., Martinez-vázquez, M., Calderón, J. S., Salazar, J. R. and Eduardo, A.

(2015). Insect Growth Regulatory Activity of Some Extracts and Compounds from

Parthenium argentatum on Fall Armyworm Spodoptera frugiperda. A Journal of

Biosciences 56: 95-105.

Chand, S. and Banwell, M. G. (2007). Biomimetic Preparation of the Racemic

Modifications of the Stilbenolignan Aiphanol and Three Congeners. Australian

Journal of Chemistry 60: 243-250.

Chen, S., Friesen, J. B., Webster, D., Nikolic, D., Breemen, R. B. Van, Wang, Z. J., Fong.

H., Farnsworth. N. R and Pauli, G. F. (2011). Fitoterapia Phytoconstituents from

Vitex agnus-castus fruits. Fitoterapia 82(4): 528–533.

Choi. D, H., Jung, W. H., Hyun, S. L., Deok, M. Y. and Jun, J. G. (2008). Highly

Effective Total Synthesis of Benzofuran Natural Product Egonol. Bulletin of the

Korean Chemical Society 29(8): 1594–1596.

Charles J. K., Mahajan. J. R., Lucille. C. B., Leonard. A. N., Breneman. W. R., and

Carmack. M. (1975). Polyphenolic Acids of Lithospermum Ruderale

(Boraginaceae). I. Isolation and Structure Determination of Lithospermic Acid.

The Journal of Organic Chemistry 40(12): 1804-1815.

Chung, C., Hsu, C., Lin, J., Kuo, Y., Chiang, W., & Lin, Y. (2011). Antiproliferative

Lactams and Spiroenone from Adlay Bran in Human Breast Cancer Cell Lines.

Journal of Agricultural and Food Chemistry 59: 1185–1194.

Constantin, R. and L’Ecuyer. (1958). On the Synthesis of Formyldiphenyl ethers

Polysubstituted. Canadian Journal of Chemistry 36: 3–8.

Coscia, C. J., Schubert, W. J. and Nord, F. F. (1961). Investigations on Lignins and

Lignification. XXIV. Application of Hydrogenation, Hydrogenolysis, and Vapor

Phase Chromatography in the Study of Lignin Structure. Journal of Organic

Chemistry 26: 5085-5091.

Cutillo, F., D’Abrosca, B., DellaGreca, M., Fiorentino, A. and Zarrelli, A. (2003).

Lignans and neolignans from Brassica fruticulosa: Effects on Seed Germination

and Plant Growth. Journal of Agricultural and Food Chemistry 51(21): 6165–

6172.

Cunha, W. R., Luis, M., Sola, R. C., Ambrósio, S. R., Bastos, J. K., Franca, D. and Paulo,

D. S. (2008). Lignans: Chemical and Biological Properties (1978). Phytochemicals

10: 213-234.

Page 33: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

199

Di, X., Liu, Y., Liu, Y., Yu, X., Xiao, H., Tian, X. and Gao. R. (2007). Synthesis and

Insecticidal Activities of Pyridine Ring Derivatives of Podophyllotoxin. Pesticide

Biochemistry and Physiology 89(1): 81–87.

Elangovan. A., Wang. Y. and Ho. T. (2003). Sonogashira Coupling Reaction with

Diminished Homocoupling. Organic Letters 5(11): 1841-1844.

Emrich, D. E. and Larock, R. C. (2004). Palladium-catalyzed Heteroannulation of Cyclic

Alkenes by Functionally Substituted Aryl Iodides. Journal of Organometallic

Chemistry 689(23): 3756–3766.

Emberger, J. (2015). Misconception: Natural Pesticides less Harmful than Synthetic for

the Food we eat? https://www.noexperiencenecessarybook.com/vAwdL/natural-

chemicals-better-than-synthetic.html. Retrieved 27 August 2017.

Fang, J., Reichelt, M., Kai, M. and Schneider, B. (2012). Metabolic Profiling of

Lignans and Other Secondary Metabolites from Rapeseed (Brassica napus L.).

Journal of Agricultural and Food Chemistry 60: 10523–10529.

Farhan, M. M. (2009). A New Method of Halogenation of Aromatic Compounds.

Journal of Al-anbar University for Pure Science 3(1): 1–5.

Fischer, J., Savage, G. P. and Coster, M. J. (2011). A Concise Route to

Dihydrobenzo[b]furans: Formal Total Synthesis of (+)-Lithospermic Acid.

Organic Letters 13(13): 3376–3379.

Fitriasari, E. D. and Prijono, D. (2011). Field Efficacy of Two Botanical Insecticide

Formulation against Cabbage Insect Pests, crocidolomia pavonana (F.)

(lepidoptera:pyralidae) and plutella xylostella (L.) (lepidoptera: yponomeutidae.

International Society for Southcast Asian Agricultural Sciences 17(2): 38–47.

Gallo, R. D. C., Ferreira, I. M., Casagrande, G. A., Pizzuti, L., Oliveira-Silva, D. and

Raminelli, C. (2012). Efficient and Eco-friendly Synthesis of Iodinated Aromatic

Building Blocks Promoted by Iodine and Hydrogen Peroxide in Water: A

Mechanistic Investigation by Mass Spectrometry. Tetrahedron Letters 53(40):

5372–5375.

Gao, X., Shen, Y., Yang, L., Shu, L., Li, G. and Hu, Q. (2012). Article 8-O-4’-

Neolignans from Flower Buds of Magnolia fargesii and their Biological Activities.

Journal of the Brazzilian Chemical Society 23(7): 1274–1279.

González-Coloma, A., Reina, M., Gutiérrez, C. and Fraga, B. M. (2002). Natural

Insecticides: Structure Diversity, Effects and Structure-activity Relationships. A

Case Study. Studies in Natural Products Chemistry 26:849–879.

Gill, D., Oh, H., Jin, E., Young, T. and Chang, K. (2004). Lithospermic Acid B Isolated

from Salvia miltiorrhiza ameliorates Ischemia / Reperfusion-induced Renal Injury

in Rats. Life science 75: 1801–1816.

Page 34: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

200

Govindarajan, S. (1996).An Introduction to Pesticides. https://www.scribd.com/mobile/

document/205783427/An-Introduction-to-Pesticide. Retrieved 22 August 2017

Graf, E. (1992). Antioxidant Potential of Ferulic Acid. Free Radical Biology and

Medicine 13: 435-448.

Ha, A. E. (2003). Structures and Colour Properties of New Red Wine Pigments.

Tetrahedron Letters 44: 4887–4891.

Hakansson, A. E., Pardon, K., Hayasaka, Y., Sa, M. D and Herderich, M. (2003).

Structures and Colour Properties of New Red Wine Pigments. Tetrahedron Letters

44: 4887–4891.

Hermann, P. and Lother, S. (1929). Synthesis of Syringin. European Journal of

Inorganic Chemistry 62: 2277-2284.

He, Y., Hu, D., Lv, M., Jin, L., Wu, J., Zeng, S., Yang. S. and Song, B. (2013).

Synthesis, Insecticidal and Antibacterial Activities of Novel Neonicotinoid

Analogs with Dihydropyridine. Chemistry Central Journal 7:1–6.

Hopkins, C. Y., Ewing, D. F. and Chisholm, M. J. (1967). Egonol. Spectrometric

Properties and Derivatives. Canadian Journal of Chemistry 45:1964–1965.

Huang, X. X., Zhou, C. C., Li, L. Z., Peng, Y., Lou, L. L., Liu, S., Li, D. M., Ikejima, T.

and Song, S. J. (2013). Cytotoxic and Antioxidant Dihydrobenzofuran Neolignans

from the Seeds of Crataegus pinnatifida. Fitoterapia 91(20): 217–223.

Huang, X., Bai, M., Zhou, L., Lou, L., Liu, Q., Zhang, Y., Li. L. Z. and Song, S. (2015).

Food Byproducts as a New and Cheap Source of Bioactive Compounds: Lignans

with Antioxidant and Anti-inflammatory Properties from Crataegus pinnatifida

Seeds. Journal of Agricultural and Food Chemistry 63: 7252-7260.

Huixian, Z. and Taylor, K.E. (1994). Products of Oxidative Coupling of Phenol by

Horseradish Peroxidase. Chemosphere 28(10): 1807–1817.

Humphreys, J. M. and Chapple, C. (2002). Rewriting the Lignin Roadmap. Current

Opinion in Plant Biology, 5(3): 224–229.

Hwang, J. W., Choi, D. H., Jeon, J. H., Kim, J. K. and Jun, J. G. (2010). Facile

Preparation of 2-Arylbenzo[b]furan Molecules and their anti-inflammatory

Effects. Bulletin of the Korean Chemical Society 31(4): 965–970.

Isman, M. B. (1993). Growth Inhibitory and Antifeedant Effects of Azadirachtin on Six

Noctuids of Regional Economic Importance. Journal of Pesticide Science 38: 57-

63.

Jakhar, K. and Makrandi, J. K. (2012). Synthesis of 1-Aryl-5-(benzofuran-2-yl)-

thiazolo[3,2-b][1,2,4]triazoles using Green Procedures and their Antibacterial

Activity. Indian Journal of Chemistry 51: 531-536.

Page 35: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

201

Jeong, J. B. and Jeong, H. J. (2010). Biochemical and Biophysical Research

Communications 2-Methoxy-4-vinylphenol can Induce Cell Cycle Arrest by

Blocking the Hyper-phosphorylation of Retinoblastoma Protein in

Benzo[a]pyrene-treated. Biochemical and Biophysical Research Communications

400(4): 752–757.

Jin, C. J., Yu, S. H., Wang, X., Woo, S. J., Park, H. J., Lee, H. C., Choi, S. H., Kim, K.

M., Kim, J. H., Park, K. S., Jang, H. C. and Lim, S. (2014). The Effect of

Lithospermic Acid, an Antioxidant, on Development of Diabetic Retinopathy in

Spontaneously Obese Diabetic Rats. Public Library of Science 9(6): 1-10.

Jovanovic, L. (2005). New Synthetic Approaches to 8,5 -Neolignans, PhD Thesis,

Universität Potsdam, Germany.

Kanth, J. V. B. and Periasamy, M. (1991). Selective Reduction of Carboxylic Acid in to

Alcohols Using NaBH4 and I2. Journal of Organic Chemistry 56: 5964–5965.

Karnavar, G. K. (1987). Influence of Azadirachtin on Insect Nutrition and Reproduction.

Proceedings of the Indian Academy of Science 96(3): 341–347.

Kim, D., Min, M., and Hong, S. (2013). One-Pot Catalysis of Dehydrogenation of

Cyclohexanones to Phenols and Oxidative Heck Coupling : Expedient Synthesis

of Coumarins. Chemical Communication 49: 4021-4023

Kirilmis, C., Ahmedzade, M., Servi, S., Koca, M., Kizirgil, A. and Kazaz, C. (2008).

Synthesis and Antimicrobial Activity of some Novel Derivatives of Benzofuran :

Part 2. The synthesis and Antimicrobial Activity of some Novel 1-(1-Benzofuran-

2-yl)-2-mesitylethanone Derivatives. European Journal of Medicinal Chemistry

43: 300–308.

Khanam, H. (2015). Bioactive Benzofuran Derivatives : A review. European Journal of

Medicinal Chemistry 97: 483–504.

Kowalewska, M., Kwiecień, H., Śmist, M. and Wrześniewska, A. (2013). Synthesis of

New Benzofuran-2-Carboxylic Acid Derivatives. Journal of Chemistry 2013: 1-7.

Kuo, Y., Chen, L. and Wang, L. (1991). Photosensitized Oxidation of Isoeugenol in

Protic and Aprotic Solvents. Chemical and Pharmaceutical Bulletin 39(9): 2196-

2200.

Kuram, M. R., Bhanuchandra, M., & Sahoo, A. K. (2010). Gold-catalyzed

Intermolecular Hydrophenoxylation of Unactivated Internal Alkynes. Journal of

Organic Chemistry 75(7): 2247–2258.

Kuram, M. R., Bhanuchandra, M. and Sahoo, A. K. (2013). Direct Access to

Benzo[b]furans through Palladium-catalyzed Oxidative Annulation of Phenols and

Unactivated Internal Alkynes. Angewandte Chemie - International Edition 52(17):

4607–4612.

Page 36: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

202

Lee, D., Matsuoka, M. and Suminoto, M. (1990). Mechanochemistry of Lignin

IV.Mechanochemical Reactions of Phenylcoumaran Models. Holzforschung

44(6): 415–418.

Lee, D., Song, M., Yoo, K., Bang, M., Chung, I., Kim, S., Kim, D., Kwon, B., Jeong, T.,

Park, M. and Baek, N. (2007). Lignans from the Fruits of Cornus kousa Burg. and

Their Cytotoxic Effects on Human Cancer Cell Lines. Archibes of Pharmacal

Research 30(4): 402–407.

Lee, E., Ahamed, V. S. J., Kumar, M. S., Rhee, S. W., Moon, S. and Hong, I. S. (2011).

Synthesis and Evaluation of Cytotoxic Effects of Hanultarin and its Derivatives.

Bioorganic & Medicinal Chemistry Letters, 21(21): 6245–6248.

Lee, N. L., Lee, J. J., Kim, J. and Jun, J. (2012). Ailanthoidol Derivatives and their Anti-

inflammatory Effects. Bulletin of the Korean Chemical Society 33(6): 1907–1912.

Lee, Y. S., Kim, H. Y., Youn, H. M., Seo, J. H., Kim, Y. and Shin, K. J. (2013). 2-

Phenylbenzofuran Derivatives Alleviate Mitochondrial Damage via the Inhibition

of β-Amyloid Aggregation. Bioorganic and Medicinal Chemistry Letters 23(21):

5882–5886.

Li. Y. and Kuo. Y. H. (2000). Four New Compounds, Ficusal, Ficusesquilignan A, B

and Ficusolide Diacetate from the Heartwood of Ficus microcarpa. Chemical and

Phermaceutical Bulletin 48(12): 1862-1865.

Li, D., Lan, Z., Li-dong, C. A. O., Ru-liang, X. I. E., Yan-ning, Z., & Wei-zhi, H. E. and

Hong-Yun, J. (2014). Synthesis and Insecticidal Activity of Novel Camptothecin

Derivatives Containing Analogs of Chrysanthemic Acid Moieties. Journal of

Integrative Agriculture 13(6): 1320–1330.

Li. J. L., Li N., Xing, L. S. and Zhang, N. (2015). New Neo-lignan from Acanthopanax

senticosus with Protein Tyrosine Phosphatase 1B Inhibitory Activity. Archives of

Pharmacal Research. Doi: 10.1007/s12272-015-0659-7.

Lim, G. S., Sivapragasam, A. and Loke, W. H. (1996). Crucifer insect pest problems :

trends, issues and management strategies. Proceedings: The Management of

Diamondback Moth and Other Crucifer Pests 3–16.

Lin, Y. L., Chang, Y. Y., Kuo, Y. H. and Shiao, M. S. (2002). Anti-lipid-peroxidative

Principles from Tournefortia sarmentosa. Journal of Natural Products 65(5): 745-

747.

Liu.W., Mu. W., Zhu. B., and Liu F. (2008). Effects of Tebufenozide on the Biological

Characteristics of Beet Armyworm (Spodoptera exigua Hübner) and Its Resistance

Selection. Agricultural Sciences in China 7(10): 1222–1227.

Liu, Y. Q., Liu, Y., Xiao, H., Gao, R. and Tian, X. (2008). Synthesis and Insecticidal

Activities of Novel Derivatives of Podophyllotoxin: Part XII. Pesticide

Biochemistry and Physiology 91(2): 116–121.

Page 37: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

203

Liu, Y., Yang, L., Zhao, Y. and Li, H. (2010). Synthesis of Novel Derivatives of

Camptothecin as Potential Insecticides. Pesticide Biochemistry and Physiology

98(2): 219–223.

Liu1, Q., Huang, X., Yan, X., Bai, M., Yu. L. H., Hu. C., Zhu. T., Li. L. Z and Song. S.

J. (2014). Neolignans from the Seeds of Prunus tomentosa (Rosaceae) and their

Chemotaxonomic Interest. Biochemical Systematics and Ecology 55: 236–240.

Liu2, Q., Huang, X., Bai, M., Chang, X., Yan, X., Zhu, T., Zhao, W., Peng, W and

Song, S. (2014). Antioxidant and Anti-inflammatory Active Dihydrobenzofuran

Neolignans from the Seeds of Prunus tomentosa. Journal of Agricultural and

Food Chemistry 62: 7796-7803.

López-frías, G., Camacho-dávila, A. A., Chávez-flores, D., Zaragoza-galán, G. and

Ramos-sánchez, V. H. (2015). Synthesis of a Functionalized Benzofuran as a

Synthon for Salvianolic Acid C Analogues as Potential LDL Antioxidants.

Molecules 20: 8654–8665.

Luo, X., Pires, D., Ainsa, J. A., Gracia, B., Duarte, N., Mulhovo, Anes. E and Ferreira,

M. J. U. (2013). Zanthoxylum capense Constituents with Anti-mycobacterial

Activity against Mycobacterium tuberculosis in vitro and ex vivo within Human

Macrophages. Journal of Ethnopharmacology 146(1): 417–422.

Mansoor, T. A., Borralho, P. M., Luo, X., Mulhovo, S., Rodrigues, C. M. P. and Ferreira,

M. J. U. (2013). Apoptosis Inducing Activity of Benzophenanthridine-type

Alkaloids and 2-Arylbenzofuran Neolignans in HCT116 Colon Carcinoma Cells.

Phytomedicine, 20(10): 923–929.

Mao, Z., Zheng, X., Lin, Y., Hu, C., Wang, X., Wan, C. and Rao, G. (2016). Design,

Synthesis and Anticancer Activity of Novel Hybrid Compounds between

Benzofuran and N-aryl piperazine. Bioorganic and Medicinal Chemistry Letters

26(15): 3421–3424.

Miert, S. Van, Dyck, S. Van, Schmidt, T. J., Brun, R., Vlietinck, A., Lemière, G. and

Pieters, L. (2005). Antileishmanial Activity, Cytotoxicity and QSAR Analysis of

Synthetic Dihydrobenzofuran lignans and Related Benzofurans. Bioorganic and

Medicinal Chemistry 13(3): 661–669.

Moss, G. P., Mary, Q. and Road, M. E. (2000). Nomenclature of Lignans and Neolignans.

International Union of Pure and Applied Chemistry 72(8): 1493–1523.

Mohan, M. and Gujar, G. T. (2003). Local Variation in Susceptibility of the

Diamondback moth, Plutella xylostella (Linnaeus) to Insecticides and Role of

Detoxification Enzymes. Crop Protection 22: 495–504.

Morikawa, T. M., Tao, J. T., Ueda, K. U., Matsuda, H. M. and Yoshikawa, M. Y.

(2003). Structures of New Aromatic Constituents and Inhibitors of

Degranulation in RBL-2H3 Cells from a Japanese Folk Medicine , the Stem Bark

of Acer nikoense. Chemical and Pharmaceutical Bulletin 51(1): 62–67.

Page 38: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

204

Moussouni, S., Saru, M. L., Ioannou, E., Mansour, M., Detsi, A., Roussis, V. and

Kefalas, P. (2011). Crude Peroxidase from Onion Solid Waste as a Tool for

Organic Synthesis. Part II: Oxidative Dimerization-cyclization of Methyl p-

coumarate, Methyl caffeate and Methyl ferulate. Tetrahedron Letters 52(11):

1165–1168.

Mukandiwa, L., Ahmed, A., Eloff, J. N. and Naidoo, V. (2013). Isolation of Seselin from

Clausena anisata (Rutaceae) Leaves and its Effects on the Feeding and

Development of Lucilia cuprina Larvae may Explain its use in Ethnoveterinary

Medicine. Journal of Ethnopharmacology, 150(3): 886–891.

Nebo, L., Varela, R. M., Severino, V. G. P., Cazal, C. M., Fa, M., Fernandes, B. and

Macı, F. A. (2014). Phytochemistry Letters Phytotoxicity of Alkaloids, Coumarins

and Flavonoids Isolated from 11 Species Belonging to the Rutaceae and Meliaceae

Families. Phytochemistry Letters 8: 226–232.

Naimi-Jamal, M. R., Mokhtari, Javad., Dekamin, M. G. and Kaupp, G. (2009). Sodium

Tetraalkoxyborates: Intermediates for the Quantitative Reduction of Aldehydes

and Ketones to Alcohols through Ball Milling with NaBH4. European Journal of

Organic Chemistry 21: 3567-3572.

Ohkatsu, Y., Kubota, S. and Sato, T. (2008). Antioxidant and Photo-antioxidant

Activities of Phenylpropanoids. Journal of the Japan Petroleum Institute 6: 348-

355.

Oii, P. A. C. and Kelderman, W. 1979. The Biology of Three Common Pests of Cabbages

in Cameron Highlands, Malaysia. Malaysian Agricultural Journal 52(1): 85-101.

Oliveira, A. C. De, Álvaro, H., Siqueira, A. De, De, J. V., Elias, J. and Filho, M. M.

(2011). Resistance of Brazilian Diamondback Moth Populations to Insecticides.

Scientia Agricola 68(2): 154–159.

Orlandi, M., Rindone, B. and Molteni, G. (2001). Asymmetric Biomimetic Oxidations

of Phenols: The Mechanism of the Diastereo- and Enantioselective Synthesis of

Dehydrodiconiferyl ferulate (DDF) and Dehydrodiconiferyl alcohol (DDA).

Tetrahedron 57: 371–378.

Öztürk, S. E., Akgül, Y. and Anil, H. (2008). Synthesis and Antibacterial Activity of

Egonol Derivatives. Bioorganic and Medicinal Chemistry 16(8): 4431–4437.

Öztürk, S. E., Karayildirim, T., and Anil, H. (2011). Synthesis of Egonol Derivatives and

their Antimicrobial Activities. Bioorganic and Medicinal Chemistry 19(3): 1179–

1188.

Park, G., Jun, J. and Kim, J. (2013). XH-14, a Novel Danshen Methoxybenzo[b]furan

Derivative, Exhibits Anti-inflammatory Properties in Lipopolysaccharide-treated

RAW 264.7 Cells. Journal of Inflammation 10(1): 1-7.

Pearl, I. A. and Darling, S. F. (1962). Bark of the family Salicaceae. V. Grandidentatin,

a new glucoside from the bark of Populus grandidentata. Journal of Organic

Chemistry 27: 1806.

Page 39: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

205

Pérez, C. J., Alvarado, P., Narváez, C., Miranda, F., Hernández, L., Vanegas, H., Hruska.

H. and Shelton, A. M. (2000). Assessment of Insecticide Resistance in Five Insect

Pests Attacking Field and vVegetable Crops in Nicaragua. Journal of Economic

Entomology 93(6): 1779–1787.

Paolo, C., Marcello, D., Paola, D., Virginia, L. and Luc, D. C. (2003). Fungitoxic Phenols

from Carnation (Dianthus caryophyllus) Effective against Fusarium Oxysporum f.

sp. Dianthi. Phytochemical Analysis 14(1): 8-12.

Picker, K., Ritchie, E. and Taylor, W. C. (1973). Constituents of Eupomatia Species. 3.

New Eupomatenoid Lignans from the Leaves and Wood of Eupomatia laurina.

Australian Journal of Chemistry 26(5): 1111-1119.

Pitan, O. O. R., Ayelaagbe, O. O., Wang, H. and Wang, C. (2009). Identification,

Isolation and Characterization of the Antifeedant Constituent of Clausena anisata

against Helicoverpa armigera (Lepidoptera : Noctuidae). Insect Science 16: 247–

253.

Prasad, D. and Chaudhury, D. N. (1958). Attempts on the Synthesis of coniferin. Journal

of the Indian Chemical Society 35: 455-456.

Qian, L., Cao, G., Song, J., Yin, Q. and Han, Z. (2008). Biochemical Mechanisms

Conferring Cross-resistance between Tebufenozide and Abamectin in Plutella

xylostella. Pesticide Biochemistry and Physiology 91: 175–179.

Rakotondramanana, D.L.A., Delomenede, M., Baltas, M., Duran, H., Bedos-belval, F.,

and Rasoanaivo, P. (2007). Synthesis of Ferulic Ester Dimers, Functionalisation

and Biological Evaluation as Potential Antiatherogenic and Antiplasmodial

Agents. Bioorganic and Medicinal Chemistry 15: 6018–6026.

Rios, J. L., Giner, R. M. and Prieto, J. M. (2002). New Findings on the Bioactivity of

Lignans. Studies in Natural Products Chemistry 26: 183-292.

Robertson, J. L., Preisler, H. K. and Russell, R. M. (2003). PoloPlus Probit and Logit

Analysis, pp 5-6.

Samant, B. S. and Bhagwat, S. S. (2011). Enantioselective Cycloetherification in a

Micellar Catalysis System. Chinese Journal of Catalyst 32(2): 231–234.

Satake, H., Koyama, T., Bahabadi, S. E., Matsumoto, E., Ono, E. and Murata, J. (2015).

Essences in Metabolic Engineering of Lignan Biosynthesis. Metabolites 5(2): 270–

90.

Sastrosiswojo, S., and Setiawati, W. (1992). Biology and Control of Crocidolomia

binotalis in Indonesia. Asian Vegetable Research and Development Center, Taipei

81–87.

Sawasdee, K., Chaowasku, T., Lipipun, V., Dufat, T. H., Michel, S. and

Likhitwitayawuid, K. (2013). Neolignans from Leaves of Miliusa mollis.

Fitoterapia 85(1): 49–56.

Page 40: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

206

Scammells, P. J., Baker, S. P. and Beauglehole, A. R. (1998). XH-14 Analogues as

Adenosine Antagonists. Bioorganic and Medicinal Chemistry 6(9): 1517–1524.

Schilz, M. and Plenio. (2012). A Guide to Sonogashira Cross-Coupling Reactions: The

Influence of Substituents in Aryl Bromides, Acetylenes, and Phosphines. Journal

of Organic Chemistry 77(6): 2798-2807.

Sharma, U. K., Sharma, N., Salwan, R., Kumar, R., Kasana, R. C. and Arun K. Sinha,

A. K. (2008). Efficient Synthesis of Hydroxystyrenes via Biocatalytic

Decarboxylation/Deacetylation of Substituted Cinnamic acids by Newly Isolated

Pantoea agglomerans Strains. Journal of the Science of Food and Agriculture

92(3): 610-617.

Shang, S. Z., Kong, L. M., Yang, L. P., Jiang, J., Huang, J., Zhang, H. B., Shi. M. Y.,

Zhao. W., Li. H. L., Luo. H. R., Li. Y., Xiao. W. L. and Sun, H. D. (2013).

Bioactive Phenolics and Terpenoids from Manglietia insignis. Fitoterapia 84(1):

58–63.

Sheen, W. S., Tsai, I, L., Teng, C. M. and Chen, I, S. (1994). Nor-neolignan and Phenyl

propanoid From Zanthoxylum ailanthoides. Phytochemistry 36(1): 213–215.

Shen, S. Da, Zhang, G. P., Lei, M. and Hu, L. H. (2012). First Total Synthesis of

Salvianolic acid C, Tournefolic acid A, and Tournefolal. Arkivoc 6: 204–213.

Shepard, B. M., and Schellhorn, N. A. (1994). A Plutella / Crocidolomia Management

Program for Cabbage in Indonesia. Proceedings: The Management of

Diamondback Moth and Other Crucifer Pests 262-266.

Singh, P., Fenemoret, P. G., Dugdale, J. S. and Russell, G. B. (1978). The Insecticidal

Activity of Foliage from New Zealand Conifers. Biochemical Systematics and

Ecology 6: 103–106.

Sridhara, S. and Lee, V. H. (2013). Tebufenozide Disrupts Ovarian Development and

Function in silkmoths. Insect Biochemistry and Molecular Biology 43(12): 1087–

1099.

Snyder, S. A., and Kontes, F. (2009). Explorations into Neolignan Biosynthesis : Concise

Total Syntheses of Helicterin B, Helisorin, and Helisterculin A from a Common

Intermediate. Journal of the Chemical Society 131(7): 1745–1752.

Sonogashira, K., Thoda. Y. and Hagihara. N. (1975). A Convenient Synthesis of

Acetylenes: Catalytic Substitutions of Acetylenic Hydrogen with Bromoalkenes,

Iodorenes and Bromophyridines. Tetrahedron Letters 50: 4467-4470.

Stoessl, A. (1966). The Antifungal Factors in Barley- The Constitutions of Hordatine A

and B. Tetrahedron Letters (21): 2287–2292.

Stoessl, A. (1967). The Antifungal Factors in Barley. IV. Isolation, structure and

Synthesis of the Hordatines. Canadian Journal of Chemistry 45: 1745-1760.

Page 41: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

207

Suzuki, S. and Umezawa, T. (2007). Biosynthesis of Lignans and Norlignans. Journal of

Wood Science, 53(4): 273–84.

Sultana, I., Shimamoto, M., Obata, R., Nishiyama, S. and Sugai, T. (2006). An

Expeditious Chemo-enzymatic Synthesis of Dihydronorcapsaicin β-d-

Glucopyranoside. Science and Technology of Advanced Materials 7(2): 197–201.

Szlosek-pinaud, M., Diaz, P., Martinez, J. and Lamaty. F. (2003). Palladium-catalyzed

Cascade Allylation / Carbopalladation / Cross Coupling : A Novel Three-

component Reaction for the Synthesis of, 3,3-Disubstituted-2,3-

dihydrobenzofurans. Tetrahedron Letters 44: 8657–8659.

Tabashnik, B. E., Dennehy, T. J., Morin, S., Carrie, Y., Sisterson, M. S., Roush, R. T.,

Shelton. A. M. and Zhao, J. (2003). Insect Resistance to Transgenic Bt Crops :

Lessons from the Laboratory and Field. Journal of Economical Entomology 96(4):

1031–1038.

Tamura, M., Tsuji, Y., Kusunose, T., Okazawa, A., Kamimura, N., Mori, T.,

Nakabayasyi. R., Hisyiyama. S., Fukuhara. Y., Hara. H., Sato-Izawa. K.,

Muranaka. T., Saito. K., Katayama. Y., Fukuda. M., Masai. E. and Kajita, S.

(2014). Successful Expression of a Novel Bacterial Gene for Pinoresinol

Reductase and its Effect on Lignan Biosynthesis in Transgenic Arabidopsis

thaliana. Applied Microbiology and Biotechnology 98(19): 8165–8177.

Tanaka, H., Kato, I. and Ito, K. (1987). Total Synthesis of Neolignans, Americanin A

and Isoamericanin A. Chemical and Pharmaceutical Bulletin 35(9): 603-608.

Tan, Y. X., Yang, Y., Zhang, T., Chen, R. Y. and Yu, D. Q. (2010). Bioactive 2-

Arylbenzofuran Derivatives from Morus wittiorum. Fitoterapia, 81(7): 742–746.

Thien, P., Wook, K., Kee, J., Bang, D., Jun, S., Han, S. and Keun, W. (2009). Bioorganic

& Medicinal Chemistry Letters Lithospermic acid Derivatives from Lithospermum

erythrorhizon Increased Expression of Serine Palmitoyltransferase in Human

HaCaT Cells. Bioorganic & Medicinal Chemistry Letters 19(6): 1815–1817.

Thorat, B. R., Jagatap, R., Thorat, V. B., Mandewale, M., Nagarsekar, A. and Yamgar,

R. S. (2015). Synthesis, Molecular Docking and Cytotoxic Study of 7-Methoxy-2-

(3,4- dimethoxyphenyl )-1-benzofuran-5-carbaldehyde. Scholars Research

Library 7(9): 130–144.

Varadaraju, T. G. and Hwu, J. R. (2012). Synthesis of Anti-HIV Lithospermic Acid by

Two Diverse Strategies. Organic and Biomolecular Chemistry 10(28): 5456.

Verkerk, R. H. J. and Wright, D. J. (1996). Multitrophic Interactions and the

Diamondback Moth: Implications for Pest Management. Development and

Implementation of IPM 243–248.

Wakimoto, T., Nitta, M., Kasahara, K., Chiba, T., Ye, Y., Tsuji, K., Kan. T., Nukaya.

H., Ishiguro. M., Koike. M., Yokoo. Y. and Suwa, Y. (2009). Structure-activity

Relationship Study on α1-Adrenergic Receptor Antagonists from Beer. Bioorganic

and Medicinal Chemistry Letters 19(20): 5905–5908.

Page 42: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

208

Wakimoto, T., Miyata, K., Ohuchi, H., Asakawa, T., Nukaya, H., Suwa, Y. and Kan, T.

(2011). Enantioselective Total Synthesis of Aperidine. Organic Letters 13(10):

2789–2791.

Wang, X., Wei, X., Huang, X., Shen, L., Tian, Y. and Xu, H. (2011). Insecticidal

Constructure and Bioactivities of Compounds from Ficus sarmentosa var. henryi.

Agricultural Sciences in China 10(9): 1402–1409.

Wang, Q., Gao, X., Gong, H. U. I. and Lin, X. (2011). Chemical Stability and

Degradation Mechanisms of Ferulic acid (F.A) within Various Cosmetic

Formulations. Jounal of Cosmetic Science 503: 483–503.

Wang, Y., Yu, X., Zhi, X., Xiao, X., Yang, C. and Xu, H. (2014). Synthesis and

Insecticidal Activity of Novel Hydrazone Compounds Derived from a Naturally

Occurring Lignan Podophyllotoxin against Mythimna separata (Walker).

Bioorganic and Medicinal Chemistry Letters 24(12): 2621–2624.

Wang, L. and Xiao, J. (2015). Advancement in Cascade [1,n]-Hydrogen

Transfer/Cyclization : A Method for Direct Functionalization of Inactive C (sp3)-

H Bonds. Advance Synthesis and Catalysis 356: 1137–1171.

Worm, E. V. E., Berg, V. D., Kemeling, G. M., Beukelman, C. J., Halkes, S. B. A.,

Labadie, R. P. and Dijk, H, V. (1997). Isolation, Characterization and Activity of

Diapocynin, an Apocynin metabolite. Johan Cruiiff 71-88.

Wu, H., Wu, H., Wang, W., Liu, T., Qi, M., Feng, J., Li, X. and Liu, Y. (2016).

Insecticidal Activity of Sesquiterpene Lactones and Monoterpenoid from the Fruits

of Carpesium abrotanoides. Industrial Crops and Products 92: 77–83.

Xia. Y., Dai. X., Liu. H. and Chai. C. (2014). First Total Synthesis of Boehmenan.

Journal of Chemical Science 126(3): 813-820.

Xiao, H., Zheng, P., Tang, C., Xie, Y., Wu, F., Song, J., Zhao. J., Li. Z. and Li, M. (2013).

Synthesis and Anti-TMV Activity of Dialkyl/dibenzyl 2-((6-Substituted-

benzo[d]thiazol-2-ylamino)(benzofuran-2-yl)methyl) Malonates. Molecules

18(11): 13623–13635.

Xiao, H., Dai, Y., Wong, M. and Yao, X. (2014). New Lignans from the Boactive

Fraction of Sambucus williamsii Hance and Proliferation Activities on

Osteoblastic-like UMR106 Cells. Fitoterapia 94: 29–35.

Xu, H. and Xiao. X. (2009). Natural Products-based Insecticidal Agents 4. Semisynthesis

and Insecticidal Activity of Novel Esters of 2-chloropodophyllotoxin Against

Mythimna separata Walker in vivo. Bioorganic and Medicinal Chemistry Letters

21(18): 5177–5180.

Yadav, R. K. and Asha, D. B. B. (2014). Synthesis, Antimicrobial, and Antioxidant

Activity of Benzofuran barbitone and Benzofuran thiobarbitone Derivatives.

Medicinal Chemistry Research 23: 3065–3081.

Page 43: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

209

Yamaji, N., Yokoo, Y., Iwashita, T., Nemoto, A., Koike, M., Suwa, Y., Wakimoto. K.,

Tsuji. K and Nukaya, H. (2007). Structural Determination of Two Active

Compounds that Bind to the Muscarinic M3 Receptor in Beer. Alcoholism: Clinical

and Experimental Research 31: 9–14.

Yang, F., Zhang, H. J., Zhang, Y. Y., Chen, W. S., Yuan, H. L., and Lin, H. W. (2010).

A Hepatitis B Virus Inhibitory Neolignan from Herpetospermum caudigerum.

Chemical Pharmaceutical Bulletin 58(3): 402–404.

Yang, H., Chen, J. J. and Liang, G. (2010). Induction of Mitotic Arrest and Apoptosis by

Salvianolic acid C in Human Hepatoma HepG2 Cells. Chinese Pharmacological

Bulletin 26: 1208.

Yang, C., Zhi, X. and Xu, H. (2015). Synthesis of Benzoxazole Derivatives of Honokiol

as Insecticidal Agents against Mythimna separata Walker. Bioorganic and

Medicinal Chemistry Letters 25(10): 2217–2219.

Yasar, S., Ӧzcan, E. Ӧ., Gürbüz, N., Cetinkaya, B. and Ӧzdemir, İ. (2010). Palladium-

Catalyzed Heck Coupling Reaction of Aryl Bromides in Aqueous Media Using

Tetrahydropyrimidinium Salts as Carbene Ligands. Molecules 15: 649–659.

Yu. S. J. (1992). Detection and Biochemical Characterization of Insecticide Resistance

in Fall Armyworm (Lepidoptera : Noctuidae). Entomological Society of America

85(3): 675-682.

Yuen, M. S. M, Zue, F., Mak, T. C. W. and Wong, H. N. C. (1998). On the Absolute

Structure of Optically Active Neolignans Containing a Dihydrobenzo[b]furan

Skeleton. Tetrahedron 54: 12429–12444.

Zeng, Q., Guan, B., Cheng, X., Wang, C., Jin, H. and Zhang, W. (2013). Chemical

Constituents from Metasequoia glyptostroboides Hu et Cheng. Biochemical

Systematics and Ecology 50: 406–410.

Zhang, H., Ferreira, E. M. and Stoltz, B. M. (2004). Direct Oxidative Heck Cylizations:

Intramolecular Fijiwara-Moritani Arylations for the Synthesis of Functionalized

Benzofurans and Dihydrobenzofurans. Engewandte Chemie International Edition

43: 6144–6148.

Zhiqing, M. A., Gulia-Nuss, M., Zhang, X. and Brown, M. R. (2014). Effects of the

Botanical Insecticide, Toosendanin, on Blood Digestion and Egg Production by

Female Aedes aegypti (Diptera: Culicidae): Topical Application and Ingestion.

NIH Public Access 50(1): 112–121.

Zuo, L., Yao, S., Wang, W. and Duan, W. (2008). An Efficient Method for

Demethylation of Aryl Methyl Ethers. Tetrahedron Letters 49(25): 4054–4056.

Page 44: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

331

LIST OF PUBLICATIONS AND CONFERENCES

Publications

Juhan, S. F., Nor, S. M. M., Sukari, M. A. M., Azziz, S. S. S. A., Fah, W. F and Alimon,

H. (2016). New Synthesized Aminoanthraquinone Derivatives and Its

Antimicrobial and Anticancer Activities (Route II). International Journal of

Contemporary Applied Sciences 3 (1) 18-33.

Nor, S. M. M., Sukari, M. A. M., Azziz, S. S. S. A., Fah, W. F., Alimon, H. and Juhan,

S. F. (2013). Synthesis of New Cytotoxic Aminoanthraquinone Derivatives via

Nucleophilic Substitution Reactions. Molecules 18: 8046-8062.

In Progress article:

1. 2-Aryldihydrobenzofuran neolignans: synthesis of ficusal and tomentosanan B

(accepted for publication on 9 May 2018 in Der Chemica Sinica).

2. Chemical and Enzymatical Synthesis of Lignans and Neolignans derivatives

and its larvicidal activities.

3. Synthesis of new derivatives of benzofuran neolignans and stilbenes via Heck

coupling.

4. Synthesis of New Derivatives of Phenylcoumarins and Neolignans via Heck

Coupling

5. Synthesis of (+)-Tomentosanan A via Heck Coupling Approach

6. Synthesis of zanthocapensole and zanthocapensate derivative using Heck

coupling method.

Page 45: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM

332

Conferences

1. 29th The Malaysian Analytical Chemistry Symposium (SKAM 29) on 15 to 17

August 2016 at Bayview Beach Resort, Penang organized by Universiti Sains

Malaysia. Participation as a poster presenter.

2. Fundamental Science Congress (FSC) on 12 to 13 November 2015 at Faculty

of Science veterinary organized by Universiti Putra Malaysia. Participation as

an oral presenter.

3. Fundamental Science Congress (FSC) on 20 to 21 August 2013 at Faculty of

Science veterinary organized by Universiti Putra Malaysia. Participation as a

poster presenter.

4. International Conference on Natural Products (ICNP2013) on 4 to 6 March

2013 at Shah Alam Convention Centre (SACC) organized by Universiti

Teknologi MARA Shah Alam, Selangor and Malaysian Natural Product

Society. Participation as an oral presenter

5. 2nd National Symposium in Organic Synthesis 2012 (New Frontiers in Organic

Chemistry) on 16 and 17 July 2012 at Concorde Hotel Shah Alam organized by

Institute of Science (IOS) Universiti Teknologi MARA Shah Alam, Selangor,

Malaysia. Participation as a poster presenter.

Page 46: SITI FADILAH JUHANpsasir.upm.edu.my/id/eprint/67448/1/FS 2018 33 IR.pdf · larvasida dengan menggunakan larva Crocidolomia binotalis dan azadiraktin sebagai piawai komersial (LD50

© COPYRIG

HT UPM