projek penilaian dan pengesahan produk...bab 1 muka surat sekapur sirih 4 pengenalan 5 1.1 sejarah...

85

Upload: others

Post on 31-May-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik
Page 2: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

PROJEK PENILAIAN DAN PENGESAHAN PRODUK BERKAITAN INISIATIF BIOROSOT DAN BIOKOMPOS

JOHOR (BBJ)

MODUL PEMBELAJARAN PENGESAHAN PRODUK

BIOPLASTIK

Page 3: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

Perbadanan Bioteknologi dan Biodiversiti Negeri Johor

Tingkat 2, Bio-XCell Malaysia

No.2, Jalan Bioteknologi 1,

Kawasan Perindustrian SiLC

79200 Iskandar Puteri,

Johor Darul Takzim

Tel: 07-532 8810

Fax: 07-532 8811

Laman web: www.jbiotech.gov.my

©Perbadanan Bioteknologi dan Biodiversiti Negeri Johor

Terbitan Pertama 2019

Hak cipta terpelihara. Setiap bahagian daripada terbitan ini tidak boleh diterbitkan

semula, disimpan untuk pengeluaran atau dipindahkan kepada bentuk lain, sama ada

dengan cara elektronik, mekanik, gambar, rakaman dan sebagainya tanpa izin pemilik

hak cipta terlebih dahulu.

Perpustakaan Negara Malaysia Data Pengkatalogan-dalam-Penerbitan

Projek Penilaian dan Pengesahan Produk Berkaitan Inisiatif Biorosot dan Biokompos

Johor (BBJ)

Modul Pembelajaran Pengesahan Produk Bioplastik

Mengandungi indeks

ISBN 978-983-44342-3-6

Dicetak oleh

Azuarina Creative Sdn Bhd

No 61, 63 & 65, Jalan Pulai 23, Taman Pulai Utama,

81300 Skudai, Johor Darul Takzim

Tel: 07-520 4185 Fax: 07-520 4186

E-mail: [email protected]

Page 4: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

2

ISI KANDUNGAN

BAB 1 Muka Surat

Sekapur Sirih 4

Pengenalan 5

1.1 Sejarah terciptanya plastik 6

1.2 Plastik menjadi ancaman 9

1.3 Sinar baru untuk bioplastik 11

1.4 Pendekatan Malaysia menangani isu plastik 13

1.5 Bioplastik dan jenis-jenisnya 15

1.5.1 Kanji thermoplastic 17

1.5.2 Polylactide 18

1.5.3 Poly-3-hydroxybutyrate (PHB) 19

1.5.4 Polyamide 11 20

1.5.5 Polythylene (PE) 21

1.6 Inisiatif Biorosot dan Biokompos Negeri Johor

21

BAB 2 Rangka Kerja Penerbitan Modul Bagi Penilaian dan Pengesahan Produk Bioplastik

22

2.1 Pengenalan 22

2.2 Objektif dan Skop Kerja 23

2.3 Gerak Kerja Pembangunan Modul Pembelajaran Bagi Penilaian dan Pengesahan Produk Bioplastik

23

2.4 Garis masa Projek 25

BAB 3 Ujian Pengesahan Bagi Produk Biorosot dan Biokompos Negeri Johor

26

3.1 Latar belakang 26

3.2 Test Method – Biodegradability Testing – Ready Biodegradability

27

3.3 35

Page 5: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

3

Test Method – Thermogravimetric Analysis

3.4 Test Method – Compostability Testing – Plant Growth Test

39

3.5 Test Method: Toxicity – Heavy Metal Testing 42

3.6 Test Method: Assessment of the Oxo-Biodegradation of Plastics

48

3.7 Test Method: Toxicity - Migration Test 57

3.8 Test Method: Halal – Porcine Testing 64

BAB 4 Makmal – Makmal Analisa Yang Menjalankan Pengesahan Produk Bioplastik di Malaysia

71

4.1 Makmal Yang Menawarkan Ujian Pengesahan Bioplastik di Malaysia

71

4.2 Cadangan ujian pengesahan bioplastik 72

Rujukan 73

Appendix I 82

Page 6: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

4

HAJI AHMAD BIN HAJI MA’IN Ketua Pegawai Eksekutif Perbadanan Bioteknologi dan Biodiversiti Negeri Johor (J-Biotech)

Assalammualaikum Warahmatullahi Wabarakatuh dan Salam Sejahtera

Pertama sekali, saya ingin melahirkan rasa syukur ke hadrat Allah diatas

limpahan rahmat dan kurniaNya, Perbadanan Bioteknologi dan Biodiversiti Negeri

Johor (J-Biotech) telah berjaya membangunkan “Modul Pembelajaran

Pengesahan Produk Bioplastik” di bawah Projek Penilaian dan Pengesahan

Produk Berkaitan Inisiatif Biorosot dan Biokompos Johor (BBJ).

Memelihara alam sekitar melalui pendekatan sains dan teknologi adalah

merupakan salah satu aspirasi anak syarikat kerajaan negeri Johor ini. Aspirasi

ini disokong dengan mandat yang diberikan kepada J-Biotech oleh kerajaan

negeri Johor untuk menerajui Inisiatif Biorosot dan Biokompos Negeri Johor sejak

tahun 2016 lagi. Salah satu teras inisiatif lima tahun ini adalah menyebarluaskan

pengetahuan kepada pelbagai lapisan masyarakat, khususnya pemain-pemain

industri biorosot dan biokompos tentang kepentingan menggunakan produk

mesra alam dalam usaha mengurangkan kebergantungan kepada plastik

konvensional demi memulihara dan memelihara alam sekitar di negeri Johor.

Modul yang dibangunkan ini adalah bertujuan untuk memberikan panduan

ringkas kepada pemain-pemain industri berkaitan dengan ujian-ujian pengesahan

biorosot dan biokompos yang ditawarkan oleh makmal-makmal di Johor, demi

membantu pemain industri menghasilkan produk mesra alam yang lebih berkualiti

dan kompetitif.

Akhir kata, saya berharap penerbitan modul pembelajaran ini dapat mencapai

matlamat kerajaan negeri Johor untuk mendorong lebih ramai lagi pemain

industri untuk sama-sama terlibat dalam merealisasikan pelaksanaan Inisiatif

Biorosot dan Biokompos Negeri Johor. Sekaligus menjadikan Johor sebagai

peneraju dalam teknologi hijau dan teknologi mesra alam di Malaysia, amnya.

Sekian, terima kasih.

Page 7: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

5

BAB 1

PENGENALAN

Plastik merupakan sebuah gabungan bahan polimer yang terhasil dari

sumber organik mahupun sintetik yang boleh dibentuk. Antara contoh-contoh

bahan polimer yang terhasil daripada sumber organik adalah tar, syelek,

cengkerang kura-kura, tanduk binatang,, selulosa, getah tumbuhan dan lain-

lain. Manakala jenis-jenis bahan polimer sintetik pula adalah polyethylene,

polystyrene, polypropylene, polyvinyl chloride polytetrafluoroethylene dan lain-

lain.

Perkataan plastik tercipta daripada perkataan Greek iaitu plastikos

yang bermaksud mudah untuk dibentuk. Ini merujuk kepada kebolehcairan

dan keliatan bahan tersebut sewaktu proses pembuatan bagi memudahkan

ia untuk ditekan dan direka kepada pelbagai bentuk seperti kepingan,

seratan, bentuk rata, tiub, botol, kotak dan lain-lain.

Plastik digunakan dalam banyak sektor dan aplikasi kerana

kepelbagaian sifatnya. Plastik mempunyai isipadu yang rendah, ringan dan

mudah diuruskan. Plastik banyak digunakan dalam bidang pembungkusan,

pembinaan, pengangkutan, elektronik, pertanian, kesihatan, peralatan sukan

dan lain-lain. Plastik terbahagi kepada dua jenis iaitu thermoplastic dan

thermoset. Thermoplastic adalah plastik yang boleh dicairkan dan dibentuk

semula menggunakan melalui proses pendedahan kepada haba. Thermoset

Page 8: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

6

pula adalah plastik yang apabila telah dihasilkan, ia tidak boleh dicairkan dan

dibentukkan semula kepada bentuk yang asal.

1.1 Sejarah Terciptanya Plastik

Plastik pada asalnya tercipta dari bahan organik seperti syelek dan juga gula

getah. Namun begitu, semakin pesat teknologi berkembang dan dengan

peningkatan teknologi pengubahsuaian kimia, plastik telah mengalami evolusi

sejajar dengan perkembangan teknologi terkini. Pelbagai jenis unsur plastik

telah terhasil melalui pengubahsuaian kimia iaitu seperti getah, nitroselulosa,

kolagen dan galalite. Teknologi menghasilkan plastik sintetik telah wujud

sejak 100 tahun lalu. Antara plastik sintetik yang telah terhasil pada ketika itu

adalah parkesine / seluloid, polyvinyl chloride (PVC) dan akelite (Anon, 2019).

Unsur plastik sintetik yang pertama adalah parkesina iaitu hasil kajian

daripada ahli kimia Alexander Parkes pada tahun 1856. Kemudian pada

tahun 1869, John Wesley Hyatt menghasilkan seluloid. Kajian John (1869)

bermula apabila sebuah firma di New York menawarkan ganjaran sebanyak

$10,000.00 kepada sesiapa yang dapat mencipta bahan yang boleh dijadikan

sebagai pengganti kepada gading gajah yang digunakan untuk membuat bola

biliard. Populariti permainan billiard telah memberikesan kepada bekalan

gading gajah kerana ia digunakan dalam pembuatan bola billiard sejak tahun

1627 (Bellis, 2019). Sejajar dengan peningkatan permintaan bekalan gading

gajah memberi kesan peningkatan pemburuan gajah ini yang boleh

mengakibatkan populasi gajah terancam secara langsung

Page 9: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

7

John (1869) telah menghasilkan plastik sintetik ini dengan melalui

proses merawat serat selulosa kapas (nitroselulosa) menggunakan kapur

barus. Hasil kajian mendapati kesan tindakbalas ini mempunyai unsur yang

sama dengan cengkerang kura-kura, tanduk, linen dan gading (Bellis, 2019).

Oleh kerana itu, hasil kajian John (1869) ini dilihat sebagai pencetus revolusi

kerana ia bukan sahaja membantu pembangunan industri pembuatan malah

membantu mengekalkan kesejahteraan alam sekitar. Pada ketika itu, plastik

sintetik dijadikan sebagai penyelamat kepada gajah dan kura-kura kerana ia

mengurangkan penggunaan hasil daripada haiwan-haiwan tersebut bagi

mendapatkan sumber bahan mentah (Bellis,2019).

Inovasi tersebut telah menjadi pemangkin kepada peningkatan

penghasilan pelbagai jenis plastik. Antaranya ialah pempolimeran PVC

bermula dihasilkan pada tahun 1838-1872 (Freinkel, 2011). Manakala, plastik

jenis sepenuhnya sintetik yang pertama telah dibangunkan pada tahun 1907,

iaitu Bakelite yang dihasilkan oleh Leo Baekeland (Kettering, 1946).

Komposisi plastik sepenuhnya sintetik ini tidak mempunyai sebarang unsur

dari alam semulajadi. Bakelite terhasil dari tindakbalas antara phenol dan

formaldehyde dimana asid digunakan sebagai pemangkin (ACC, 2018)

Baekeland berjaya mencipta plastik sepenuhnya sintetik ini selepas

beliau melakukan pelbagai penyelidikan untuk menggantikan syelek. Syelek

adalah bahan popular yang dijadikan sebagai penebat arus elektrik pada

waktu itu kerana ia kerap digunakan untuk bekalan tenaga elektrik ke seluruh

Amerika Syarikat. Bakelite bukan sahaja sebagai penebat elektrik yang baik,

tetapi ia juga tahan lama dan tahan haba seperti Gambar 1. Ia juga mudah

dibentuk mengikut kepada keperluan penggunaan, dan ini menjadikan ia

Page 10: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

8

pengganti yang paling sesuai bagi syelek (Kettering, 1946; Anthony Raj,

2018).

Gambar 1: Plastik bakelite

Petrol merupakan bahan peralihan bahan semulajadi untuk

menghasilkan plastik. Proses penghasilan berlaku apabila stok petrol pada

ketika itu sangat banyak dan boleh didapati dengan harga yang murah.

Sebagai contoh, Henry Ford, sebuah syarikat pengeluar kenderaan

menggunakan plastik berasaskan soya, namun begitu, kerana harga petrol

murah, syarikat ini telah beralih kepada bahan plastik berasaskan petrol untuk

komponen-komponen kenderaan keluarannya (Barrett, 2018).

Syarikat W.R. Grace juga telah menjalankan penyelidikan berkaitan

penghasilan bioplastik melalui tindakbalas mikrob, namun tidak berjaya

apabila mendapati kos untuk menghasilkan plastik dari sumber petrol adalah

lebih murah dan mudah didapati. Sejak itu penghasilan plastik berasaskan

sumber petrol ini semakin mendapat permintaan yang tinggi berbanding

bioplastik (Barrett, 2018).

Plastik semakin mendapat perhatian dalam banyak sektor pembuatan

di Amerika Syarikat ketika Perang Dunia ke-2 (Parker, 2019). Plastik banyak

Page 11: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

9

digunakan dalam pembuatan komponen-komponen peralatan perang (Beall,

2009). Sebagai contohnya, Nylon merupakan plastik yang digunakan dalam

penghasilan payung terjun, tali, perisai badan, topi keledar dan sebagainya

yang dihasilkan oleh ahli kimia Amerika iaitu Wallace Carothers (Anon,

undatedtahun). Pada ketika itu industri pembuatan plastik di Amerika Syarikat

telah meningkat sebanyak 300%. Selepas Perang Dunia ke-2, plastik kekal

mendapat perhatian dan telah digunakan dengan meluas dalam pelbagai

bidang. Plastik telah diangkat sebagai bahan yang mampu memberikan

penyelesaian kepada pelbagai masalah (Bellis, 2019; Anon, 2019). Beberapa

tahun kemudian, ahli kimia dari England, Rex Whinfield dan JamesTennat

Dickson menghasilkan polyethylene terephthalate yang mempunyai sifat yang

sama dengan Nylon dalam Perang Dunia ke-2. Namun, seorang jurutera

Amerika, Nathaniel Wyeth telah berjaya mengubah bahan ini menjadi bahan

plastik pembungkusan makanan pada tahun 1973 (Anon, undated). Beliau

juga telah mempatenkan proses penghasilan botol plastik menggunakan

bahan ini pada tahun 1977.

1.2 Plastik Menjadi Ancaman

Namun begitu, selepas beberapa tahun berlalunya Perang Dunia ke-2, plastik

mula dilihat sebagai sebuah ancaman (Beall, 2009; Parker, 2019). Ini terjadi

kerana sisa-sisa plastik menimbun dengan banyaknya di kawasan lautan dan

sungai sekitar tahun 1960-an (Parker, 2019). Keadaan ini telah

mengakibatkan pencemaran alam sekitar dan ia telah menarik perhatian

ramai aktivis yang aktif dalam melindungi dan mempertahankan alam sekitar.

Page 12: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

10

Masalah mula timbul apabila plastik didapati sukar untuk dilupuskan dankekal

dimana ia dibuang (Anon, 2019). Masalah ini semakin teruk apabila

kesedaran mengenai kesan bahaya bahan aditif yang dilepaskan dari sisa

plastik tersebut, terutamanya daripada bisophenol-A (BPA) dan phatalates

semakin meningkat penggunaanya.

Kedua-dua bahan kimia ini dimasukkan ke dalam plastik ketika proses

pembuatan plastik (Warner & Flaws, 2018). Para saintis mendapati kedua-

dua bahan kimia tersebut mudah luntur dari plastik ke alam sekitar dan

secara tidak langsung masuk ke makanan, minuman dan badan manusia

(Teuten et al., 2009) Bahan-bahan kimia ini jugamemberikan kesan negatif

kepada sistem hormon badan manusia danmenimbulkankebimbangan

kepada orang awam (Warner & Flaws, 2018).

Sehingga ke hari ini, plastik telah menjadi ancaman kepada alam

sekitar seiring dengan perkembangan teknologi dan gaya hidup, terutamanya

di negara-negara yang mempunyai kepadatan penduduk yang tinggi seperti

Jepun (PWMI, 2014), Taiwan (Walther, 2015), United Kingdom (Howarth,

2013) dan Hong Kong (EPD, 2015). Selain itu, plastik memberi kesan yang

buruk kepada kesihatan manusia (Crinnion, 2010; Elliot et al.,1996),

pencemaran udara (Li et al., 1995), pencemaran tanah (Barnes et al., 2009),

pencemaran air (Howarth, 2013; Perkins, 2014), merosakkan rantaian

makanan (Rochman et al., 2014) dan mengancam biodiversiti (Derraik, 2002;

Gregory, 2009).

Page 13: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

11

1.3 Sinar Baru Untuk Bioplastik

Sekitar tahun 1970-an, pengusaha-pengusaha plastik telah mencadangkan

mekanisma kitar semula bagi mengurangkan kesan negatif terhadap plastik

ini. Namun cadangan ini tidak membawa sebarang penyelesaian yang

signifikan kerana peningkatan sisa plastik semakin bertambah dan tidak

pernah berkurang (Bradbury, 2017). Situasi ini telah menggalakkan lebih

ramai penyelidik-penyelidik mula menjalankan kajian penyelidikan bioplastik

yang teknologi tinggi pernah dibangunkan sebelum ini.

Dorongan penghasilan bioplastik ini ditingkatkan lagi kerana harga dan

produksi petrol yang tidak menentu disebabkan oleh Revolusi Iran dan

Perang Iran-Iraq. Pelbagai usaha telah dijalankan bagi menggalakkan

penghasilan bioplastik ini. Sebagai contoh, sebuah syarikat bernama Imperial

Chemical Industries yang terletak di United Kingdom (UK), dan syarikat

usahasamanya iaitu Malborough Teeside Management dari Malborough

Biopolymers telah menghasilkan bioplastik dari bakteria iaitu dinamakan

sebagai Biopol. Bahan bioplastik ini boleh dihasilkan dalam bentuk filamen,

cip dan serbuk (Feder, 1985). Teknologi penghasilan Biopol ini kemudiannya

telah digunakan oleh syarikat Monsanto bagi menggantikan penghasilan

plastic daripada mikrob dan bakteria. Syarikat Monsanto ini kemudiannya

dibeli oleh syarikat Metabolix Inc (Barber and Fisher, 2001).

Pada tahun 2010, seorang penyelidik dari France bernama Remy

Lucas telah berjaya menghasilkan bioplastik yang berasaskan alga. Teknologi

ini dikategorikan sebagai mesra alam kerana pemprosesan bahan mentah

untuk pembuatan bioplastik ini daripada alga, dan tidak menggunakan baja

Page 14: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

12

dan racun perosak. Bioplastik yang dihasilkan dari teknologi ini juga adalah

sangat berpotensi kerana boleh terurai di dalam tanah dalam tempoh 12

minggu dan boleh terurai 5 jam di dalam air (Malet, tahun).

Pada tahun 2018, sekumpulan penyelidik Universiti Teknologi

Eindhoven telah berjaya menghasilkan sebuah kereta yang keseluruhannya

diperbuat daripadabioplastik. Kereta ini diberi nama Noah mempunyai berat

360kg dengan berat baterinya adalah60kg (Barrett, 2018). Bioplastik yang

digunakan untuk menghasilkan rangka kereta ini adalah berasaskan daripada

gula, manakala badannya diperbuat daripada asid poli-laktik dan kereta ini

tahan pada suhu persekitaran. Kereta ini mempunyai 2 buah enjin berkuasa

15 kilowatt dan mampu mencapai kelajuan maksimum 100 km per jam.

Kereta ini boleh dikitar semula dan ini merupakan teknologi yang sangat

berpotensi untuk mengurangkan kebergantungan kepada plastik

konvensional.

Sehingga kini, masih banyak penyelidikan dan aplikasi bioplastik

dijalankan di seluruh dunia. Kesedaran tentang pentingnya mengurangkan

penggunaan plastik konvensional semakin meningkat. Pelbagai pihak, telah

menjalankan peranan mereka untuk menggalakkan penggunaan bioplastik. Di

Malaysia, kesedaran menggunakan bioplastik juga semakin meningkat seiring

dengan penerimaan global berkaitan dengan teknologi ini. Banyak

pendekatan yang telah dilakukan oleh kerajaan Malaysia untuk meningkatkan

penerimaan penggunaan bioplastik di kalangan rakyat Malaysia itu sendiri.

Page 15: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

13

1.4 Pendekatan Malaysia Menangani Isu Plastik

Malaysia mempunyai kesedaran untuk menangani isu sisa plastik dan

dijadikan sebagaisalah satu agenda utama negara. Malaysia dikategorikan

sebagai negara ke-8 yang menyumbang kepada isu sisa plastik global

(Balasegaram, 2018). Di Malaysia, terdapat lebih kurang 1,300 pengeluar

plastik dan pada tahun 2010, Malaysia telah menghasilkan hampir 1 juta sisa

plastik yang tidak diuruskan (Balasegaram, 2018). Sisa plastik ini dibiarkan

tidak terurus di tapak pelupusan sampah, kemudian masuk ke dalam sungai

dan laut. Sisa plastik sintetik ini adalah amat sukar untuk diuraikan.

Proses penguraian plastik mengambil masa sehingga ratusan

mahupun ribuan tahun dan ia menjadi masalah yang amat membimbangkan.

Jika ia dibiarkan berterusan, sisa plastik ini akan menimbun dan membentuk

seperti pulau sisa plastik yang dijumpai di Lautan Pasifik yang diberi nama

sebagai The Great Pacific Garbage Patch (Parker, 2018). Sisa plastik yang

terurai ini akan dimakan oleh haiwan marin yang akhirnya akan menjadi salah

satu komponen rantaian makanan kita. Tidak mustahil dalam tahun-tahun

yang mendatang, bilangan sisa plastik akan lebih meningkat (Kaplan, 2016).

Melihat kepada keburukan yang dibawa oleh plastik konvensional /

sintetik, Malaysia juga telah mula menggalakkan penggunaan bahan-bahan

alternatif sintetik plastik iaitu produk biorosot dan biokompos. Di peringkat

Kerajaan Persekutuan, Kementerian Tenaga, Sains, Teknologi, Alam Sekitar

Dan Perubahan Cuaca (MESTECC) telah melancarkan sebuah pelan halatuju

yang dipanggil “Roadmap Towards Zero Single-Use Plastics 2018-2030” bagi

menangani masalah isu sisa plastik. Pelan halatuju ini mempunyai tiga (3)

Page 16: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

14

fasa. Fasa pertama adalah dari tahun 2018 sehingga 2021, fasa kedua

adalah dari tahun 2022 sehingga 2025, fasa ketiga dari tahun 2026 sehingga

2030 (Lee, 2019).

Fasa pertama adalah bertujuan untuk membangunkan pelan halatuju

ini, selain memberikan kesedaran kepada masyarakat tentang bahayanya

menggunakan single-use plastics dan mendapatkan kerjasama daripada

pelbagai pemegangtaruh terutamanya pihak-pihak berkuasa tempatan (PBT).

Dalam fasa ini juga, perlaksanaan bagi mengurangkan penggunaan single-

use plastic juga akan dilaksanakan. Sebagai permulaan, penggunaan

penyedut makanan di premis-premis makanan akan dikurangkan. Penyedut

makanan hanya akan diberikan apabila diminta oleh pelanggan tanpa

sebarang caj (MESTECC, 2018).

Fasa kedua pula melibatkan sasaran produk yang lebih luas untuk

penggunaan produk biorosot dan biokompos ini seperti pembungkus

makanan (food packaging), filem plastik, perkakas dapur, kotak penyimpan

makanan, kapas pengorek telinga, beg poli dan slow-release fertilizers. Dana

penyelidikan bagi melahirkan lebih banyak teknologi bioplastik yang lebih baik

juga akan dipertingkatkan dalam fasa ini (MESTECC, 2018).

Fasa ketiga atau fasa akhir adalah untuk memastikan jumlah

pengeluaran produk biorosot dan biokompos adalah tinggi selari dengan

peningkatan jumlah permintaannya. Selain itu, sasaran produk akan

diperluaskan kepada peranti perubatan, lampin dan lain-lain produk yang

menggunakan single-use plastics. Laporan akhir perlaksanaan biorosot dan

biokompos juga akan diterbitkan dalam fasa ini (MESTECC, 2018).

Page 17: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

15

Walau bagaimanapun, pelaksanaan inisiatif ini adalah tertakluk kepada

undang-undang negeri masing-masing, walaupun pada peringkat kerajaan

Persekutuan pun telah ada inisiatif bagi menangani isu sisa plastik ini.

Sebagai contoh pihak berkuasa tempatan di wilayah-wilayah Persekutuan

dan negeri Melaka, telahpun menetapkan bahawa hanya produk biorosot dan

biokompos sahaja yang boleh digunakan di wilayah ini (Murali, 2015; Barrett,

2019). Johor juga telah melancarkan sebuah pelan yang dipanggil Pelan

Inisiatif Biorosot dan Biokompos Negeri Johor (Anon, 2016).

Antara usaha lain yang dapat dilihat adalah melalui penerimaan

Malaysia terhadap pelabur-pelabur dari luar negara yang telah lama

berkecimpung dalam industri bioplastik ini. Salah satu pelabur tersebut adalah

GlycosBio Malaysia Sdn. Bhd. Syarikat ini yang dicadangkan untuk dibina di

Johor, mempunyai platform penapaian bakteria yang mampu untuk

mengubahsuai pelbagai bahan semulajadi termasuklah gliserin dan sisa sawit

kepada bahan biokimia yang bernilai tinggi seperti monomer isoprene sintetik

(Bio-SIM) (Gibson, tahun). Negara luar memandang Malaysia sebagai sebuah

negara yang mempunyai banyak sumber alam semulajadi dan ini adalah

sangat bertepatan dengan strategi mereka bagi mendapatkan bahan mentah

untuk perusahaan bioplastik mereka.

1.5 Bioplastik dan Jenis-Jenisnya

Bioplastik adalah berasal dari perkataan Inggeris iaitu bioplastic.

Perkataan bioplastic ini adalah ringkasan dari biodegradable plastic yang

bermaksud sebagai plastik mudah urai. Bioplastik tidak seperti plastik

Page 18: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

16

konvensional yang diperbuat dari bahan petroleum. Bioplastik adalah

dihasilkan daripada biomas (sisa-sisa) yang didapati dari bahan-bahan

semulajadi mesra alam yang boleh diperbaharui (Fridovich-Keil, 2018).

American Society of Testing and Materials (ASTM) menyatakan bahawa

bioplastik adalah plastik yang boleh diubahkan kepada biomas, air, karbon

dioksida, dan/atau methane melalui tindakbalas dari mikroorganisma

semulajadi seperti bakteria dan fungi, dalam jangkamasa dan keadaan

persekitaran yang bersesuaian (Hansen, 2019).

Definisi ini menunjukkan bahawa terdapat jangkamasa spesifik untuk

biodegradasi berlaku dan terpecah kepada beberapa cebisan. Definisi ini

adalah berbeza dengan definisi degradasi yang mana ia merupakan terma

yang lebih luas yang diberikan kepada polimer atau plastik yang boleh

dipecahkan dengan beberapa cara seperti disintegrasi fizikal dan kimia, dan

biodegradasi semulajadi. Selepas degradasi, plastik masih lagi boleh dijumpai

tapi dalam bentuk yang lebih ringkas dan cebisan.

Terma yang biasa dikaitkan dengan bioplastik adalah compostable.

ASTM menyatakan bahawa compostable dimaksudkan sebagai “plastik yang

melalui degradasi biologikal ketika proses composting (proses semulajadi

yang menukarkan sisa kepada aditif tanah yang kaya dengan pelbagai

nutrient) dan menghasilkan bahan-bahan seperti karbon dioksida, air,

sebatian bukan organik dan biomas pada kadar yang konsisten. Menurut

ASTM, terdapat standard yang spesifik untuk sejenis plastik dikategorikan

sebagai compostable iaitu ia perlu melalui proses biodegradasi, eko-toksik,

dan disintegrasi (penghancuran). Perbezaan antara plastik compostable

dengan bioplastik adalah terletak pada kadar tindakbalas ketiga-tiga proses

Page 19: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

17

tadi. Ini menunjukkan bahawa semua plastik compostable adalah bioplastik

tetapi bukan semua bioplastik adalah compostable (Hansen, 2019).

Pada masa sekarang, bioplastik yang biasa digunakan adalah

diperbuat daripada selulosa (Isroi et al.,2017), kanji (Wahyuningtias &

Suryanto, 2017), glukosa (Bruder, 2019) dan minyak (Johansson, 2019).

Banyak teknik yang telah menukarkan bahan-bahan tadi kepada bioplastik

seperti kanji termoplastik (Blohm & Heinze, 2019), polylactide (PLA)

(Vatansevr et al.,2019), poly-3-hydroxybutyrate (Khattab & Dahman,2019),

polyamide 11 (Jariyavidyanont et al.,2019) dan biopolythylene (Brito et al.,

2011).

1.5.1 Kanji thermoplastik

Kini, kanji termoplastik merupakan penyumbang terbesar kepada

pasaran bioplastik dunia, di mana ia meliputi sekitar 50% sehingga 80%

daripada pasaran tersebut. Penghasilan bioplastik ini melibatkan proses

pemplastik (plasticizer) dan juga penstabil seperti sorbitol dan gliserin. Bagi

bioplastik jenis ini, ia terdiri daripada dua komponen utama iaitu kanji

thermoplastik itu sendiri dan juga polimer boleh urai semulajadi dan bersifat

kalis air seperti polyester, polyesteramids, polyesterurethanes dan

polyvinylalcohols. Proses yang terlibat dalam mencampurkan komponen-

komponen ini adalah dinamakan proses pencairan. Sewaktu proses

pencairan dilakukan, bahan yang mudah larut dalam air seperti kanji dan

bahan tidak larut air seperti plastik, digaul bersama untuk menghasilkan

plastik kanji kalis air (Jeffrey, 2013).

Page 20: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

18

Plastik jenis ini banyak digunakan sebagai beg, bekas makanan, pasu,

peralatan dapur, cerek dan kadbod. Sumber kanji untuk menghasilkan

bioplastik ini berasal dari kentang dan jagung(Nafchi et al., 2013; Khan et

al.,2016; Altayan et al.,2019).

1.5.2 Polylactide

Polylactide merupakan salah satu bioplastik yang mempunyai potensi

yang bagus kerana mempunyai sifat yang sama dengan plastik konvensional

yang diperbuat dari sumber petroleum. Bioplastik ini mudah diproses kerana

proses pembuatannya adalah sama dengan proses pembuatan plastik

konvensional. Ini sebenarnya akan memudahkan pengusaha-pengusaha

plastik konvensional untuk beralih kepada menghasilkan plastik jenis ini

kerana mereka boleh menggunakan peralatan / mesin yang sama dengan

peralatan yang mereka gunakan untuk hasilkan plastik konvensional

(Anon,2010).

Bioplastik ini dihasilkan daripada kanji melalui proses penapaian

bersumberkan dari jagung (Royte, 2006), gandum (Heath, 2007) dan tebu.

Proses penapaian bahan-bahan organik tersebut menghasilkan asid laktik

(Gotro, 2012) yang kemudiannya melalui pelbagai proses pempolimeran dan

akhirnya menghasilkan plastik polylactide. Bioplastik jenis ini biasa

digunakan dalam penghasilan komponen komputer, peranti perubatan boleh

urai, tin, cawan, botol dan juga pembungkusan (Anon,2010).

Bioplastik ini juga digunakan dengan meluas dalam bidang

perubatan.Ia digunakan sebagai bahan dalam pembuatan komponen peranti

Page 21: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

19

perubatan seperti skru, plat, dan implan kerana sifatnya yang mudah urai dan

boleh diserap oleh badan. Sebagai contoh, PLA sangat versatil kerana

sifatnya boleh berubah dengan mengubah komposisi bahannya

(Anon,2010).Kelemahan PLA adalah ia mempunyai takat kecairan yang

rendah iaitu 60°C, menjadikan ia tidak sesuai untuk digunakan sebagai

pembungkus makanan dan minuman panas. Walau bagaimanapun, sifat ini

boleh diperbaiki dengan memasukkan bahan tahan panas ke dalam adunan

plastik ini (Rogers, 2015).

Kelemahan lain PLA mungkin terletak pada proses pembuatannya

yang mempunyai elemen penapaian kanji untuk penghasilan asid laktik. Kos

untuk menghasilkan asid laktik tersebut boleh menelan sehingga € 1,300.00 /

tanberbanding dengan proses pengestrakan kanji dari bahan organik iaitu

€1,000.00 / tan (Anon,2010).

1.5.3 Poly-3-hydroxybutyrate (PHB)

Bioplastik ini dihasilkan dengan kehadiran bakteria yang

mempercepatkan proses glukosa dan kanji. Ia juga mempunyai sifat yang

lebih kurang sama dengan plastik polypropylene konvensional (Berwig et

al.,2016). PHB mempunyai takat lebur yang tinggi iaitu 175°C dan ia selalu

digunakan dalam pembuatan gam dan juga pembuatan getah mampat

(Mukopadhyay, 2010).

Page 22: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

20

1.5.4 Polyamide 11

Polyamide 11 ada sejenis biopolimer yang diperbuat dari minyak

kacang kastor (Martino et al., 2014). Walaupun biopolimer ini diperbuat

daripada minyak organik, namun ia tidak boleh diuraikan. Ia banyak

digunakan dalam sektor yang memerlukan ketahanan yang tinggi seperti tiub

brek angin pneumatik, kasut sukan, peralatan elektrik dan pelbagai jenis salur

(catherers). Kekuatan dan kekurangan Polyamide 11 adalah seperti dalam

Jadual 1.

Jadual 1: Kelebihan dan kekurangan Polyamide (Sumber)

Kekuatan Kekurangan

Mempunyai tahap penyerapan air

yang rendah berbanding jenis

polyamide yang lain.

Kos penghasilan yang paling tinggi

Mempunyai kekuatan tahan yang

tinggi, walaupun ia dibekukan pada

suhu bawah takat beku.

Mempunyai tahap kekakuan dan

ketahanan haba yang rendah

berbanding polyamide lain

Tahan kepada bahan kimia seperti

gris, minyak, solven dan sebatian

garam

Mempunyai ketahanan yang rendah

terhadap air mendidih dan sinaran UV

Tahan kepada retakan, penuaan dan

kekasaran.

Memerlukan proses pengeringan

yang lengkap sebelum diproses.

Sumber: Omnexus (undated)

Page 23: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

21

1.5.5 Polythylene (PE)

PE secara umumnya dikenali sebagai polimer yang berasaskan fosil.

Sifatnya tidak boleh diuraikan tetapi boleh dikitar semula.

1.6 Inisiatif Biorosot dan Biokompos Negeri Johor.

Inisiatif biorosot dan biokompos negeri Johor menjadi pemacu yang akan

memangkin komitmen sediaada kerajaan bagi memastikan pertumbuhan

ekonomi Johor dan gaya hidup orang awam tidak mengabaikan kepentingan

alam sekitar (Anon, 2016).

Objektif utama inisiatif ini adalah untuk mewujudkan situasi yang boleh

mendatangkan manfaat untuk alam sekitar, komuniti dan ekonomi Johor pada

jangkamasa panjang, selain mengurangkan kebergantungan kepada

polisterina dan plastik konvensional. Inisiatif ini terbahagi kepada beberapa

Fasa. Fasa pertama inisiatif ini bermula pada 1 Januari 2018, yang mana

pada fasa ini memberi penekanan untuk memupuk kesedaran kepada

pelbagai masyarakat tentang keburukan menggunakan plastik konvensional

yang tidak boleh terurai dan kepentingan menggunakan produk biorosot dan

biokompos sebagai alternatif.

Page 24: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

22

BAB 2

RANGKA KERJA PENERBITAN MODUL BAGI PENILAIAN DAN

PENGESAHAN PRODUK BIOPLASTIK

2.1 Pengenalan

• Melalui inisiatif Biorosot dan Biokompos Johor (BBJ), Perbadanan

Bioteknologi dan Biodiversiti Negeri Johor (J-Biotech) telah diberikan

mandat bagi melaksanakan pelan tindakan untuk mengurangkan

kebergantungan produk berasaskan polisterin dan plastik konvensional

di seluruh negeri Johor.

• Selain itu, ianya bertujuan untuk menyemai kesedaran tentang

kepentingan menggunakan produk mesra alam kepada masyarakat, J-

Biotech juga bertindak untuk mempromosikan dan menjual

pembungkus makanan BBJ dan beg bio-plastik bagi menyokong

pelaksanaan pelan tindakan tersebut.

• Sebagai memantapkan lagi pelaksanaan gerak kerja untuk

meningkatkan kesedaran awam tersebut, pembangunan modul ujian-

ujian pengesahan bioplastik yang ditawarkan oleh makmal-makmal di

Malaysia, terutamanya di Johor juga adalah perlu diketengahkan.

Page 25: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

23

2.2 Objektif dan Skop Kerja

Mengenalpasti parameter-parameter ujian pengesahan produk

bioplastik yang ditawarkan oleh makmal-makmal analisa yang ada di

Malaysia, khasnya di negeri Johor.

Mengenalpasti makmal-makmal analisa yang menjalankan

pengesahan produk bioplastik di Malaysia, khasnya di negeri Johor.

Membangunkan Standard Operating Procedure (SOP) bagi ujian

pengesahan bioplastik yang telah dikenalpasti.

Mendapatkan validasi modul pembelajaran yang dibangunkan dari

pakar (pensyarah, pendidik bertauliah) di Institut Pengajian Tinggi

Awam / Swasta.

2.3 Gerak kerja Pembangunan Modul Pembelajaran Bagi Penilaian

dan Pengesahan Produk Bioplastik

Jadual 2: Gerak kerja pembangunan modul pembelajaran bagi penilaian dan

pengesahan produk bioplastik

Bil Perkara Penjelasan

1 Melaksanakan

‘market-intel’

berkaitan ujian

pengesahan

bioplastik

Mengadakan rujukan / survei bagi mendapatkan

maklumat untuk menjustifikasikan keperluan

untuk melaksanakan ujian pengesahan bioplastik

di makmal.

2 Melaksanakan ‘Market-intel’ ini juga bertujuan untuk

Page 26: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

24

‘market-intel’ bagi

mengenalpasti

makmal-makmal

ujian pengesahan

bioplastik.

mengenalpasti makmal-makmal di Malaysia,

khasnya di Johor yang dapat menawarkan ujian-

ujian pengesahan bioplastik.

3 Membangunkan

SOP ujian

pengesahan

bioplastik yang telah

dikenalpasti dan

ditawarkan oleh

makmal-makmal.

SOP bagi setiap ujian pengesahan bioplastik

dibangunkan berdasarkan kepada standard-

standard yang dikenalpasti dari American Society

for Testing and Materials (ASTM), European

Standardization Committee (CEN) dan

International Standards Organization (ISO).

4 Menerbitkan modul

pembelajaran untuk

rujukan

pemegangtaruh

inisiatif BBJ

Membangunkan dan menerbitkan modul

pembelajaran supaya ia boleh dijadikan sebagai

garis panduan bagi pemegangtaruh-

pemegangtaruhseperti agensi-agensi kerajaan

dan swasta, pihak-pihak berkuasa tempatan

(PBT) dan institusi pengajian tinggi awam dan

swasta.

5 Mewujudkan kit

pendidikan dalam

bentuk pameran

berkaitan dengan

ujian pengesahan

bioplastik.

Membangunkan kit pendidikan yang

memaparkan info dan ujian pengesahan yang

boleh dijadikan rujukan orang awam dan juga

pemegangtaruh-pemegangtaruh untuk

disesuaikan dengan teras perniagaan / keperluan

mereka.

Page 27: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

25

2.4 Garis Masa Projek

Seperti pada Apendix 1

Page 28: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

26

BAB 3

UJIAN PENGESAHAN BAGI PRODUK BIOPLASTIK

3.1 Latar belakang

Ujian Pengesahan perlu dijalankan bagi produk bioplastik untuk

memastikan bahan dan produk plastik mematuhi piawaian Jabatan Standard

Malaysia serta memenuhi kriteria produk mesra alam. Johor merupakan salah

satu negeri di Malaysia yang menggerakkan inisiatif berkaitan biorosot dan

biokompos. Oleh kerana itu, Johor perlu mengadakan sistem pengesahannya

yang tersendiri bagi memastikan hanya produk yang berkualiti dan menepati

spesifikasi sahaja boleh digunakan di negeri ini. Terdapat beberapa ujian

pengesahan bioplastik sebagaimana yang ditetapkan dalam standard seperti:

Biodegradability Testing – Ready Biodegradability (OECD, 1992)

(Wajib)

Thermogravimetric Analysis (ASTM E 1131, 2004) (Pilihan)

Compostability Testing – Plant Growth Test (OECD, 2003) (Wajib)

Oxo-Biodegradation Analysis (BS 8472, 2011) (Wajib)

Toxicity – Heavy Metal Testing (HS1003, undated) (Wajib)

Toxicity – Migration Testing (BS EN 13130-1, 2004) (Pilihan)

Halal – Porcine Testing (MS 2672, 2017) (Wajib)

Terdapat beberapa lagi standard bagi pengesahan bioplastik, namun

begitu modul ini hanya menekankan tujuh (7) ujian pengesahan yang biasa

dilakukan dan ditawarkan oleh makmal-makmal seperti yang telah

Page 29: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

27

diterangkan dalam Bab 4. SOP yang umum yang telah dibangunkan untuk

ujian pengesahan --bioplastik adalah seperti di bawah, namun ia boleh

berubah-ubah mengikut standard yang digunakan oleh sesebuah makmal itu.

SOP ini dibentangkan dalam Bahasa Inggeris kerana semua standard adalah

dalam Bahasa Inggeris.

3.2 TEST METHOD: BIODEGRADABILITY TESTING – READY

BIODEGRADABILITY

1.0 Introduction

A solution or suspension of the test in a mineral medium is inoculated and

incubated under aerobic conditions in the dark or diffuse light. The amount of

DOC in the test solution due to the inoculums should be kept as low as

possible compared with the amount of organic carbon due to the test

substance. In general, the degradation is followed by the determination of

parameters such as DOC, CO2 production and oxygen uptake and

measurements are taken at the sufficiently frequent intervals to allow the

identification of the beginning and the end of biodegradation. Usually, the test

will last for 28 days. The tests, however, maybe ended before 28 days, as

soon as the biodegradable curve has reached a plateau for at least three

determinations. The test may also be prolonged beyond 28 days when the

curve shows that biodegradation has started but that the plateau has not been

reached by day 28, but in such cases the chemical would not be classed as

readily biodegradable. The pass levels for readily biodegradable are 70%

removal of DOC and 60% of Theoretical Oxygen Demand (ThOD) or

Page 30: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

28

Theoretical amount of evolved carbon dioxide (ThCO2) production for

respirometric methods. They are lower in the respirometric methods since, as

some of the carbon from the test chemical is incorporat into new cells, the

percentage of CO2 produced is lower than the percentage of carbon will be

used..

2.0 General Description

Water: H2O free from inhibitory concentrations of toxic substances (contain

<10% of the organic carbon content introduced by the test material). Oxygen

consumption of the water must be low (oxygen depletion <1.5mg DO/l)

Mineral Media: Prepared from stock solutions of appropriate concentrations

of mineral components (eg. Potassium and sodium phosphates plus

ammonium chloride, calcium chloride, magnesium sulphate, and iron (III)

chloride)

Methods of adding the test and reference substances:

Substances of adequate solubility (>1g/l) = prepare stock solutions at

appropriate concentrations and use aliquots to prepare the final test solution.

Dissolve less soluble substances in the mineral medium to avoid diluting the

buffer solution. Add substances that are even less soluble directly to the final

mineral medium.

Inoculum: Derived from various sources such as activated sludge, sewage

effluents (unchlorinated) surface waters and soils, or a mixture of these.

Pre-conditioning of Inoculum: Consists of aerating activated sludge (in

mineral medium) or secondary effluents for 5-7 days at the test temperature.

Page 31: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

29

Abiotic Controls: Check for the possible abiotic degradation of the test

substances by determining the removal of DOC, oxygen uptake or CO2

evolution in sterile controls containing no inoculum.

The number of flasks and samples: At least two flasks or vessels

containing the test substances plus inoculums only should be used. Single

vessels suffice for reference compounds plus inoculum and, when required,

for toxicity, abiotic removal, and adsorption methods.

3.0 Instruments / Apparatus

i. BOD bottles with glass stoppers (250 – 300 ml / 100 – 125ml)

ii. Water bath and incubator

iii. Large glass bottles (2-5 liters)

iv. Oxygen electrode and meter

4.0 Chemicals

i. Water

ii. Potassium dihydrogen orthophosphate, KH2PO4

iii. Dipotassium hydrogen orthophosphate, K2HPO4

iv. Disodium hydrogen orthophosphate dehydrate, Na2HPO4.2H2O

v. Ammonium chloride, NH4Cl

vi. Calcium chloride, Anhydrous, CaCl2

vii. Calcium chloride, dihydrate, CaCl2.H2O

viii. Magnesium sulphate heptahydrate, MgSO4.7H2O

ix. Iron (III) chloride hexahydrate , FeCl3.6H2O

x. Concentrated hydrochloric acid, HCl

xi. Ethylene-diaminetetra-acetic acid (EDTA), disodium salt.

Page 32: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

30

5.0 Preparation

5.1 Preparation of mineral medium

i. Prepare stock solutions as the following table. Each stock solution

needs to dissolve in water and makeup to 1L

Stock Solution A

1) KH2PO4 8.50g

2) K2HPO4 21.75g

3) NA2HPO4.2H2O 33.40g

4) NH4Cl 0.50g

PH = 7.4

Stock Solution B

1) CaCl2 27.50g

2) CaCl2.2h2O 36.40g

Stock Solution C

1) MgSO4.7H20 22.50g

Stock Solution D

1) FeCl3.6H2O 0.25g

i. In order to avoid having a problem, the solution will be prepare

immediately before use, add one drop of concentrated HCl or 0.4g

ethylene-diaminetetra-acetic acid (EDTA), disodium salt per liter.

ii. If precipitate forms in a stock solution, replace it with a freshly made

solution.

iii. Mix 1 mL of each stock solution with 800 mL water and make up to 1 L.

Page 33: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

31

5.2 Preparation of stock solution of test substances

i. Dissolve 1-10g of test or reference substance in water and makeup

to 1L if the solubility exceeds 1g/L

ii. Otherwise, prepare stock solution in mineral medium or add the

chemical directly to the mineral medium, make sure that the

chemical dissolves.

5.3 Preparation of Inoculum

i. Collect a fresh sample and keep it aerobic during transport.

ii. Allow to settle for 1h or filter through a coarse filter paper and keep the

decanted effluent or filtrate aerobic until required.

iii. Up to 100 mL of this type of inoculum may be used per liter of medium.

5.4 Pre-conditioning of Inoculum

i. Inoculum may be pre-conditioned by aerating the secondary effluent for

5-7 days (if required)

5.5 Preparation of Bottle

i. Strongly aerate mineral medium for at least 20 minutes and allow to

stand. Generally, the medium is ready for use after standing for 20h at

the test temperature. Carry out each test series with a mineral medium

derived from the same batch. Determine the concentration of dissolved

oxygen for control purposes; the value should be about 9mg/L at 20°C.

Conduct all transfer and filing operations of the air-saturated medium

bubble-free, for example, by the use of siphons.

Page 34: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

32

ii. Prepare parallel groups of BOD bottles for the determination of the test

and reference substances in simultaneous experimental series.

Assemble a sufficient number of BOD bottles, including inoculums

blanks, to allow at least duplicate measurement of oxygen consumption

to be made at the desired test intervals.

iii. Add fully-aerated mineral medium to large bottles so that they are

about one-third full. Then add sufficient of the stock solutions of the test

and reference substances to separate large bottles so that the final

concentration of the chemicals usually is greater than 10 mg/l. Add no

chemicals to the blank control medium contained in a further large

bottle.

iv. To ensure that the inoculum activity is not limited, the concentration of

dissolved oxygen must not fall below 0.5mg/l in the BOD bottles. This

limits the concentration of test substance in general to about 2 mg/l. An

idea of the highest concentration to be used can be obtained from the

ThOD (mg O2/mg chemical) of the test substance. For poorly,

degradable compounds and those with a low ThOD, 5-10 mg/l can be

used. In some cases, it would be advisable to run parallel series of test

substances at two different concentrations, for example, 2 and 5 mg/l.

Normally, calculate the ThOD based on the formation of ammonium

salts but, if nitrification is expected of known to occur, calculate on the

basis of the formation of nitrate ThODNO3. However, if nitrification is

not complete but does occur, correct for the changes in concentration

of nitrite and nitrate, determined by analysis.

Page 35: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

33

v. If the toxicity of the test substance is to be investigated (in the case, for

example, of a previous low biodegradability value having been found),

another series of bottles is necessary. Prepare another large bottle to

contain aerated mineral medium (to about one-third of its volume) plus

test substance and reference compound at final concentration normally

the same as those in the other large bottles.

vi. Inoculate the solutions in the large bottles with secondary effluent (one

drop, or about 0.05 ml, to 5 ml /l, see paragraph 8) or with another

source such as river water (see paragraph 9). Finally, make up the

solutions to volume with aerated mineral medium using a hose that

reaches down to the bottom of the bottle to achieve adequate mixing.

vii. In a typical, run the following number of bottles are used:

a. At least 10 containing test substance and inoculums (test

suspension)

b. At least 10 containing only inoculums (inoculum blank)

c. At least 10 containing reference compound and inoculums

(procedure control) and, when necessary,

d. 6 bottles containing test substance, reference compound and

inoculums (toxicity control)

viii. However, to ensure being able to identify the 10-d window about twice

as many bottles would be necessary.

6.0 Procedure

i. Dispense each prepared solution or suspension immediately into the

respective group of BOD bottles by hose from the lower quarter (not

the bottom) of the appropriate large bottle, so that all the BOD bottles

Page 36: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

34

are completely filled. When testing poorly soluble substances, ensure

that the contents of the large bottles are well-mixed by stirring. Tap

gently to remove any air bubbles.

ii. Analyse the zero-time bottles immediately for dissolved oxygen by the

Winkler or electrode methods. The contents of the bottles can be

preserved for later analysis by the Winkler method by adding

manganese (II) sulphate and sodium hydroxide (the first Winkler

reagent). Store the carefully stoppered bottles, containing the oxygen-

fixed as a brown manganese (III) hydrated oxide, in the dark at 10-

20°C for no longer than 24h before proceeding with the remaining

steps of the Winkler method. Stopper the remaining replicate bottles

ensuring that no air bubbles are enclosed, and incubate at 20°C in the

dark.

iii. Each series must be accompanied by a complete parallel series for the

determination of the inoculated blank medium. Withdraw at least

duplicate bottles of all series for dissolved oxygen analysis at time

intervals (at least weekly) over the 28 days incubation. Weekly samples

should allow the assessment of percentage removal in a 14-d window,

whereas sampling every 3-4 days should allow the 10-d window to be

identified, and would require about twice as many bottles.

iv. For N-containing test substances, corrections for the uptake of oxygen

by any nitrification occurring should be made. To do this, use the 02-

electrode method for determining the concentration of dissolved

oxygen and then withdraw a sample from the BOD bottle for analysis

Page 37: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

35

for nitrite and nitrate. From the increase in concentration of nitrite and

nitrate, calculate the oxygen used.

3.3 TEST METHOD: THERMOGRAVIMETRIC ANALYSIS

1.0 Introduction

Thermogravimetric analysis (TGA) measures weight changes in a material as

a function of temperature (or time) under a controlled atmosphere. A TGA

analysis is performed by gradually raising the temperature of a sample in a

furnace as its weight is measured on an analytical balance that remains

outside of the furnace. In TGA, mass loss is observed if a thermal event

involves the loss of a volatile component. Chemical reactions, such as

combustion, involve mass losses, whereas physical changes, such as

melting, do not. The weight of the sample is plotted against temperature or

time to illustrate thermal transitions in the material.

2.0 General Description

Principal uses of TGA include measurement of a material’s thermal stability

and its composition. Typical applications include:

Filler content of polymer resins

Residual solvent content

Carbon black content

Decomposition temperature

The moisture content of organic and inorganic materials.

Plasticizer content of polymers.

Page 38: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

36

Oxidative stability.

Performance of stabilizers.

Low molecular weight monomers in polymers.

3.0 Instruments / Apparatus

i. Thermogravimetric analyzer

4.0 Preparation

i. The bioplastic samples are cut into pieces (10mg) and transferred to

the sample holder;

ii. The samples are heated from 30°C to 800°C with a heating rate of

10°C per min in the presence of air with a flow rate of 50ml/min.

iii. The thermogravimetric, derivative thermogravimetric can identify the

thermal decomposition that occurs in bioplastic through the loss of

weight.

5.0 Procedure

i. Switch on the TGA analyzer

ii. Switch on the gas supply (Protective gas: N2, Reactive gas: O2) and

the Julabo cryostat.

iii. Make sure the water is circulating by the monitor on its flow meter.

iv. Switch on the PC to establish communication between STAR software

and TGA analyzer

v. Log on with user ID on the Main Launch Bar

5.1 Adjusting the Gas Flow with GC 20

Page 39: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

37

i. Enter the setup menu by pressing the SETUP key on the SmartSens

Terminal.

ii. Touch the Gas button to display the gas flow rate.

iii. Press the Toggle button to open gas valve 1

iv. Adjust the gas flow with the relevant knob on the gas controller.

a. Knob 1: Method gas – O2

b. Knob 2: Cell gas – N2

v. Adjust the knob clockwise slowly to reduce the flow rate.

vi. Press the Toggle button again to switch to gas valve 2

vii. Touch the done button when the gas flow rates are as desired.

5.2 Setting Up Method For Experiment

i. Click on the Routine Editor to open the Method window.

ii. Click the New button to create a temperature program.

iii. Click on the Add Dyn / Add Iso button to create a new segment.

iv. Select the desired gas and flow rate by clicking on Segment Gas.

v. Click the Save button to save the created method with proper naming.

vi. Deactivate the Auto Start function. Select Control => Configuration

vii. Uncheck the Autostart box. The Save Curve and Save Evaluation will

automatically select.

viii. Key in the sample name.

ix. Leave the text box for sample weight and crucible position empty.

x. Send the experiment by clicking on the Send Experiment button.

5.3 Automatic Weighing In Of Sample With Sample Robot.

i. Send the desired experiment on the Experiments-Pending.

Page 40: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

38

ii. Right-click and select Edit Experiment.

iii. Key in the crucible position on the sample robot and click OK button.

iv. On the same module, select Weigh-in Auto.

v. Select Pan and start the weighing by pressing OK.

vi. The sample robot will take the empty crucible automatically for

weighting. Make sure the crucible position is critical in correctly.

vii. After the empty crucible is being weighted, it will be returned to the

turntable of the sample robot. Fill the crucible with the respective

sample.

viii. Activate the Auto-Start function by clicking Control/Configuration and

select the Autostart checkbox.

ix. Start the experiment by clicking the Control/Start Experiment.

5.4 Data Evaluation Window – Open Curve in Evaluation Window

i. On the Main Launch Bar, select Session /Evaluation Window.

ii. Click on the Open Curve icon to select the desired curve. The blank

and sample should select together.

iii. The selected TGA and DSC curves are displayed together. Users can

separate both curves by clicking the Arrange Coordinates icon.

5.5 Blank curve subtraction

i. Click on the sample curve first, then followed by the blank curve. Select

Math / Subtract Curves

ii. The blank subtracted curve is displayed. Remove the undesired curves

as shown in the above figure.

iii. Repeat the same steps for the DSC curves.

Page 41: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

39

5.6 Displaying 1st Derivative Curve

i. Select Math/1st Derivative

ii. The dialog box of Smooth Settings is then pop up. By default, the

Order is 1 and Points is 13. Click OK to proceed.

5.7 Step Evaluation

i. Select TA / Step Horiz. Repeat the same procedure for the following

step.

ii. The mass loss value is displayed. Repeat the same procedure for the

following step.

iii. To display the residue value of the last step, click on the last step, then

select Settings/Optional Results

iv. The Optional Results dialog box will then pop up. Check the box for

Residue and click OK.

v. To save evaluation curve, select File / Save Evaluation.

vi. To open the evaluation curve, select Open Folder to open the list of

evaluated curves. Select the curve that you desired.

3.4 TEST METHOD: COMPOSTABILITY TESTING – PLANT GROWTH

TEST

1.0 Introduction

This method is to assess the potential effects of substances on seedling

emergence and growth. As such, it does not cover chronic effects or effects

on reproduction (i.e seed set, flower formation, fruit maturation). Conditions of

Page 42: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

40

exposure and properties of substances to be tested must be considered to

ensure that appropriate test methods are used. Seeds are placed in contact

with soil treated with the test substances and evaluated for effects following

usually 14 to 21 days after 50% emergence of the seedlings in the control

group.

2.0 General Description

The validity of the test: the following performance criteria must be met in the

controls such as;

i. Seedling emergence >70%

ii. Seedlings do not exhibit visible phytotoxic effects and the plant exhibit

only normal variation in growth and morphology for that particular

species.

iii. The mean survival of emerged control seedlings is at least >90% for

the duration of the study.

iv. Environmental conditions for a particular species are identical and

growing media contain the same amount of soil matrix, support media

or substrate from the same source.

Reference substance: Maybe tested at regular time intervals, to verify that

performance of the test and the response of the particular test plants and the

test condition have not changed significantly over time.

3.0 Instruments / Apparatus

i. Pots – using a sandy loam or sandy clay loam that contains up to 1.5

% organic carbon.

ii. Non-porous plastic or glazed pots with tray or saucer under the pot.

Page 43: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

41

4.0 Raw Materials / Chemicals

i. Natural soil / Artificial substrate

ii. Inert material – acid-washed quartz, sand, mineral wool, glass beads.

iii. Test Specimens – Seeds

iv. Test Substances – should be applied in an appropriate carrier.

5.0 Procedure

Test Design

i. Plant seeds of the same species in pots.

ii. The number of species planted per pot will depend upon the species,

pot size, and test duration.

iii. The number of plants per pot should provide adequate growth

conditions and avoid overcrowding for the duration of the test.

iv. Control groups are used to assure that effects observed are associated

with or attributed only to the test substance exposure. The appropriate

control group should be identical in every respect to the test group

except for exposure to the test substances. To prevent bias, random

assignment of test and control pots is required.

v. Avoid seed coated with insecticide or fungicide. If seeds-borne

pathogens are a concern, the seeds may be soaked briefly in a weak

5% hypochlorite solution, then rinsed extensively in running water and

dried. No remedial treatment with other crop protection is allowed.

vi. The emerging plants should be maintained under good horticultural

practices controlled environment chambers, phytotrons or

greenhouses.

Page 44: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

42

vii. When using growth facilities these practices usually include control and

adequate frequent (daily) recording of temperature, humidity, carbon

dioxide concentration, light intensity, light period, watering, etc. to

assure good plant growth as judged by the control plants the selected

species.

Test Conditions

i. Temperature: 22°C ± 10°C

ii. Humidity : 70% ± 25%

iii. Photoperiod: Minimum 16h light.

iv. Light intensity : 350 ± 50µE/m2/s

3.5 TEST METHOD: TOXICITY – HEAVY METAL TESTING

1.0 Introduction

To outline the steps and procedures necessary for testing plastic samples in

order to ensure the content of heavy metal in the product is acceptable.

2.0 Instruments/ Apparatus

Inductively coupled plasma mass spectrometer (ICP-MS), analytical balance,

water bath volumetric flask 1000 ml and 250 ml, Micropipettes from 5.0µl to

20.0 µl with plastic tips, pipettes from 100 µl to 10 ml, glass or plastic,

measuring cylinder 250 ml, protective glass, oven in range of 70°C ± 2°C,

atomic absorption spectrometer with an appropriate detection system and

sensitivity.

Page 45: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

43

3.0 Chemicals

Acetylene, Deionised water, Nitric acid (HNO3); concentrated 1:1,

concentrated sulphuric acid (H2SO4), stock solution of cadmium (100ppm),

Lead (100ppm), chromium (100ppm) and mercury (1000ppm), Hydrogen

peroxide H2O2, 30% Stannous ion (Sn2+) solution (7.0g Sn2+ / 100ml), Acetic

acid 5% (w/v) in aqueous solution.

4.0 Procedure

4.1 Preparation of hot acetic acid extract for articles in container form

4.1.1 Measure a sufficient volume of 5% acetic acid by measuring cylinder

and preheat in the oven at 70°C ± 2°C. Fill the test specimen with acetic

acid to a level within 0.5 cm of the top of the test specimen. Record the

volume of acetic acid that has been used.

4.1.2 Cover the test specimen with glass to prevent evaporation, in the

minimum time to prevent evaporation of acetic acid. Wrap the bottom

of the test specimen with aluminium foil to prevent leakage of solution.

Leave this preparation for 2h in a thermostatically controlled oven

maintained at 70°C ± 2°C.

4.1.3 Discharge the solution and wash the test specimen twice with acetic

acid. If it contains precipitate, filter the solution and washings. Filter

paper should pre-washed with distilled water to remove contaminant.

The total volume of acetic acid for washing should not exceed 5% of the

volume used for filling up the container.

Page 46: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

44

4.1.4 Stabilize the acetic acid extract by the addition of concentrated nitric

acid in the ratio of 3.5 ml per 100 ml of sample. Mix the aqueous extract

well and take an aliquot portion for analysis

4.2 Preparation of hot acetic acid extract for articles in bag form.

4.2.1 Cut sample as taken into pieces approximately 1cm2 to 2 cm2. Wear

protective gloves to prevent contamination.

4.2.2 Weigh 10 ± 0.1g of the test pieces to the accuracy of 0.01g, put them

into the conical flask, add 200 mL of 5% acetic acid and stopper the

flask. Leave this preparation to stand for 2 hours in a water bath of 70°C

± 2°C, shake occasionally.

4.2.3 Discharge the solution and wash test pieces in the flask twice with a

fresh portion of 5% acetic acid of 70°C ± 2°C. If it contains precipitate,

filter the hot preparation. Transfer the extract and washings or the

filtrate to be marked 250 mL volumetric flask; cool to 23°C ± 2°C.

4.2.4 Stabilize the extract by addition of concentrated nitric acid in the ratio of

3.5 Ml per 100 mL of sample. Fill up to the mark with water. Use the

content of the flask for further analysis.

Note: If necessary, it can scale up the solution but not more than twice its

original volume.

Page 47: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

45

4.3 Determination of Cadmium, Lead, Chromium, and Mercury

4.3.1 Suggested spectrometer settings and detection limit are as follows:-

Heavy metal Wavelength, nm Detection limit

Cadmium 228.8 0.5µg/L

Lead 217.0 or 283.3 2µg/L

Chromium 357.9 1µg/L

Mercury 253.7 0.5µg/L

4.4 Preparation of reference solutions

4.4.1 Prepare a series of the standard metal solution in the optimum

concentration range, by diluting the single stock element solutions with

water containing 1.5 mL concentrated nitric acid/litre. The

concentration to be selected will depend on the instrument used and

the expected concentrations in the extract. Prepare a calibration blank

using all the reagents except for the metal stock solutions.

4.4.2 Select at least three concentrations of each standard metal solution to

bracket the expected metal concentration of the sample. Aspirate the

system with the blank solution and standard solution alternatively and

run the next standard in the same manner.

4.4.3 Prepare a calibration curve by plotting the absorbance of standards

versus their concentrations.

Page 48: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

46

4.5 Determination of the metal content

4.5.1 Follow the instructions given by the manufacturer of the spectrometer in

order to reduce interference and background noise. The details of the

measurement depending on the type of spectrometer. Follow the

instructions and record the peaks for each element.

4.5.2 Three parallel extractions should be carried out. From each extract, at

least two parallel determinations should be carried out. Determine the

concentration of each element by means of the calibration graph or

alternatively, by use of the method of standard addition.

4.5.3 Aspirate the sample prepared in 4.1 and 4.2 and calculate the

concentration of each element from the measured absorbance.

4.5.4 Submit the 5% acetic acid used for the extraction to the test procedure

to provide a blank value to be deducted from the extracted value.

4.5.5 When using an atomic absorption spectrometer to determine chromium,

mix 1 mL of 30% hydrogen peroxide with each 100 mL of standard

solution or sample before aspirating. Alternatively, use proportionally

smaller volumes. The calibration curve for chromium should be based

on an original standard concentration before addition of hydrogen

peroxide.

4.5.6 When using absorption spectrometer to determine mercury, stabilize the

extract by addition of potassium dichromate solution to content of

approximately 10 mg of potassium dichromate per 100 mL of extract.

Page 49: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

47

Note: Organic mercury compounds will not respond to the flameless

technique unless they are decomposed into mercury (II) ions. Potassium

dichromate oxidizes these compounds. Add 4ml of hydroxyl ammonium

chloride solution per 100 ml of extract to inactive the surplus of potassium

dichromate

4.5.7 Follow the instructions given by the manufacturer of the spectrometer in

order to reduce the mercury (II) ions to mercury. The reducing agent to

be used is either tin (II) chloride or sodium tetra hydroborate and the

appropriate amount is specified in the instructions.

4.6 Determination of the metal content

4.6.1 Calculate the results with a computer or graphically. Correct, where

appropriate, for background absorption. Take the blank value into

consideration in the evaluation. Express the results in mg/L or µg/L of

the extract.

Note: Trace element determinations are sensitive to a number of sources of

error. Impure reagents of modifiers, contamination during handling of the

solutions, adsorption on the walls of vessels, inadequate background

correction or unmatched acid concentrations of sample and calibration

solutions can cause error. The detection limit should be established by

measuring a sufficient number of blanks to allow calculation of the standard

deviation of the blank. The detection limit is determined as three times his

standard deviation.

Page 50: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

48

3.6 TEST METHOD: ASSESSMENT OF THE OXO-BIODEGRADATION

OF PLASTICS

Introduction

0.1 General

The methods described in this British Standard measure the

mineralization of the carbon chains of plastic under controlled laboratory

conditions, including the presence of soil micro-organisms and oxygen.

The partially mineralized products of the degradation and oxo-

biodegradation tests can then be assessed for their effect on seed

germination and plant growth.

0.2 Title of the standard

The term “oxo-biodegradation” is defined in 3.8 as it is defined in CEN/TR

15351:2006, 5.2 as “degradation identified as resulting from oxidative and

cell-mediated phenomena, either simultaneously or successively”. Oxo-

biodegradation is not restricted to man-made polymers. It was first

recognized in the biodegradation of natural rubber [1] and it occurs in

natural materials such as lignocelluloses, probably mediated by enzymes

that produce free radicals [1]. This is analogous to the redox reactions of

transition metal ions, where oxygen radicals such as.OH and.OOH is

certainly involved in the initiation step. Propagation of the chain reaction

occurs primarily on both natural and synthetic products through ROO. This

chemistry is readily understood by biochemists since it is widely discussed

in both materials and biological chemistry literature (see [1 to 4] and in

many textbooks). Further elaboration in this standard does not seem to be

Page 51: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

49

appropriate. In the environmental exposure of plastics both mechanisms,

abiotic and biotic operate together and the micro-organisms rapidly

remove the biodegradable oxidation products in a synergistic process. It is

difficult and time-consuming to reproduce this in the laboratory and for

convenience the two processes corresponding to weathering, which is an

abiotic process, and biodegradation has to be carried out in separate

tests. ASTM also recognizes the two operations in ASTM D 6954-04. This

is oxo-biodegradation, although ASTM does not use this term.

0.3 Use of this standard

This standard defines a specific template to be used for the reporting of

results in order to standardize communication and avoid confusion. This

standard is not a specification. Testing, according to this standard does

not provide any recommendation about the suitability of the tested

products for any particular application.

1.0 Scope

This British Standard describes methods for determining:

a) degradation by oxidation (abiotic tests);

b) biodegradation (biotic test in soil); and

c) phytotoxicity (plant growth tests); of plastics materials and products

2.0 Normative references

The following referenced documents are indispensable for the application

of this document. For dated references, only the edition cited applies. For

Page 52: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

50

undated references, the latest edition of the referenced document

(including any amendments) applies.

ASTM D 5510-94(2001), Standard Practice for Heat Aging of Oxidatively

Degradable Plastics

BS EN ISO 4892-3, Plastics – Methods of exposure to laboratory light

sources –Fluorescent UV lamps

BS EN ISO 17556, Plastics – Determination of the ultimate aerobic

biodegradability in soil by measuring the oxygen demand in a

respirometer or the amount of carbon dioxide evolved

OECD 208, OECD guidelines for the testing of chemicals – Terrestrial

plant test: seedling emergence and seedling growth test

3.0 Terms and definitions

For the purposes of this British Standard, the following terms and definitions

apply.

3.1 abiotic without the action of living organisms

3.2 biodegradation degradation of a polymeric item due to cell-mediated

phenomena NOTE Source: PD CEN/TR 15351:2006, 5.2.

3.3 biotic through the actions of living organisms

3.4 carbonyl index absorbance of the carbonyl band normalized to an

invariant absorbance of the polymer NOTE See Grassie and Scott [2].

3.5 degradation change in initial properties due to chemical cleavage of the

macromolecules forming a polymeric item, regardless of the mechanism

Page 53: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

51

of cleavage 3.6 mineralization (aerobic) conversion to carbon dioxide,

water, and other inorganic chemicals

3.6 oxo-degradation degradation resulting from oxidative cleavage of

macromolecules NOTE 1 Similarly, prefixes like thermo (for the action of

heat), photo (for the action of light) are to be used whenever one wants

to indicate an identified mechanism of degradation. NOTE 2 Source: PD

CEN/TR 15351:2006, 5.2.

3.7 oxo-biodegradation degradation resulting from oxidative and cell-mediated

phenomena, either simultaneously or successively. NOTE 1 Similarly,

prefix like thermo (for the action of heat), photo (for the action of light) are

to be used separately or in combination whenever one wants to indicate

the involvement of various identified mechanisms of degradation. NOTE 2

Source: PD CEN/TR 15351:2006, 5.2.

4.0 Principle

Plastics specimens are subjected to some or all of the following tests (see

Figure 1).

a) An oxidation/abiotic test (see Clause 7) by photo-oxidation and/or by

thermal oxidation. Degradation to embrittlement is measured by flex test or

by friability test.

b) A biodegradation/biotic test (see Clause 8) on residue embrittled by

oxidation as per the test in Clause 7. Mineralization is measured as carbon

dioxide evolved as a percentage of the theoretical yield for complete

mineralization of total organic carbon content.

Page 54: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

52

c) A phyto-toxicity/plant growth test (see Clause 9) on partially evolved

residue from the biodegradation test in Clause 8. Phyto-toxicity is

measured as seed germination and crop biomass compared to control soil.

5 Materials and apparatus NOTE Other equipment is required for

referenced test methods. 5.1 Accelerated weathering device, typically

utilizing a UV lamp 400 W emitting between 290 nm and 450 nm, capable

of alternating exposure to dry, light conditions and wet, dark conditions at

a minimum ratio of 5:1.

5.0 Materials and apparatus

NOTE Other equipment is required for referenced test methods.

5.1 Accelerated weathering device, typically utilizing a UV lamp 400 W

emitting between 290 nm and 450 nm, capable of alternating exposure to

dry, light conditions and wet, dark conditions at a minimum ratio of 5:1.

5.2 Forced-air ventilation oven, capable of maintaining the internal volume at

(50–70) °C ±2 °C, and not exceeding 80 °C in operation, capable of

exchanging the unoccupied volume of the oven once per hour, which

conforms to ASTM D 5510-94(2001).

6.0 Sample preparation

6.1 Select requirements for samples either from the product or based on the

anticipated product. In particular, specify samples of a given mass that

are either:

a) all or part of the product, including the thickest parts; or

Page 55: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

53

b) a sample of the material to be used in a product, at the expected

maximum thickness.

6.2 Measure and/or cut out sufficient samples of sufficient size and mass for

the selected tests, from a single batch of material. NOTE It is

recommended that 4 g is prepared for the biodegradation test (8.1) and a

sample of 6 g is needed for input to the biodegradation process in 8.2 to

produce sufficient quantities at 50% mineralization for the phytotoxicity

tests (Clause 9). That is, 10 g in total.

6.3 Measure and/or cut out test samples on a clean, dry grease-free surface.

6.4 Record the dimensions and masses of the prepared samples.

7.0 Oxidation tests

7.1 Introduction

Oxidation (abiotic) testing shall be by photo-oxidation/weathering (7.2) and/or

by thermal oxidation (7.3), using separate samples if both tests are

performed.

7.2 Photo-oxidation test

Expose the samples (6.1) to artificial weathering in the accelerated

weathering device (5.1) in general accordance with an exposure cycle in BS

EN ISO 4892-3.

7.3 Thermal oxidation test

Page 56: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

54

Expose the samples (6.1) in the forced-air ventilation oven (5.2) either: at a

range of temperatures or at a single temperature between ambient and the

temperature at which chemical decomposition becomes significant.

7.4 Measurement of oxidation

At intervals appropriate to the material tested (chosen by trial and error)

measure the degree of oxidation by one of the following embrittlement tests of

the samples.

a) By bending the sample so that its opposite edges touch and assess

whether the sample fractures in a brittle manner.

NOTE 1 A more precise assessment of the degree of oxidation may be

obtained by measuring the flexural properties in accordance with BS EN ISO

178.

b) By rubbing the sample between the thumb and first finger (friability)

and assess whether the sample fragments. NOTE 2 A more precise

assessment of the degree of oxidation may be obtained by

measuring the impact-failure energy using a falling dart test in

accordance with BS 2782-3. NOTE 3 Care should be taken to

collect sufficient clean material, whether intact or fragmented, for

subsequent tests. NOTE 4 IR spectroscopy of the test residue to find

the carbonyl index is a useful method for confirming oxidation.

NOTE 5 Samples that are not embrittled under 7.4a) or 7.4b) may be returned

to the test chamber for further exposure.

7.5 Test termination

Page 57: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

55

Terminate the test and record the time to embrittlement when:

a) samples break under the embrittlement test in 7.4a), or

b) samples fragment under the embrittlement test in 7.4b).

8.0 Biodegradation test

8.1 Test three samples recovered from the oxidation test (Clause 7) that have

reached condition 7.5a) or 7.5b) according to the biodegradation (biotic)

test in BS EN ISO 17556, with the possibility of terminating the test

beyond six months and recording the test duration.

8.2 Obtain samples for the plant growth test by: running the biodegradation

process in bulk using at least 6 g of oxidized material in 3 kg of soil (a

starting concentration double that recommended in BS EN ISO 17556)

and taking the sample as soon as practicable after the point where the

monitored test has reached 50% of theoretical mass of carbon dioxide

evolved. NOTE It may be necessary to use a higher concentration of the

sample to soil than recommended in BS EN ISO 17556. Care has to be

taken to maintain other experimental conditions.

9.0 Phyto-toxicity test

Measure the effect of the partly evolved plastics samples on plant germination

number and biomass, in accordance with OECD 208, using 0.5 kg per pot.

Use the test substance from 8.2 and use the negative control samples from

the biodegradation test. Use at least two plant species from two of the three

mentioned categories of OECD 208. Record the germination number and

biomass crop yield of plants, compared to the control soil.

Page 58: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

56

10.0 Test report

A test report containing the following information as a minimum shall be

prepared following the template shown in Figure 2.

a) For all tests:

1) a reference to this standard, i.e. BS 8472:2011;

2) the material, its constituents and/or its unique manufacturer’s

identification code; and

3) initial sample size(s), thickness(es) and mass(es).

b) For photo-oxidation tests:

1) the type of UV lamp used as categorized in BS EN ISO 4892-3;

2) the total exposure time and the exposure cycle to which the samples

have been subjected; and

3) the relevant test criteria and results as required in 7.4 and 7.5.

c) For thermal oxidation tests:

1) the rate of airflow through the sample/total flow, the temperature due

to the forced-air ventilation oven, and the total time of exposure; and

2) the relevant test criteria and results as required in 7.4 and 7.5.

d) For biotic tests: the information required for a test report to BS EN

ISO 17556.

e) For phytotoxicity tests: the results required by OECD 208.

Page 59: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

57

3.7 TEST METHOD: TOXICITY- MIGRATION TEST

1.0 Introduction

To outline the steps and procedures necessary for testing the migration of

specific substances into the foodstuffs.

2.0 Instruments / Apparatus

Cutting slab, 250 mm x 250 mm, Lint-free cloth or brush, tweezers, scalpel,

metal templates (100 mm ± 0.2 mm) x (100 mm ± 0.2 mm), ruler, 25mm ± 1

mm wide, analytical balance, cruciform specimen support, gauze mesh size of

1 mm, glass tube 35 mm ; length 100 mm to 200 mm, oven 40°C ± 1°C and

70°C ± 2°C, hot plate, glass beads, 2mm to 3mm in diameter, desiccator,

dishes (50mm to 90 mm; max weight: 100g), beakers, 2L, 250 ml, measuring

cylinder, 100 ml

3.0 Chemicals

Distilled water (stimulant A), acetic acid 3% (w/v) in aqueous solution

(stimulant B), ethanol 15% (v/v) in aqueous solution (stimulant C)

4.0 Procedure

4.1 Preparation of test specimen

4.1.1 Clean sample with a lint-free cloth or a soft brush from dust or any

contaminant.

4.1.2 The surface to volume ratio in the total immersion test is conventionally

1dm2 of food contact area to 100 ml of food stimulant.

4.1.3 Cut each test specimen into 25mm x 10 mm.

Page 60: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

58

4.1.4 For those samples of irregular shape or thickness, the test specimens

should have a surface area of approximately 2 dm2. Calculate the

surface area of each test specimen to the nearest 0.05 dm2 Schlegel

Method.

4.1.5 Measure the dimensions of each test specimen to the nearest 1 mm

using the ruler.

For the Total Immersion Test, both the inside and outside surfaces of the test

specimen are in contact with food stimulants. Only 1 dm2 of the food contact

surface is taken into account in the calculation. Do not use the area of cut

edges that in contact with foodstuff since it will give higer result.

4.2 Exposure to food stimulant

4.2.1 Measure food stimulant into three glass tubes using measuring cylinder

100 ml ± 2 ml

4.2.2 If the evaporation method is to be used, measure food stimulants into

two additional tubes 120 ml ± 2 ml and label as blanks.

4.2.3 If the distillation method is to be used, measure food stimulant into two

additional tubes 100 ml ± 2 ml and label as blanks.

4.2.4 Place the five tubes that contained food stimulant in the thermostatically

controlled oven or incubator set at the test temperature (40°C or 70°C or

the selected temperature from Table 1) and leave until the test

temperature has been attained.

Table 1: Migration Test Conditions

Page 61: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

59

Conditions of contact in actual use Test condition

Contact time, t

0.5 hr ≥ t

1 hr ≥ t > 0.5 hr

2 hr ≥ t > 1 hr

24hr ≥ t >2hr

t >24 hr

Test time

0.5 hr

1 hr

120 min

24 hr

240 hr

Contact temperature T

5°C ≥ T

20°C ≥ T > 5°C

40°C ≥ T > 20°C

70°C ≥ T > 40°C

T > 70°C

Test temperature

5°C

20°C

40°C

70°C

100°C or reflux

Contact conditions in actual use are known, select the corresponding test

conditions (exposure time and temperature) from Table 1 which is applicable

to the sample when it is in actual use. If the sample is intended for a food

contact application under two or more conditions, the migration test shall be

carried out at the most stringent test conditions (i.e. the longest time and/or

the highest test temperature). In case the contact conditions (temperature and

time) are not known, only 10-day test at 40°C and 2-hour test at 70°C is to be

carried out for food stimulants (A, B and C).

4.2.5 Take the tubes out of the oven or incubator. Place a test specimen into

each of the three tubes containing 100 ml.

Page 62: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

60

4.2.6 Label the tubes for identification.

4.2.7 Ensure the test specimens are totally immersed in the stimulant. If they

are not, add either glass beads or rods to raise the level of the stimulant

until total immersion is achieved. This part of the operation should be

carried out in the minimum time to prevent undue heat loss from the

stimulant.

4.2.8 Mark the liquid level on the outside of each tube with a suitable marker.

4.2.9 Place all tubes in the oven or incubator, set at the test temperature and

observe the temperature, leave the tubes for a selected test period

(refer Table 1) after the air bath of the controlled oven or incubator has

reached a temperature within 1°C of the set temperature.

4.2.10 Take the tubes from the oven or incubator and check the level of

stimulant in each, if this has dropped to more than 10 mm below the

mark, or has been exposed to any part of the test pieces, repeat the

test using fresh samples.

4.2.11 If the level of stimulant in a tube is less than 10 mm below the mark,

remove the test specimen from the tube and allow the stimulant

adhering to the test specimen and support to drain back into the tube.

Recover at least 90% of the original volume of stimulants or simply

repeat the test.

4.2.12 Determine the number of residues in the stimulant, using the procedure

described in 4.3

4.3 Determination of migrating substances

Page 63: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

61

4.3.1 Preparation of dishes

4.3.1.1 Take five dishes, mark for identification, and place in the oven

that has been maintained at 105°C to 110°C for a period of 30

min ± 5 min to dry.

4.3.1.2 Remove the dishes from the oven, place in a desiccator and

allow cooling to ambient temperature. Weight and record the

individual masses of each dish.

4.3.1.3 Replace the dishes in the oven and repeat the cycle of

heating, cooling and weighing until individual consecutive

masses differ by not more than 0.5 mg, weight their masses.

4.3.1.4 Use the evaporation method or distillation method to obtain

the mass of the residue.

4.3.2 Evaporation method

4.3.2.1 Take the tube containing the stimulant and pour 40-50 ml

from each separate dish. Using a steam bath, hot plate or

another form of heating to evaporate the stimulant to a lower

volume (taking care to avoid loss, in particular, by

sputtering or overheating of the residues.

Note: the evaporation of acetic acid and ethanol should be carried out

in a fume cupboard.

4.3.2.2 When most of stimulant has evaporated, pour the remaining

stimulant from each the tubes into respective dishes and

continue the evaporation.

Page 64: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

62

4.3.2.3 Wash out each of the tubes which had contained test

specimens with two lots of 10 ml ± 1 ml of unused stimulant

and pour these washings into the respective dishes. Continue

evaporation. (A stream of nitrogen may facilitate

evaporation).

4.3.2.4 When the stimulant has almost completely evaporated, place

the dish in an oven maintained at 105°C to 110°C, for a

period of 30 min ± 5 min, to complete the evaporation and dry

the residue. Remove the dishes from the oven, place in a

desiccator and allow it cooling to ambient temperature.

4.3.2.5 Weigh and record the individual masses of a dish and

residue.

4.3.2.6 Replace the dishes in the oven and repeat the cycle of

heating, cooling and weighing until individual consecutive

masses differ by not more than 0.5 mg.

4.3.2.7 Determine the mass of the residue by subtracting the original

mass of the dish from the stable mass of the dish and

residue.

4.3.3 Distillation method

4.3.3.1 Transfer the stimulants to individual round bottom flasks (250

ml are suitable). Rinse each tube twice, including the blank

tubes, with 20 ml ± 2 ml of fresh stimulant, add these rinses to

the respective flasks.

Page 65: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

63

4.3.3.2 Place the flasks in an electric heating mantle and connect to a

sidearm distillation arrangement, or place them in a rotary

evaporator instead. Distill off the stimulants until

approximately 30 ml to 50 ml remains in the flask.

4.3.3.3 Transfer the remaining stimulant to an evaporating dish.

Rinse the flask with 10 ml ± 1 ml of fresh stimulant and add

the rinses to the appropriate dishes. Continue the

evaporation of the stimulant by using a steam bath hot plate

or other forms of heating described in the evaporation

method.

4.3.3.4 Method of calculation for total immersion with aqueous food

stimulants. Express the overall migration as milligrams of

residue per decimeter of the surface of the sample which is

intended to come into contact with foodstuffs, calculated for

each test specimen using the following formula:

M = (ma – mb) S x 1000 (1)

Where,

M is the overall migration into the stimulant, in milligrams per

square decimeter of the surface area of a sample intended to

come into contact with foodstuffs;

ma is the mass of the residue from the test specimen after

evaporation of the stimulant in which it had been immersed, in

grams;

Page 66: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

64

S is the surface area of the test specimen intended to come

into contact with foodstuffs, in square decimeters. Note: only

one surface is counted

4.3.3.5 Calculate the result for each test specimen to the nearest 0.1

mg/dm2 and the mean of the individual test results, to the

nearest 0.1 mg/dm2.

4.3.4 Validity of result

The test results are considered to be valid only if the difference between the

test results in the same test satisfies the following conditions:

Table 2: Analytical Tolerance (Acceptable intra-test result difference) for

different stimulants.

Item Analytical Tolerance

All aqueous food stimulants ≤ 6mg/kg or 1mg/dm2

Item if more than two results are not within the analytical tolerance, then the

test should be repeated using fresh test specimens from the sample.

3.8 TEST METHOD: HALAL – PORCINE TESTING

1.0 Introduction

To outline the steps and procedures necessary for testing plastic samples in

order to ensure there is no contamination with porcine DNA in the product.

Page 67: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

65

2.0 Instruments / Apparatus

Vortex, analytical balance, water bath, thermal cycler, electrophoresis, UV

transilluminator, Eppendorf tube, UV-visible spectrophotometer, puRe TaqTM

Ready-To-GoTM PCR Beads, Biofuge, water bath, micropipettes from 5.0µl to

20.0µl with plastic tips, pipettes from 100µl to 10 ml, glass or plastic,

measuring cylinder 250 ml, protective glass, oven in range of 70°C ± 2°C,

atomic absorption spectrometer with an appropriate detection system and

sensitivity.

3.0 Chemicals

Acetic acid 5% (w/v) in aqueous solution, concentrated nitric acid, deionized

water , ASL buffer, nuclease-free water, DNA easy kit, puRe TaqTM

polymerase, 10 mM Tris-HCl (pH 9.0 at room temperature), 50 mM KCl, 1.5

Mm MgCl2, 200 mM dATP, dCTP, dGTP and dTTP, BSA, 20 pmol forward

and reverse primer, 1.7% agarose gel of 1x TBE buffer, ethidium bromide.

4.0 Procedure

4.1 Preparation of hot acetic acid extract for articles in container form

4.1.1 Measure a sufficient volume of 5% acetic acid by measuring cylinder

and preheat in the oven at 70°C ± 2°C. Fill the test specimen with acetic

acid to a level within 0.5 cm of the top of the specimen. Record the

volume of acetic acid that has been used.

4.1.2 Cover the test specimen with an inert material to prevent evaporation,

e.g. glass. This part of the operation should be carried out in the

minimum time to prevent the evaporation of acetic acid. The bottom of

Page 68: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

66

test specimen should be wrapped by aluminium foil to prevent leakage

solution. Leave this preparation for 2 hours in a thermostatically

controlled oven maintained at 70°C ± 2°C.

4.1.3 Decant the solution and wash the test specimen twice with acetic acid. If

it contains precipitate, filter the solution and washings. Filter paper

should be pre-washed with distilled water to remove artifacts. The total

volume of acetic acid for washing should not exceed 5% of the volume

used for filling up the container.

4.1.4 Stabilize the acetic acid extract by the addition of concentrated nitric

acid in the ratio of 3.5 ml per 100 ml of sample. Mix the aqueous extract

well and take an aliquot portion for investigation.

4.2 Preparation of hot acetic acid extract for articles in bag form

4.2.1 Tear or cut samples as taken into pieces approximately 1 cm2 to 2 cm2.

Wear protective gloves to prevent contamination.

4.2.2 Weigh 10 ± 0.1g of the test pieces to the accuracy of 0.01g, put them

into the conical flask, add 200 ml of 5% acetic acid and stopper the

flask. Leave this preparation to stand for 2 hr in a water bath of 70°C ±

2°C, shake occasionally.

4.2.3 Decant the solution and wash test pieces in the flask twice with a fresh

portion of 5% acetic acid of 70°C ± 2°C. If it contains precipitate, filter

the hot preparation. Transfer the extract and washings the filtrate to a

marked 250 ml volumetric flask; cool to 23°C ± 2°C.

Page 69: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

67

4.2.4 Stabilize the extract by addition of concentrated nitric acid in the ration

of 3.5 ml per 100 ml of sample. Fill up to the mark with water. Use the

content of the flask for further investigation. Note: If necessary, it can

scale up the solution but not more than twice its original volume.

4.3 Porcine detection using Porcine Detection Kit

4.3.1 Add sample prepared in 4.1 and 4.2 into high-performance extraction

liquid

4.3.2 Shake it well.

4.3.3 Dip the porcine detection kit into the mixture. Leave it for 15 minutes.

4.3.4 Record the observation; Positive / Negative

4.3.5 Proceed for further testing if the result positive.

4.4 DNA Isolation

4.4.1 Transfer 0.03 ml of the prepared sample into a 1.5 ml Eppendorf tube.

4.4.2 Add 200µl ASL buffer (Qiagen) into the individual tubes containing the

sample material.

4.4.3 Vortex the mixtures for 5 minutes and incubated overnight for sufficient

lysis to maximize DNA extraction.

4.4.4 After incubation, vortex the samples for 2 minutes and centrifuge at full

speed (13,000 rpm) for 15 minutes using centrifuge (Biofuge) to

remove any solid particles.

4.4.5 Transfer 40µl of supernatant into a new Eppendorf tube and store at -

4°C for subsequent PCR application.

4.5 DNA Quantification

Page 70: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

68

4.5.1 Measure the concentration and purity of the extracted DNA by

absorbance at 260nm using the UV-visible spectrophotometer.

4.5.2 Dilute 10µl of DNA sample in 990 µl of nuclease-free water for PCR.

Measure the DNA extraction with the Qiagen kit and the microwave

extraction in the range of 1000 – 1500 ng.

4.6 PCR Mix

4.6.1 Amplify the PCR Mix DNA (200 ng) using puRe TaqTM Ready-To-GoTM

PCR Beads.

4.6.2 In a final volume of 25µl, each reaction contain 2.5 units of puRe TaqTM

DNA polymerase, 10 mM Tris-HCl (pH 9.0 at room temperature), 50 Mm

KCl, 1.5 mM MgCl2, 200 mM DATP, DCTP,DGTP and DTTP and

stabilizer, including BSA.

4.6.3 Perform amplification using 20 pmol of each forward and reverse primer

on a thermal cycler. The forward primer is

5´ - TGCAGTCTCTCCTCCAAA- 3´ and the reverse primer is

5´ - CGATAATTGGATCACATTCTG- 3´.

4.6.4 Run the amplification using the following program : 94°C for 3 minutes to

denature the template DNA completely, followed by 35 cycles at 94°C

for 1 minute, 55°C for 1 minute and 72°C for 1 minute and close by the

extension step at 72°C for 7 minutes.

4.6.5 Determine the amplified DNA by gel electrophoresis in 1.7% agarose gel

of 1x TBE buffer and made visible by staining with ethidium bromide at

a constant voltage of 70 for 20 hr.

Page 71: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

69

4.6.6 Observe the resulting fragments by using UV transillumination or any

other gel document systems.

4.6.7 The presence or absence of porcine DNA is confirmed by ultraviolet

fluorescence and documented.

4.6.8 The minimum level of detection (LOD) shall be 0.01 ng/µL. Generally,

the level of detection shall be in the range of 0.01 ng/µL to 0.05 ng/µL

depending on the primers used.

4.6.9 Real-Time PCR For positive presence of DNA the cycle threshold (Ct)

value shall be in the range of 32 to 40, that is, the LOD is 0.01 % (w/w).

5 Interpretation of Results

5.1 The results are expressed as follows:

Table 1: PCR results from the interpretation

Test

Sample

PCR Reagent Control

Extraction Blank

Control

Negative

Control

Positive

Control

Interpretation

of Results

+ - - - + Positive

- - - - + Negative

+ - + - + Inconclusive

+ + - - + Inconclusive

- - - - + Inconclusive

- - + - + Inconclusive

- + - - + Inconclusive

6. Test report

Page 72: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

70

6.1 Both duplicate samples shall be positive in order to report as " porcine

DNA detected."

6.2 If only one of the duplicate samples is positive, the whole analytical

process (from extraction) shall be repeated.

6.3 If, after repeating, the same results are obtained, then the report shall

be "porcine DNA not detected”.

6.4 No ambiguous result shall be reported.

Page 73: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

71

BAB 4

MAKMAL-MAKMAL ANALISA YANG MENJALANKAN PENGESAHAN

PRODUK BIOPLASTIK DI MALAYSIA

4.1 Makmal Yang Menawarkan Ujian Pengesahan Bioplastik di Malaysia

Melalui penyelidikan pasaran dan intel yang dilakukan, antara makmal-

makmal yang boleh menawarkan ujian pengesahan bioplastik seperti yang

dinyatakan dalam bab 3 adalah seperti dalam Jadual 3:

Jadual 3: Makmal-makmal yang menawarkan ujian pengesahan bioplastik

Bil Nama Makmal Lokasi Ujian ditawarkan

1

Environmental Technology Research Centre (SIRIM Berhad)

Blok 15, SIRIM Berhad 1, Persiaran

Dato’ Menteri, Seksyen 2, PO Box 7035, 40700 Shah

Alam Selangor

Biodegradability

Biocompostability

Oxo-Biodegradation Analysis

Thermogravimmetric Analysis

Heavy Metal

Analysis

2 Johor Toyyiban

Laboratories

Blok 1-2, 1-3 & 6-1, UTM-MTDC

Technology Centre

Halal – Porcine Analysis

Heavy Metal Analysis

3 Universiti Tun Hussein

Onn Malaysia TBA

Biodegradability

Biocompostability

Oxo-Biodegradation

Analysis

Thermogravimmetric

Analysis

Page 74: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

72

4.2 Cadangan ujian pengesahan bioplastik

Biasanya, ujian-ujian asas yang diperlukan untuk pengesahan sifat-

sifat bioplastik adalah biodegradation, compostability dan heavy metal

analysis. Akan tetapi, seandainya bioplastik tersebut adalah berasaskan

biojisim (biomass), terdapat ujian tambahan yang periu dijalankan iaitu

ujian untuk racun perosak (pesticide), kulat (mould) dan yis (yeast). Jika

bioplastik tersebut digunakan sebagai pembungkus makanan, maka ujian

migrasi (migration test) adalah perlu dijalankan. Selain itu, Ujian

migration, disintegration dan photodegradation adalah ujian pilihan yang

perlu dijalankan bertujuan untuk memastikan tahap keselamatan produk

adalah memuaskan dan menjamin kesihatan manusia dan alam sekitar,

Akhir kata, pemilihan ujian pengesahan bioplastik sebenarnya tertakluk

kepada keperluan perniagaan sesebuah syarikat pengeluar bioplastik

yang berpandukan kepada sasaran pasarannya. Pihak industri

disarankan untuk berhubung dengan wakil makmal-makmal yang

dinyatakan di atas bagi mendapatkan keterangan teknikal yang lebih

lanjut bagi memenuhi keperluan syarikat dan juga pasaran masing-

masing.

Page 75: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

73

RUJUKAN

Anonymous (2019). Plastics: a story of more than 100 years of innovation,

Plastics Europe – Association of Plastics Manufacturers, di talian:

https://www.plasticseurope.org/en/about-plastics/what-are-plastics/history,

ACC. (2018). Bakelite: The Plastic That Made History, American Chemistry

Council, di talian: https://www.plasticsmakeitpossible.com/whats-new-

cool/fashion/styles-trends/bakelite-the-plastic-that-made-history/, Anthony Raj,

T.V. (2018). Bakelite: The Early Plastic Created As an Alternative to Secreted

Beetle Resin, Impression, di talian: https://tvaraj.com/2018/11/03/bakelite-the-

early-plastic-created-as-an-alternative-to-secreted-beetle-resin/,

Anonymous (2016). Only biodegradable containers for Johor in 2018, The

Star Online, di talian:

https://www.thestar.com.my/news/nation/2016/12/29/only-biodegradable-

containers-for-johor-in-2018/,

Altayan, M., Al Darouich, T. & Karabet, F. (2019). Thermoplastic starch from

Corn and Wheat: A comparative study based on amylose content.

Anonymous (2010). Types of Bioplastic, InnovativeIndustry.net – Shaping the

Sustainable Future, di talian: http://www.innovativeindustry.net/types-of-

bioplastic, ASTM E 1131 (2004), Compositional Analysis by

Thermogravimetry, Vol. 5, United States.

Anonymous (undated), History of Plastic, Technofer-Recycling Equipment &

Machinery di talian: https://www.tecnofer.biz/en/history-of-plastic/, BS EN

13130-1 (2004). Materials and articles in contact with foodstuffs – Plastic

substances subject to limitation- Part 1: British Standards.

Page 76: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

74

BS 8472 (2011). Method for the assessment of the oxo-biodegradation of

plastics and of the phyto-toxicity of the residues in controlled laboratory

conditions, BSI Standards Publication.

Bellis, M. (2019), A Brief History of The Invention of Plastics, ThoughtCo, di

talian: https://www.thoughtco.com/history-of-plastics-1992322 .

Barrett, A. (2018). The History and Most Important Innovations of Bioplastics,

BioplasticNews, di talian: https://bioplasticsnews.com/2018/07/05/history-of-

bioplastics/.

Beall, G. (2009). By Design: World War II, Plastics, and NPE, Plastics Today-

Community for Plastics Professionals, di talian:

https://www.plasticstoday.com/content/design-world-war-ii-plastics-and-

npe/27257907612254.

Barnes, D.K.A., Galgani, F., Thompson, R.C. & Barlaz, M. (2009).

Accumulation and fragmentation of plastic debris in global environments,

Philosophical Transactions of the Royal Society.

Bradbury, M. (2017). A Brief Timeline of The History of Recycling, Resource

Center powered by BuchSystems, di talian:

https://www.buschsystems.com/resource-center/page/a-brief-timeline-of-the-

history-of-recycling. Barber, J. and Fisher, L. (2001). Metabolix purchases

Biopol assets from Mosanto, di talian: http://ir.yield10bio.com/news-

releases/news-release-details/metabolix-purchases-biopol-assets-monsanto.

Barrett, A. (2018). First Car Made Completely from Bioplastics, di talian:

https://bioplasticsnews.com/2018/07/09/bioplastics-car/.

Page 77: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

75

Balasegaram, M. (2018). Human writes: Malaysia is 8th Worst in the World for

Plastic Waste, di talian: https://www.star2.com/living/2018/03/25/plastic-

waste-pollution/. Barrett, A. (2019). Biodegradable Plastics Uptake Still

Discouraging in Malaysia, The Star Online, di talian:

https://bioplasticsnews.com/2019/06/24/biodegradable-plastics-uptake-still-

discouraging-in-malaysia/

Bruder, U. (2019). Bioplastics and Biocomposites.

10.3139/9781569907351.006.

Blohm, S. & Heinze, T. (2019). Synthesis and properties of thermoplastic

starch laurates. Carbohydrate Research. 107833.

10.1016/j.carres.2019.107833.

Brito, G. & Agrawal, P. & Araujo, E. & Mélo, T. (2011).

Polylactide/Biopolyethylene Bioblends. Polímeros. 22. 427-429.

10.1590/S0104-14282012005000072.

Berwig, K.H., Baldasso, C. and Dettmer, A. (2016), Production and

characterization of PHB generated by Alcaligenes latus using lactose and

whey after acid protein precipitation process, Bioresource Technology,

Vol(218):31-37.

Crinnion, W.J. (2010). Toxic effects of the easily avoidable phthalates and

parabens, Alternative Medicine Review: A Journal of Clinical Therapeutic,

15(3): 190-196.

Derraik, J.G.B. (2002). The pollution of the marine environment by plastic

debris: A review. Marine Pollution Bulletin, 44(9), 842-852.

Page 78: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

76

Elliot, P., Shaddick, G., Kleinschmidt, I., Jolley, D., Walls, P., Beresford, J.

(1996). Cancer incidence near municipal solid waste incinerators in Great

Britain, British Journal of Cancer, 73(5): 702-710.

Environmental Protection Department (2015). School waste reduction and

recycling education and awareness campaign, di talian:

www.wastereduction.gov.hk/.../Brochure_School_Campaign_en.pdf.Freinkel,

S. (2011). Plastics: A Toxic Love Story (New York: Henry Bolt), p.4

Feder, B.J. (1985), Technology: ‘Bugs’ That Make Plastics, The New York

Times, di talian: https://www.nytimes.com/1985/05/03/business/technology-

bugs-that-make-plastics.html.

Fridovich-Keil, J.L. (2018). Bioplastic, Encyclopedia Britannica, di talian:

https://www.britannica.com/technology/bioplastic.

Gregory, M.R. (2009). Environmental implications of plastic debris in marine

settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and

alien invasions, Philosophical Transaction of Royal Society B, 364, 2013-2025

Gibson, L. (undated), GlycosBio expands to Malaysia, BioMass Magazine, di

talian: http://biomassmagazine.com/articles/3839/glycosbio-expands-to-

malaysia.Gotro, J. (2012), From Corn to Poly Lactic Acid (PLA): Fermentation

in Action, Polymer Innovation Bag, di talian:

https://polymerinnovationblog.com/from-corn-to-poly-lactic-acid-pla-

fermentation-in-action/.

Howarth, S. (2013). Why plastic waste is such a problem and the future of

bioplastics. Huffpost Tech. di talian:

Page 79: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

77

http://www.huffingtonpost.co.uk%2Fsimon-howarth%2Fwhy-plastic-waste-is-

such-a-problem_b_3346167.html.

Hansen, C. (2019). Bioplastics: Making an Informed Decision, BioEnergy

Consult, di talian: https://www.bioenergyconsult.com/bioplastics/.

Heath, N. (2007), Bio-Plastics: Turning Wheat and Potatoes into Plastics, The

Naked Scientists, di talian:

https://www.thenakedscientists.com/articles/science-features/bio-plastics-

turning-wheat-and-potatoes-plastics.

HS1003 (undated). Heavy Metal Test, part 2, retrieved on 31st October 2019

from:

https://www.wastereduction.gov.hk/sites/default/files/en/materials/info/contain

er/HS_1003.pdf.

Isroi, Isroi & Cifriadi, Adi & Panji, Tri & Wibowo, Nendyo & Syamsu, Khaswar.

(2017). Bioplastic production from cellulose of oil palm empty fruit bunch. IOP

Conference Series: Earth and Environmental Science. 65. 012011.

10.1088/1755-1315/65/1/012011.

Jariyavidyanont, K. & Focke, W. & Androsch, R. (2019). Thermal Properties of

Biobased Polyamide 11. 10.1007/12_2019_47.

Johansson, T. (2019). Development of bioplastics from oil plant by-products.

Jeffrey, G. (2013). Thermoplastic Starch: A Renewable Biodegradable

Bioplastic, Polymer Innovation Blog, di talian:

https://polymerinnovationblog.com/thermoplastic-starch-a-renewable-

biodegradable-bioplastic/.

Page 80: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

78

Khattab, M. & Dahman, Y. (2019). Production and recovery of poly-3-

hydroxybutyrate bioplastics using agro-industrial residues of hemp hurd

biomass. Bioprocess and Biosystems Engineering. 42. 10.1007/s00449-019-

02109-6.

Kaplan, S. (2016), By 2050, there will be more plastic than fish in the world’s

ocean, study says,The Washington Post, di talian:

https://www.washingtonpost.com/news/morning-mix/wp/2016/01/20/by-2050-

there-will-be-more-plastic-than-fish-in-the-worlds-oceans-study-says/.

Khan, B., Niazi, M., Samin, G., Jahan, Z. (2016). Thermoplastic Starch: A

Possible Biodegradable Food Packaging Material-A Review:

THERMOPLASTIC STARCH. Journal of Food Process Engineering.

10.1111/jfpe.12447.

Kettering, F.S. (1946). Biographical Memoir of Leo Hendrik Baekeland, the

United States of America Biographical Memoirs, 8th Memoir, National

Academy of Sciences, 281-302.

Lee, E. (2019). The State of the Nation: Single-use plastics ban stirs concern

among the manufacturers, The Edge Malaysia, di talian:

https://www.theedgemarkets.com/article/state-nation-singleuse-plastics-ban-

stirs-concern-among-manufacturers.

Li, C.T., Lee, W.J., Mi, H.H. & Su, C.C. (1995). PAH emission from the

incineration of waste oily sludge and PE plastic mixtures, Science of the Total

Environment, 170(3):171-183.

MESTECC (2018). Malaysia’s Roadmap Towards Zero Single-Use Plastics

2018-2030 – towards a sustainable future, Kementerian Tenaga, Sains,

Page 81: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

79

Teknologi, Alam Sekitar dan Perubahan Iklim, di talian:

https://www.mestecc.gov.my/web/pengumuman-bergambar/malaysias-

roadmap-to-zero-single-use-plastic/.

MS 2672 (2017). Detection of Porcine DNA – Test method – Food and Food

Products : Malaysia.

Murali, R.S.N. (2015). Malacca Bans Plastic Bags, The Star Online, di talian:

https://www.thestar.com.my/news/nation/2015/12/30/malacca-bans-plastic-

bags-ruling-to-take-effect-on-jan-1-in-move-to-become-a-green-state

Martino, L., Basilissi, L., Farina, H., Ortenzi, M.A., Zini, E., Silvestro, G.D. and

Scandola, M. (2014), Bio-based Polyamide 11: Synthesis, rheology and solid-

state properties of star structures, European Polymer Journal, 59:69-77.

Mukopadhyay, S. (2010), Biodegradable textile yarns, Woodhead Publishing

Series in Textiles, 534-567.

Malet, C. (undated). Algopack: fighting pollution with seaweed, di talian:

http://impactjournalismday.com/story/fighting-pollution-with-seaweed/.

Nafchi, A., Moradpour, M., Saeidi, M., Karim, A. (2013). Thermoplastic

starches: Properties, challenges, and prospects. Starch-Stärke. 65. 61-72.

10.1002/star.201200201.Omnexus (undated). Polyamide 11 or PA 11, di

talian: https://omnexus.specialchem.com/selection-guide/polyamide-pa-nylon.

OECD (1992). Test No. 301: Ready Biodegradability,OECD Guidelines for the

Testing of Chemicals, Section 3, OECD Publishing, Paris:

https://doi.org/10.1787/9789264070349-en.

Page 82: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

80

OECD (2003). Guideline 208: Seedling Emergence and Seedling Growth

Test, OECD Guidelines for the Testing of Chemicals, OECD Publishing, Paris:

http://www.oecd.org/chemicalsafety/testing/33653757.pdf

Parker, L. (2019). The World’s Plastic Pollution Crisis Explained, National

Geographic, di talian:

https://www.nationalgeographic.com/environment/habitats/plastic-pollution/.

Parker, L. (2018). The Great Pacific Garbage Patch Isn’t What You Think It Is,

National Geographic, di talian:

https://www.nationalgeographic.com/news/2018/03/great-pacific-garbage-

patch-plastics-environment/.

Plastic Waste Management Institute (PWMI) JAPAN. (2014). Plastic products,

plastic waste and resource recovery. [2012], PWMI Newsletter, 43(2014.4).

Perkins,S (2014). Plastic waste taints the ocean floors, Nature.com.

Rogers, T. (2015), Everything You Need To Know About Polylactic Acid

(PLA), CreativeMechanisms, di talian:

https://www.creativemechanisms.com/blog/learn-about-polylactic-acid-pla-

prototypes.

Rochman, C.M., Lewison, R.L., Eriksen, M., Allen, H., Cook, A.M. & The, S.J.

(2014). Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an

indicator of plastic contamination in marine habitats, Science of the Total

Environment , 476-477, 622-633.

Royte, E. (2006), Corn Plastic to the Rescue, Smithsonian.com, di talian:

https://www.smithsonianmag.com/science-nature/corn-plastic-to-the-rescue-

126404720/.

Page 83: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

81

Teuten, E.L., Saquing, J.M., Knappe, D.R.U., Barlaz, M.A., Jonsson, S.,

Bjorn, A., Rowland, S.J., Thompson, R.C., Galloway, T.S., and Yamashita, R.

(2009). Transport and Release of Chemicals from Plastics to the Environment

and to the Environment and to Wildlife, Philosphical Transactions of The

Royal Society B Biological Science, 364:2027-2045

Vatansevr, E. & Arslan, D. & Nofar, M.R. (2019). Polylactide cellulose-based

nanocomposites. International Journal of Biological Macromolecules.

10.1016/j.ijbiomac.2019.06.205.

Warner, G.R. (2018). Bisophenol A and Phalalates: How Environmental

Chemicals Are Reshaping Toxicology, Toxicological Sciences, Vol.

166(2):246-249.

Wahyuningtiyas, N. & Suryanto, H. (2017). Analysis of Biodegradation of

Bioplastics Made of Cassava Starch. Journal of Mechanical Engineering

Science and Technology. 1. 24-31. 10.17977/um030v1i12017p024.

Walther, B. (2015). Nation engulfed by plastic tsunami, Taipei Times, di talian:

http://www.taipeitimes.com/News/editorials/archives/2015/01/09/2003608789/

2. ,

Page 84: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

82

Appendix 1

Page 85: PROJEK PENILAIAN DAN PENGESAHAN PRODUK...BAB 1 Muka Surat Sekapur Sirih 4 Pengenalan 5 1.1 Sejarah terciptanya plastik 6 1.2 Plastik menjadi ancaman 9 1.3 Sinar baru untuk bioplastik

!!

!

Modul ini mengandungi pengenalan tentang sejarah plastik, pendekatan dunia dan Malaysia amnya, dan Johor khususnya dalam menangani masalah plastik, sejarah terciptanya bioplastik dan juga jenis-jenis bioplastik. Modul ini juga diterbitkan bagi memberikan pendedahan kepada masyarakat tentang ujian-ujian pengesahan bioplastik yang boleh ditawarkan oleh makmal-makmal di Malaysia, khususnya di UTHM Johor, selaku rakan kerjasama tunggal yang beraspirasi untuk memberikan sokongan kepada kerajaan dalam menggalakkan penguatkuasaan penggunaan plastik boleh urai di bawah Inisiatif Biorosot dan Biokompos Negeri Johor.

Semoga modul ini dapat menambah pengetahuan masyarakat tentang bioplastik dan ujian-ujian yang berkaitan dengannya, disamping dapat dimanfaatkan sepenuhnya oleh pemain industri bioplastik sebagai panduan untuk mendapatkan bantuan teknikal bagi menambahbaik kualiti dan kebolehpasaran produk plastik mereka.