pembinaan2posastro - dr m irfan hakim.ppt

Upload: tobyrufeo

Post on 28-Feb-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    1/54

    Positional Astronomy

    Compiled from:http://star-www.st-and.ac.uk

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    2/54

    Introduction

    How to describe the position of an object in thesky.

    hich different coordinate systems are

    appropriate in different situations.

    How to transform between coordinate systems.

    hat corrections ha!e to be applied.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    3/54

    "otes

    #bjects in the sky appear to be positioned onthe celestial sphere$ an indefinite distance away.

    A sphere is a three-dimensional object$ but its

    surface is two-dimensional. %pherical &eometry is carried out on the surface

    of a sphere:

    it resembles ordinary 'plane( &eometry$ but itin!ol!es new rules and relationships.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    4/54

    )he terrestrial sphere

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    5/54

    Celestial na!i&ation used at sea 'and in the air(in!ol!es spherical tri&onometry$

    so the results are in an&ular measure

    'de&rees(. )hese must be con!erted to linear measure for

    practical use.

    e define the nautical mile as * arc-minutealon& a &reat circle on +arth,s surface.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    6/54

    +ercise *

    Alderney$ in the Channel Islands$ has lon&itude $latitude 01".

    innipe&$ in Canada$ has lon&itude 23$ latitude 01".

    How far apart are they$ in nautical miles$ alon& a parallel oflatitude4 '* 5 61 nautical miles(

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    7/54

    7istance alon& a parallel of latitude is 'difference inlon&itude( cos'latitude(

    5 '23 - ( cos'01( 5 6*.16

    8ut * 5 61 nautical miles.

    %o the distance is 6*.16 61 5 9669 nautical miles.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    8/54

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    9/54

    %ine rule

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    10/54

    Cosine rule

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    11/54

    "ote about ambi&uity

    sin'( 5 1.0$

    then may be 91 or *01.

    #r$ if the cosine rule yields

    cos'( 5 1.0$

    then may be 61 or 911 '-61(.

    In this case$ there is no ambiguityif is a sideof thetrian&le$ as it must be less than 180$

    but there could still be uncertainty if an angleof the trian&lewas positi!e or ne&ati!e.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    12/54

    +ercise

    Alderney$ in the Channel Islands$ has lon&itude $latitude 01".

    innipe&$ in Canada$ has lon&itude 23$ latitude 01".

    How far apart are they$ in nautical miles$ alon& a &reat-circle arc4

    If you set off from Alderney on a &reat-circle route to

    innipe&$ in what direction 'towards what aimuth( would you head4

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    13/54

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    14/54

    ;se the cosine rule:

    cos A 5 cos P cos AP < sin P sin AP cos P

    5 cos=1 < sin=1 cos 20

    5 1.001>

    %o A 5 06.0>

    5 9920 nautical miles

    ')his is 3? shorter than the route alon& a parallel oflatitude(.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    15/54

    ;se the sine rule:

    sin A / sin P 5 sin P / sin A

    so sin 5 sin =1 sin 20 / sin 06.0> 5 1.33

    so 5 01.* or *2.2 .

    Common sense says 01.* 'or check usin& cosine rule to&et P(.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    16/54

    Coordinate %ystems:the horiontal or Alt-A system

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    17/54

    Comparison with the terrestrialsystem

    Terrestrial

    +@uator

    "orth Pole

    %outh Pole

    atitude

    Co-latitude

    parallel of latitude

    meridian of lon&itude

    Breenwich eridian

    lon&itude

    alt-az

    Horion

    Denith

    "adir

    Altitude

    enith distance

    parallel of altitude

    !ertical circle

    Principal Eertical

    aimuth

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    18/54

    +ercise 9

    From %t.Andrews$ at 6 pm on *22> February nd$ theoon appeared at altitude

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    19/54

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    20/54

    )he difference in aimuth is *=.

    ;se the cosine rule:

    cos % 5 cos D cos D% < sin D sin D% cos D 5 1.2>

    so % 5 *.9

    )he oon is further east$ and hi&her up$ than %aturn.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    21/54

    Coordinate systems: the firste@uatorial or GHA-dec.G system

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    22/54

    )he Hour An&le or HA 'H( of object is the an&ular distancebetween the meridian of and GtheG celestial meridian.

    It is measured westwards in hours$ 1h-=h$ since the +arthrotates 961 in = hours.

    )his system is still dependent on the time of obser!ation$but an object,s declination &enerally doesn,t chan&e rapidly$and its Hour An&le can be determined @uite simply$ &i!enthe time and the location.

    A telescope can be built on an e@uatorial mountin&$ with itsais pointin& at the "CP.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    23/54

    Coordinate systems: the seconde@uatorial or GA-dec.G system

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    24/54

    )he i&ht Ascension or A 'J( of object is the an&lealon& the celestial e@uator measured eastwards from the!ernal e@uino to the meridian of .

    ike HA$ A is measured in hours 1-=h$ but it &oes in

    the opposite direction.

    )he i&ht Ascension and declination of a star do notnormally chan&e o!er short periods of timeK

    but the Hour An&le chan&es constantly with time.

    Conse@uently we ha!e to find a way of definin& the time.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    25/54

    terrestrial alt-az HA-dec. RA-dec.

    equator horizon celestial equator celestial equator

    North Pole zenith North CelestialPole

    North CelestialPole

    South Pole nadir South CelestialPole

    South CelestialPole

    latitude altitude declination declination

    co-latitude zenith distance North PolarDistance

    North PolarDistance

    parallel of latitude parallel of altitude parallel ofdeclination

    parallel ofdeclination

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    26/54

    terrestrial alt-az HA-dec. RA-dec.

    meridian oflongitude

    vertical circle meridian meridian

    GreenwichMeridian

    PrincipalVertical

    celestialmeridian

    vernalequino

    longitude azimuth !our "ngle #ight"scension

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    27/54

    %idereal )ime

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    28/54

    ocal %idereal )ime '%)(

    e define ocal %idereal )ime '%)( to be 1 hours

    when the !ernal e@uino Aries symbol is on the obser!er,s localmeridian.

    #ne hour later$

    the local Hour An&le 'HA( of the e@uino is

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    29/54

    ocal %idereal )ime '%)(

    suppose that %) 5 *h.

    )his means that the !ernal e@uino has mo!ed *0 '*h(west of the meridian$

    and now some other star is on the meridian. 8ut the i&ht Ascension of star is the an&ular distance

    from the !ernal e@uino to 5 *h 5 %).

    %o at any instant

    Local Sidereal Time = #ight Ascension of $hicheerstars are on the meridian

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    30/54

    In &eneral$

    Local Hour Angle of a star =

    Local Sidereal Time - #A of the star

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    31/54

    7ifferent obser!ers$ to the east or west$ will ha!e different stars ontheir local meridians.

    e need to choose one particular meridian to act as a reference%ointK we choose &reen$ich.

    e define the Breenwich Hour An&le of as the Hour An&le of relati!e to the celestial meridian at Breenwich.

    )hen we can define Breenwich %idereal )ime 'B%)( as theBreenwich Hour An&le of the !ernal e@uino.

    )his &i!es the important relation

    LST = &ST - longitude $est

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    32/54

    Local Hour Angle 'LHA( of a star =

    LST - #A of the star

    &reen$ich Hour Angle '&HA( of a star =

    &ST - #A of the star

    LST = &ST - longitude $est

    LHA'star( = &HA'star( - longitude $est

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    33/54

    +ercises

    At midni&ht on *22> February =th$ ocal %idereal)ime at %t.Andrews was >h=0m. %t.Andrews haslon&itude =>, .

    *.hat was the ocal Hour An&le of 8etel&euse '.A.5 0h00m( at midni&ht4

    .At what time was 8etel&euse on the meridian at%t.Andrews4

    9.At what time was 8etel&euse on the meridian atBreenwich4

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    34/54

    *. A of 8etel&euse 5 0h 00m$

    At midni&ht$ %) 5 >h =0m

    ocal Hour An&le 5 %) - A

    so the ocal Hour An&le of 8etel&euse was >h =0m - 0h 00m 5 h01m.

    *. #n the meridian$ ocal Hour An&le 5 1$

    so if 8etel&euse was on the meridian at %t.Andrews$

    %) in %t.Andrews 5 A of 8etel&euse 5 0h 00m.'ecall that %) 5 A of stars on local meridian.(

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    35/54

    9. %t.Andrews is =>, west of Breenwich 5 1h **m 'di!ide by*0(.

    %o 8etel&euse was on the Breenwich meridian

    ** minutes before it reached the %t.Andrews meridian.i.e. at 1h 02m.

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    36/54

    Balactic coordinates

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    37/54

    Luestion

    )he "orth Balactic Pole is at i&htAscension *h=2m$ declination

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    38/54

    +cliptic coordinates

    All the objects considered so far ha!e been Gfied starsG$ which keepalmost constant !alues of i&ht Ascension and declination.

    8ut bodies within the %olar %ystem chan&e their celestial positions.

    )he most important one to consider is the %un.

    )he %un,s declination can be found by measurin& its altitude when it,s onthe meridian 'at midday(.

    )he %un,s i&ht Ascension can be found by measurin& the ocal %idereal)ime of meridian transit.

    e find that the %un,s A increases by approimately = minutes a day$

    and its declination !aries between

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    39/54

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    40/54

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    41/54

    )he ecliptic 'or celestial( lon&itude of 'symbol M( is thean&ular distance alon& the ecliptic from the !ernal e@uinoto the &reat circle throu&h .

    It is measured eastwards 'like .A.($ but in de&rees$ 1-

    961. )he ecliptic 'or celestial( latitude of 'symbol N( is the

    an&ular distance from the ecliptic to $ measured from -21at O, to

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    42/54

    +ercise

    )he oons orbit is tilted at 0>, to theecliptic. ould it be possible to obser!ethe oon as a circumpolar oon4 hat is

    the lowest latitude from which the oonmay ne!er set4

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    43/54

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    44/54

    )he maimum hei&ht of the ecliptic abo!e the e@uator is Q 5, abo!e this$ i.e. up to 9,. %o theoon,s maimum declination is 9,.

    An object of declination R will be circumpolar at latitude 21-R$i.e. at latitude 6*>,.

    %o if the oon is at its &reatest possible declination$ it appearscircumpolar from any latitude north of 6*>,".

    )he relation between ecliptic and

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    45/54

    )he relation between ecliptic ande@uatorial coordinates

    )he relation between ecliptic and

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    46/54

    )he relation between ecliptic ande@uatorial coordinates

    )he %un,s motion and its effect on

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    47/54

    )he %un s motion$ and its effect ontime-keepin&

    t it th idi ' (

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    48/54

    oon transit the meridian 'appro.(

    At "ew oon$ the oon lies in the same direction as the %un. )he oon then mo!eseastwards$ relati!e to the %un.

    It mo!es 961 in 2.09 days$ or about *. each day$ relati!e to the %unK whichcorresponds to la&&in& behind the %un$ as it crosses the sky$ by about =>.> minutes oftime each day.

    If you know the Ga&eG of the oon$ you can calculate how much later the oon will crossthe sky$ compared to the %un.

    )he %un crosses the meridian at noon$ so you can calculate the time at which the oonwill cross the meridian.

    )he result will not be !ery accurate$ since the oon,s motion is not uniform$ but shouldbe correct to within an hour.

    hen will the oon rise and set4

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    49/54

    hen will the oon rise and set4

    )he %un declination !aries between 9.=" and 9.=%. At the e@uinoes$ the %un rises 6 hours before noon$ and sets 6 hours after noon.

    )he oon follows rou&hly the same path as the %un$ but it takes only a month totrace the path which the %un takes in a year.

    )he %un mo!es about * a day '961 in 960.0 days(.

    )he oon la&s behind the %un by about *. a day$ so you can work out the dateon which the %un will be at the point where the oon now is.

    )his means you can estimate rou&hly how lon& the oon will be abo!e the horion.

    Ha!in& already calculated the time at which it will cross the meridian$ you can nowestimate its risin& and settin& times.

    "ot be !ery accurate. 8ut it should be sufficient to determine$ for eample$ whethera particular ni&ht,s obser!in& will be affected by moonli&ht.

    efraction

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    50/54

    efraction

    %unrise sunset twili&ht

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    51/54

    %unrise$ sunset$$ twili&ht

    )he %un is at declination -*=. hat will be its hour an&leat sunrise 'the moment the top ed&e of the %un firstappears o!er the horion($ at a latitude of

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    52/54

    )he oon was "ew on 7ecember 0th$ 111. At%t.Andrews$ on Sanuary *st 11*$ the %un crossed themeridian at *:*0.

    *. At what time did the oon cross the meridian4

    . Bi!en the data in @uestion '*($ estimate the times ofmoonrise and moonset at %t.Andrews on Sanuary *st11*T

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    53/54

    %aat melakukan ekspedisi$ kamu satu-satunya yan& selamatnamun terdampar di pulau terpencil den&an dibekali sebuahsekstan$ kronometer$ seekor merpati pos$ dan sebuah bukuSpherical Astronomy. Selaskan ba&aimana menyelamatkandiri den&an meminta pertolon&an yan& palin& se&era dapatdilakukanT 'An&&ap kronometer dalam waktu B)$ sehin&&akamu tahu tan&&al.(

  • 7/25/2019 pembinaan2PosAstro - Dr M Irfan Hakim.ppt

    54/54

    efraction Beocentric or diurnal paralla

    Annual paralla

    Aberration Precession