brick baru

24
Page 1 of 24 INTRODUCTION What is mason ry? Masonry has been generally defined as an assembly of brick, stone, concrete masonry units, structural clay tile, architectural terra cotta, glass block, gypsum block, or similar material bonded together with mortar to form walls and others parts of buildings. Masonry is generally a highly durable form of construction. However, the materials used, the quality of the mortar and workmanship, and the pattern the units are put in can strongly affect the durability of the overall masonry construction. Masonry is commonly used for the walls of buildings, retaining walls and monuments. Brick is the most common type of masonry and may be either weight- bearing or a veneer. Concrete block masonry is rapidly gaining in popularity as a comparable material. Blocks is defines most of which have hollow cores that is offer various possibilities in masonry construction. They generally provide great compressive strength, and are best suited to structures with light transverse loading when the cores remain unfilled. Filling some or all of the cores with concrete or concrete with steel reinforcement (typically "rebar") offers much greater tensile and lateral strength to structures. However, since modern-day technology is outpacing the redefinition of terms, it might be more practical, but, basically to discuss and review these materials it¶s dividing them into two basic categories which are unit masonry and stone. Unit masonry materials manufactured units of size that are generally handled and erected by one mason. However, there are exceptions to this simple definition in that prefabricated panels of brick and concrete masonry units require several masons to erect them. Unit masonry includes such materials as brick, concrete block and concrete brick. And then stone is primarily a natural quarried material that can be assembly with mortar. But, in our discussion only discuss and review about brick, concrete block, and stone masonry.

Upload: saiful-azlie

Post on 07-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 1/24

Page 1 of 24 

INTRODUCTION

What is masonry?

Masonry has been generally defined as an assembly of brick, stone, concrete

masonry units, structural clay tile, architectural terra cotta, glass block, gypsum block, or 

similar material bonded together with mortar to form walls and others parts of buildings.

Masonry is generally a highly durable form of construction. However, the materials

used, the quality of the mortar and workmanship, and the pattern the units are put in

can strongly affect the durability of the overall masonry construction.

Masonry is commonly used for the walls of buildings, retaining walls and

monuments. Brick is the most common type of masonry and may be either weight-

bearing or a veneer. Concrete block masonry is rapidly gaining in popularity as a

comparable material. Blocks is defines most of which have hollow cores that is offer 

various possibilities in masonry construction. They generally provide great compressive

strength, and are best suited to structures with light transverse loading when the cores

remain unfilled. Filling some or all of the cores with concrete or concrete with steel

reinforcement (typically "rebar") offers much greater tensile and lateral strength to

structures.

However, since modern-day technology is outpacing the redefinition of terms, it

might be more practical, but, basically to discuss and review these materials it¶s dividing

them into two basic categories which are unit masonry and stone. Unit masonry

materials manufactured units of size that are generally handled and erected by one

mason. However, there are exceptions to this simple definition in that prefabricated

panels of brick and concrete masonry units require several masons to erect them. Unit

masonry includes such materials as brick, concrete block and concrete brick. And then

stone is primarily a natural quarried material that can be assembly with mortar. But, in

our discussion only discuss and review about brick, concrete block, and stone masonry.

Page 2: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 2/24

Page 2 of 24 

BRICK

Building bricks are solids masonry units compared of inorganic nonmetallic

materials hardened or burned by heat or chemical action. Building brick may be solid or 

it may have cored openings not to exceed 25 percent of its volume. Brick are producedin a wide variety of colors, shapes and textures.

Classes of bricks

Bricks are generally classified as adobe, made of natural sun-dried clays or earth

and a binder; kiln burned, composed of clays or shale¶s to which other materials may

have been added and fired to hardness; sand-lime, mixtures of sand and lime hardened

under steam pressure and heat; and concrete, solid or cored units composed of 

Portland cement and aggregates.

Adobe brick: Sun-dried brick formed of sandy clay found in the Southwestern Unites

States has been used for centuries by the various Indian tribes of the area. Adobe brick

is still used in this semiarid area, where its good insulating qualities can be used to

advantage. Modern adobe brick is composed of soils that contains sufficient clay to bind

the particles together but does not contain more than 0.2 percent of water-soluble salts.

The soil is mixed with a stabilizing agent of emulsified asphalt to provide the required

resistance to absorption. Adobe bricks are commonly 3 in 6 in [76 to 152 mm] high, 8 in

to 13 in [203 to 330 mm] wide, and from 12 in 18 in [305 to 457mm] long.

Kiln-burned brick: This most widely used type of building brick is made of natural sand

and clays or shale. These clays are composed of silicate or alumina and small

percentages of other minerals. Clays with a large percentage of feldspar and iron oxide

turn salmon, red, or brown on firing. Clays with a large percentage of calcium carbonate

burn to a yellowish color. Shale is a type of clay that has been solidified under pressure.

It is a type of clay that has been solidified under pressure. It is not soluble in water in itssolid form and must be ground or pulverized to be used in the manufacturer of clay

product.

Sand-lime brick: Sand-lime brick is a pearl-grey brick formed much like dry-pressed

burned-clay brick. Lime, in the form of dolomite lime or high calcium lime, is mixed with

Page 3: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 3/24

Page 3 of 24 

clean, washed sand and allowed to stand for several hours before it is delivered to a

press. The brick is then allowed to harden in closed vessels under steam pressure. The

grading and use of sand-lime brick are similar to those of hard-burned clay brick.

Concrete brick: Concrete (cement brick) is made of Portland cement and a suitable

aggregate. The materials are mixed together and formed in molds of the same size as

burned brick. The brick may be cured by steam or by the dry process. Concrete brick is

used where a particular texture or color is desired.

Manufacture of brick

The clay used for kiln-burned brick are usually obtained by surface digging or 

quarrying. Some clay requires some preparation, while others require extensive

grinding. The clay is to delivered to a granulator, which breaks up the largest pieces

with steel knives. It is then discharged onto large pans, where it is ground to a fine

powder by steel rollers. After the clays is ground, it is tempered in a pug mill. Tempering

is the process of reducing the clay to a homogenous plastic mass. At this point sand

and water added to produce the desired consistency for molding. Bricks may be molded

by a soft-mud, stiff-mud, or dry-process.

The soft-mud process consists of mechanically forcing wet, soft clay into molds.

The molding machine forces the wet clay into several molds under pressure, cuts off 

excess clay, and turns the molded bricks out onto a pallet or conveyor, to be carried

away for drying. The inside of the mold may be sprayed or dipped in water to prevent

clay from sticking. These bricks are called water-struck bricks. Sand-struck bricks

generally have sharper, cleaner edges than water-struck bricks.

In the stiff-mud process only enough water is used to form the clay into a

cohesive mass, which is then to forced or extruded in a column through dies in a brick-

making machine. The column of clay is forced onto a wire cutting table, where it is cutinto appropriate lengths by taut wires. This produces a wire-cut face. Brick may be end

cut or side cut, depending on the size and shape of the die.

Dry-pressed brick is manufactured of relatively dry or nonplastic clays. The

material is fed into the machine by hoppers, where it is compressed into molds under 

Page 4: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 4/24

Page 4 of 24 

high pressure. Dry-pressed brick are compact, strong, and well-formed. Many face

bricks are formed by this process.

When the bricks come from the brick-making machine, they contain from 7 to 30

moisture content, depending on the process used. They may be stacked in open sheds

for periods of 7 days to 6 weeks for final drying. Most brick is now dried in mechanical

driers under controlled conditions of heat, moisture, and air velocity for 2 to 4 days.

Brick kilns

The earliest type of kiln used to fire brick consisted of a series of arches

composed of the natural dried brick. The remainders of the dried, or green, bricks were

piled on top of the arches, and a fire was built under the arches. As the heat distribution

in this type of kiln is very uneven, the bricks closest to the fire were burned to a vitrified

shiny surface that was almost black. These shiny, occasionally warped, dark bricks are

sometimes used for special architectural effects. The bricks at the top of the pile were

partially burned and were a light-pink or salmon color. Those in between varied in color 

and hardness, depending on their location in the pile. While this type of kiln may still be

used in some small brickyards, most brick are now burned in kilns having permanent

enclosures, with the heat generated in ovens outside the wall. The heat may be

furnished through grates under bricks piled in arches as before. These kiln are called

up-draft kilns. If the heat enters near the top of the kiln and passes down through the

piled brick and out through openings in the floor to chimneys, the kiln is called a down-

draft kiln.

Kilns may be either intermittent or continuous. In the intermittent kiln, the bricks

must be fired, the fires extinguished, the brick allowed to cool, the kiln dismantled, and

the bricks removed before a new pile of green bricks is piled to be fired. The

development of the continuous kiln greatly speeded up the process. The continuous kiln

may consist of several compartments fired by a single oven. The heat is regulated in

each section so that while the remaining water is being removed from the brick in one

compartment, bricks are being fired in a second compartment and cooled in a third. The

continuous tunnel kiln is now widely used. The tunnel kiln consists of either a straight or 

a curved tunnel, with several zones in which heat is carefully controlled. Bricks are

Page 5: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 5/24

Page 5 of 24 

loaded onto special cars and pulled through the preheating, firing, and cooling zones at

a constant rate of speed. The tunnel kiln is very efficient and produces a more uniform

product.

Brick types and size

Bricks are available in many different sizes and types, which vary greatly from

area to area. For example, over 100 different clay-brick unit are manufactured in

southern California alone. Hence the designer of brick-masonry structure must check

carefully to ascertain whether a particular type, color, or texture is manufactured or 

stocked locally. The most generally used solid clay masonry units are common building

brick, face brick, special brick and custom brick (see Figure 4-5).

Figure 4-5

Page 6: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 6/24

Page 6 of 24 

Common brick: Common brick is the most widely used building brick. This is the

ordinary red brick used for walls, backing, and other structures where a special color,

shape, or texture is not required. The color may vary from dark orange to a deep red

color, depending on the composition of the local clay. Common brick can obtained in

some areas with rug-face, ruffle, scored, combed, roughened, smooth, wire-cut, bark-

face, stone-face, and several other finishes. Grades of common brick are shown in table

4-2. Common brick are manufactured in many sizes.

While the masonry industry has been working for the many years to standardize

brick sizes, a survey in 1976 showed that more than 50 different sizes of brick were

being produced in southern California. The sizes produced in local areas must be

checked carefully. The Masonry Institute of America has recommended that the sizes

be standardized as shown in Tables 4-3, 4-4, and 4-5. (Metric brick sizes have not yet

been established in the Unites States).

Modular brick: Bricks which can be laid to modular dimensions are available in some

localities. These brick are sized so that the brick plus the mortar joint will form a 4 in, or 

12 in increment, or module. Thus three bricks 25/12 in × 33/4 in × 73/4 in plus 1/4 in joints

would form a 4 in × 8 in × 8 in block.

Face brick: Face brick is made under controlled conditions that produce close

dimensional tolerances and high structural qualities. It is available in two grades, which

conform to the same standards as SW and MW grades of common brick. The ASTM

groups face brick into three basic appearance classifications, as shown in table 4-5.

Standard sizes of face brick are shown in table 4-4.

Glazed face brick: Glazed brick is produced to the same close tolerances as other face

brick, but it has been given a hard, impervious face with a dull, satin, mottled, or glossy

finish. The brick is sprayed with a ceramic glaze and is then fired to temperature of 

nearly 2000oF [1090oC] to fuse the glaze to the brick. Many colors, texture, and finishes

are produced by applying metallic salts to the face of the brick before firing. This

transparent salt-glaze allows the original brick color to show through the glaze.

Page 7: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 7/24

Page 7 of 24 

Fire brick: Brick made of clays having a high percentage of alumina or silica, flint, and

feldspar are used where masonry will be subject to extreme heat. Fire brick is used for 

the lining of fireplaces, incinerators, chimney, stacks, industrial fire boxes, and smelting

furnaces. Fire brick is softer than common brick and is light beige to brown in color. A

fire brick is normally 21/2 × 41/2 × 9 in; fire-brick splits are 11/4 × 41/2 × 9 in.

Cored brick: Some building codes allow the use of unreinforced 6-in [152-mm] walls. A

type of brick with 10 vertical cores 13/8 in in diameter was developed in order to satisfy

the need for a masonry unit 51/5 × 21/16 × 111/2 in, for use with 1/2, in joint. The vertical

cores through the unit reduce the weight. The SCR, produced by Structural Clay

Research, is a brick of this type. A wall constructed of SCR brick looks like a wall laid up

with Norman brick.

Paving brick: Special hard-burned paving bricks, or pavers, are produced for 

installation where wear or abrasion is a factor. These pavers are burned at a high

temperature to make them impervious to water and resistant to abrasion. They are

usually obtainable in depth of 21/3, 3, and 31/2 with a 4 × 81/2 in face.

Special brick

Brick is manufactured in special shapes for specific purposes. Caps, sills, lintels,

and corners are manufactured and stocked by many producers. Bull-nose shape bricks

are manufactured for window and door trim. Interior and exterior rounded corners are

sometimes available. The increased use of reinforcement brickwork has led to the

development of special shapes to allow either horizontal or vertical steel reinforcing to

be placed in the brick wall. Many building brick codes in areas are subjected to wind or 

earthquake require reinforcement of masonry construction, and most companies now

produce these special shapes in either standard or modular sizes.

Brick made to order for special design are also available from many brickmakers.These custom bricks may be made in special shapes, colors, and textures. One

architect wanted a special long, thin unit to carry out the lines of his building. The owner 

of a chain of motels and restaurants wanted a unique brick to be used in all his buildings

to establish a company image. The cost of custom brick may often be offset by the

importance of such factors.

Page 8: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 8/24

Page 8 of 24 

BRICKWORK

Brickwork involves the assembly of masonry units including mortar, jointing, bond, tieing

and workmanship to ensure performance, appearance, strength, and weather tightness.

Other factor which influence heat transmission, sound transmission, and fire resistanceare a function of the design of a masonry wall.

Mortar 

The primary function of mortar is to bond masonry units together so that the mortar joint

is durable and acts as a seal against the entrance of water. Other important properties

of mortar are workability, water retentively, and strength.

The primary ingredients of mortar are cementitious material, aggregate, and

water. Two standards for mortar are available: ASTM C270 and Brick Institute of 

 America (BIA) M1-72. Essentially, the BIA standard restricts the cementitious

ingredients to Portland cement and lime, whereas the ASTM standard also allows the

use of masonry cement as one of the cementitious ingredients. Canada Building Digest

163 states: ³it is difficult to predict the properties of masonry cement since their 

composition is not always published. Their use should therefore be based on the basic

of known local performance.´

BIA standard M1-72 lists four types of mortar as shown on table 4-3-1. Portland

cement ±lime mortars are proportioned by volume in accordance with information

shown in table 4-4-1.

 As stated at the outset, the most important functions of mortar are its bonding or 

adhesive qualities and its durability. Bonding is increased by:

1. Mixing mortar to the maximum flow (ASTM C109) compatible with

workmanship. This means using maximum amount of water and retempering.2. Wetting clay units whose suction rate exceeds 20 grams per minute.

Page 9: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 9/24

Page 9 of 24 

Joints

The aesthetics of brick joint are determined by its size, color, and the manner in which it

is tooled. The method by which a joint is tooled also contributes to the watertightness of 

the wall. The tooled concave joint which compresses the mortar tightly against the

masonry units produces the best resistance to water penetration by densifying the

surface of the mortar. Joints should be made after the mortar has received its initial set;

this compensates for any initial shrinkage.

Joints that are made by cutting with a trowel or that are rubbed or designed so

that they do not shed water run the risk of admitting water. Such joints where desired as

part of the aesthetic purpose should be limited to designs using cavity wall construction.

Joints sizes are a function of the masonry unit size and type. Glazed brick joints

are generally ¼ inch; facing brick joints, 3/8 to ½ inch; and building brick joints ½ inch.

Typical joints are shown in figure 4-3-1.

Figure 4-3-1 

Page 10: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 10/24

Page 10 of 24 

Bond patterns

While masonry bonding is the laying of units in rows or courses to tie the units together,

bonds are also designed to enhance the appearance of a masonry wall. Depending

upon the wall design (solid wall, cavity wall, or faced wall), either masonry bonding or 

metal ties are employed to bond the units into a solid mass. Each course of brick is one

continuous horizontal layer bonded with mortar. The course can consist of brick laid end

to end (stretcher) and/or with header (short dimension). In solid or cavity wall, each

continuous vertical section of masonry one unit in thickness constitutes a wythe. The

manner in which the wythes are bonded or tied creates a bond pattern. See figure 4-4-1

for bond patterns.

1. Stretcher or Running Bond: A pattern created by laying brick end to end (long

dimension) with each course breaking joints at the midpoint of the course below.

2. Common Bond: a pattern consisting of stretcher or running bond courses, six or 

seven courses high with a course header (short dimension) laid perpendicular to

the stretcher course and thus bonding into the inner wythe.

3. English Bond: A pattern consisting of alternating courses of stretchers and

headers.

4. Flemish Bond: A pattern created by using one header followed by one stretcher 

in a course and with each course offset so that a header in one course is

centered over the stretcher below.

5. Stack Bond: A pattern of brick stretchers laid so that horizontal and vertical joints

are all in line.

6. Soldier course: Brick laid on end with the face showing; used essentially for belt

courses or flat arches.

7. Rowlock Courses: Brick laid on face edge with end showing; used for sills or belt

courses.

Page 11: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 11/24

Page 12: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 12/24

Page 12 of 24 

Quality of Work

Leaks in masonry walls are the result of the penetration of water through openings

between mortar and brick rather than through mortar or brick. Therefore workmanship,

rate of absorption of masonry units, and water retentively of mortar are the controlling

factors affecting the construction of watertight masonry walls. To achieve this end result,

do the following:

1. Lay brick in a full bed of mortar without furrowing.

2. Head of joints of stretcher courses should have end of each unit fully buttered

with mortar.

3. Header courses should have each side fully buttered with mortar.

4. Shove each brick into place so that the mortar oozes out at the top of joints.

In solid masonry construction, lay heavy back-up units first, parge its outer face, then

lay face units. Tool face joints as here in before noted under joints.

Figure 4-5-1 

Page 13: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 13/24

Page 13 of 24 

Since units with high rates of absorption will suck the water from the mortar, reduce

the bond, and induce shrinkage cracks it may be necessary to wet the units prior to

laying. Brick with high suction rates can be determined as follow: Draws a 1-inch

diameter circle with a wax crayon on the bed of the unit. Place 20 drops of water inside

the circle. If the water is absorbed in less than 11/2 minutes, the units should be wetted

prior to laying, since their suction rate is high.

Water retentivity of mortar is a measure of the flow and workability of a mortar. It

is also the property of a mortar. It is also the property of a mortar which prevents

³bleeding´ or ³water gain´ when the mortar is in contact with retentivity, specify that the

mortar have a flow after suction of not less than 75% of that immediately after mixing as

determined by ASTM C91.

Efflorescence

The white soluble salt that sometimes appears as a deposit on masonry is known as

efflorescence. This deposit is due to the entrance of water into the brickwork, the

dissolving of salts (primarily sodium and potassium carbonates and sulfates), and their 

migration to the outer surface and deposition there in the form of a white soft powder.

 All of the ingredients used in masonry construction (brick, mortar, and water) may

contain the salts described above. Face brick, ASTM C216 refers to test method ASTM

C67 to preclude using brick that may cause efflorescence. Therefore, mortar ingredients

and water may be the unknown source of these salts. The use of lime and Portland

cement of low alkali content will greatly reduce the capacity of mortar to contribute to

efflorescence. Water and sand can be checked by laboratory analysis for alkalinity to

reduce the possibility of efflorescence.

Page 14: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 14/24

Page 15: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 15/24

Page 15 of 24 

Types and Sizes

Concrete block is manufactured in many sizes and shapes. The most commonly

used block is designated as 8 × 8 × 16 in. It is designed to be laid up in a single

thickness to produce a wall which is actually 75/8 in thick with courses 8 in high. For this

reason the actual unit dimensions are usually 3/8 in smaller than the nominal sizes to

allow for the thickness of mortar joints. For example, a standard 16 in unit is actually

only 153/8 in long; with a 3/8 in mortar joint it will occupy 16 in in the wall. Similarly, the

75/8 in height plus a 3/8 in mortar joint is exactly 8 in. this allowance for mortar joints

makes all wall measurements work out to even modular dimensions. Block are

produced for the construction of walls and partitions in nominal thicknesses of 4 in, 6 in,

8 in, 10 in, and 12 in. half-blocks are produced for use at the ends of walls laid in

running bond. Blocks 4 in high are available in some areas.

The face shells and webs of concrete blocks vary in thickness from 1 1/4 to 2 in

depending on the size of the block and the use for which it was designed. Some blocks

are manufactured with closed cells at the ends, while others are open at one or both

ends.

Many special shapes are produced for specific purposes, Bullnose blocks , used

for rounded exterior corners, are available in most sizes. Specially shaped sill blocks

are manufactured for windows. Blocks with vertical slots cast in to one end are used in

conjunction with the installation of metal windows or for the installation of wood bucks to

which door casings can be nailed. Header and bond beam blocks are open-end blocks

which have been hollowed out to allow the pouring of reinforced concrete beams over 

openings. Special shapes are produced for use where reinforced pilasters are to be

included in a structural wall.

Detailed block: Forms may be used in block-making machines to produce a block with

a patterned face (see figs. 4-14, 4-15 and 4-16). Some block has vertical and horizontal

grooves to simulate mortar joints. Block with triangular or rectangular indented areas

may be laid in different directions to create interesting shadow patterns. Surface

textures resembling that of rough adobe brick are produced in some areas. These

textured blocks are called slumped block, termed Slump stone by one manufacturer.

Page 16: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 16/24

Page 16 of 24 

Screen units: The use of concrete masonry units to form open grilles is an innovation

that has a great impact on building design, particularly in California. Screen-wall

masonry units can be molded with an almost infinite variety of pierce openings (see fig.

4-17). The manufacturing of screen units is similar to that of standard concrete blocks.

Sizes and shapes of unit vary with the patterns. The most common sizes are designed

to make a screen wall that is 4 to 6 in [102 to 152 mm] thick when the units are set on

edge. Screen units are set with mortar in the same manner as standard blocks. The

horizontal and vertical joints may be reinforced to provide resistance to wind and

earthquake forces. Standard concrete block may be used to develop a screen by

exposing the cored openings. Screen-wall masonry units may be used as a veneer 

attached to a structural wall to create deep shadow lines and textures. If the units are

used as a veneer, they are supported on an extension of the wall footing and tied to the

structural wall with steel angles or tie wires.

Figure 4-14, 4-15, 4-16 

Page 17: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 17/24

Page 17 of 24 

Reinforced Concrete Masonry

Concrete masonry structures in areas subject to earthquake or severe

windstorms must be reinforced in accordance with local building-code requirements.

This is usually done by building reinforced concrete beams and studs as integral part of 

the concrete masonry wall. Vertical alignment of the hollow cores in the units permits

reinforced-concrete studs or columns to be built at regular intervals in the wall, as well

as at the corners, and the use of special block facilitates the construction of beams.

Single-thickness structural concrete-block walls are usually erected on cast-in-

place footings and foundations walls. Steel dowels are cast into the foundation walls at

intervals corresponding to the open cells of the concrete blocks (see fig. 4-18). The

spacing of these dowels and the length they must extend above the foundation are

governed by local building codes. The reinforcing is located to coincide with the dowels

extending up from the foundation. Horizontal steel reinforcing bars are placed at mid-

height, around openings, and as lintels or bond beams above openings. The masonry

wall is usually built up to the first horizontal beam, and the vertical reinforcing steel is

placed in the cells. At this point grout is poured in those cells that contain reinforcement

to form a reinforced structural stud. To assure that the reinforcing is in place, and to

clean out any mortar droppings, small openings or cleanouts are left at the bottom of all

cells that are to be grouted.

Figure 4-17 

Page 18: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 18/24

Page 18 of 24 

 As the structural wall is built up, bolts, anchors, electrical conduit, pipes for 

plumbing, heating ducts, and other devices to be embedded in the wall must be placed

on position. All bolts placed in a concrete-block wall must be adequately anchored by

hooking around reinforcing steel or some other means to prevent the bolt from pulling

out or failing under load. When a wood roof structures is to be connected, redwood

plates are attached to the wall by means of bolts embedded in the bond beam at the top

of the wall.

Figure 4-18 

Page 19: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 19/24

Page 19 of 24 

STONE MASONRY

Stone blocks used in masonry can be "dressed" or "rough." Stone masonry

utilizing dressed stones is known as ashlar masonry, whereas masonry using irregularly

shaped stones is known as rubble masonry. Both rubble and ashlar masonry can be

laid in courses (rows of even height) through the careful selection and cutting of stones,

but a great deal of stone masonry is uncoursed. Natural stone veneers over concrete

masonry unit, cast-in-place, or tilt-up concrete walls are widely used to give the

appearance of stone masonry. Sometimes "river rock" (oval shaped smooth stones) is

used as a veneer. This type of material is not favored for solid masonry as it requires a

great amount of mortar and can lack intrinsic structural strength. Manufactured-stone

veneers are maturing in their popularity as an alternative to natural stones. Attractivenatural stone has become more expensive in many areas and in some areas is

practically unavailable. Manufactured-stone veneers are typically made from concrete.

Natural stones from quarries around the world are sampled and recreated using

moulds, aggregate, and colorfast pigments. To the casual observer there may be no

visual difference between veneers of natural and manufactured stone.

Otherwise, stone masonry walls are classified according to shape and surface

finish of the stone as rubble, ashlar, and cut stone, or dimension stone. Within each of 

the classifications variations maybe used to provide interest or to bring out the

characteristics of a particular type of stone (see fig. 4-31).

Types of Stonework

Rubble: Rubble masonry is composed of stones as they are either collected, called

fieldstone, or as they come from the quarry. Thus the stones may have rounded natural

faces or angular broken faces. Random rubble consists of fieldstones or quarry stones

laid in an irregular pattern of sizes and shapes, with the large spaces between them

filled with spalls, or broken bits of stone. A special type of rubble masonry, called

polygonal, mosaic, or mosaic webwall, is composed of random-shaped stones fitted

together to expose a web of more or less uniform mortar joints. Mosaic dry wall is

similar, but is laid close together with no mortar showing. Coursed-rubble or strip-rubble

Page 20: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 20/24

Page 20 of 24 

walls are constructed of stone that has been quarried walls are constructed of stone that

has been quarried in layers of uniform thickness or of roughly shaped stones laid in

approximately level beds. The stones are split to length by the mason on the job.

Ashlar : Ashlar masonry is constructed of squared stones set in random or uniform

courses. Uniform continuous courses of the same height are called regular-course

ashlar. Walls of squared stones if different sizes set in random courses are classed as

random or broken-range ashlar. A wall of squared stones that is not measured and cut

according to shop drawings, but is set at the discretion of the mason, is considered an

ashlar wall. The surface finish of ashlar walls may be quarry face, hand split, or finish

compatible to be stone used.

Cut stone: Cut stone, sometimes called dimension stone, is define here as stones

which are wholly fabricated and finished at the mill ready to be set in the building in

conformity to drawings and specifications. Each stone is numbered and located on shop

drawings and setting diagrams. Cut stones are seldom used as structural members.

The most common use is as masonry veneer, which is attached to a backing with wire

ties or nonrusting anchoring devices. The tie wires, corrugated metal straps, or 

anchoring devices. The tie wires, corrugated metal straps, or anchoring devices are cast

into the mortar joint between the stones. Anchors for cut-stone veneer may be cast into

structural-concrete backing walls. Dovetail slots may be formed into the structural wall

to receive special anchors. These special anchors of brass, medium-hard drawn

copper, or stainless steel fit into holes or slots drilled or sawed into the cut stone. The

cut stone is held away from the backing by the anchors. Continuous horizontal angles

bolted into the backing may be used to support and hold the-stone veneer in place. The

spaces between the cut stones may be maintained by aluminum or plastic spacers (see

fig. 4-32).

Page 21: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 21/24

Page 21 of 24 

Figure 4-31 

Figure 4-32 

Page 22: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 22/24

Page 22 of 24 

CONCLUSSION

From deeply discussion and review of masonry which are concentrate to brick,

concrete block, and masonry stone, we can concluded that have advantages and

disadvantages in used these materials in construction especially in building.

The advantages used of materials such as brick and stone can increase the

thermal mass of a building, giving increased comfort in the heat of summer and the cold

of winter and can be ideal for passive solar applications. Furthermore, brick typically will

not require painting and so can provide a structure with reduced life-cycle costs,

although sealing appropriately will reduce potential spalling due to frost damage

different than concrete block which, the non-decorative variety generally is painted or 

stuccoed if exposed. It also can give the appearance, especially when well crafted, can

impart an impression of solidity and permanence and is very heat resistant and thus will

provide good fire protection.

The disadvantages used of these materials can be seen when exposed to the

extreme weather which, may cause degradation of the surface due to frost damage.

This type of damage is common with certain types of brick, though relatively rare with

concrete block. If non-concrete (clay-based) brick is to be used, care should be taken to

select bricks suitable for the climate. In additional, masonry must be built upon a firm

foundation usually reinforced concrete to avoid potential settling and cracking. If 

expansive soils such as adobe clay are present, this foundation may need to be quite

elaborated and the services of a qualified structural engineer may be required. It is also

effect at the high weight increases structural requirements, especially in earthquake

prone areas.

Lastly, the masonry consists of brick, concrete block, and masonry stone is very

important as the materials for structural depends on its individual properties.

Page 23: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 23/24

Page 23 of 24 

 APPENDIX

Page 24: Brick Baru

8/6/2019 Brick Baru

http://slidepdf.com/reader/full/brick-baru 24/24

Page 24 of 24

REFERENCES

Don A Watson Construction Materials and Processes.1986

Harold J. Rosen, PE, FCSI Construction Materials for Architecture.1985

 Arthur Lyons Materials for Architects and Builders 4thedition.2010

http://www.tpub.com/engbas/7-32.htm

http://www.flickriver.com/photos/14696209@N02/sets/72157621028957921/

http://en.wikipedia.org/wiki/Masonry