belajar teknik elektro

170
Auxiliary material to the lecture Theorie der Elektrotechnik (engl.) (437.253)  by Univ.-Prof. Dipl.-Ing. Dr.techn. Oszkár Bíró 1

Upload: kurniati084

Post on 02-Jun-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 1/170

Auxiliary material to the lecture

Theorie der Elektrotechnik (engl.)

(437.253)

by

Univ.-Prof. Dipl.-Ing. Dr.techn. Oszkár Bíró

1

Page 2: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 2/170

. ,

. ,

. 0,

. ,

I curlt

II curlt

III div

IV div ρ

∂= +

∂= −

=

=

DH J

BE

B

D

1. Maxwell‘s equations

generalized Ampere‘s law,

Faraday‘s law,

magnetic flux density is source free,

Gauss‘ law.

Consequence: law of continuity

.t

div∂

∂−= ρ

J

(implied by the divergence of the first equation

+ the fourth equation:

.),0 ρ ==

∂+ D

DJ div

t

div2

Page 3: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 3/170

Charges are separated in voltage sources due to non-electric

(e.g. chemical) processes. The impressed field intensity Ee is

a fictitious electric field intensity which would give rise to

the same amount of charge separation:

Ideal voltage source:

Non-ideal voltage source:

,2

1

1

2

∫∫ ⋅−=⋅=P

P

e

P

P

eq d d u rErE

Ee + + + + + + + + +

_ _ _ _ _

ui P1

P2

Field quantities in voltage sources

∫ ⋅=2

1

P

P

d u rE

∫∫ ⋅−=⋅ΓΓ

=2

1

1

2

P

P

P

P

q d d iR rJ

rJ

γ γ

∞→−=⇒= γ ,equu EE

γ

JEE +−=⇒−= eqq iRuu

)( eEEJ += γ

J EΓ: Cross section

γ : conductivity

3

Page 4: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 4/170

Material relationships:

).(,, eEEJHBED +=== γ µ ε

Energy and power density:

BHDE ⋅+⋅=+=2

1

2

1me www

.

2

γ

J= p

,00

⋅+⋅=

∫∫

B D

d d BHDE

., ∫∫ΩΩ

Ω=Ω= pd Pwd W

Energy and power loss in a volume Ω:

4

Page 5: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 5/170

1.1 Classification of electromagnetics

1. Static fields

=

∂∂ 0t

, , 0, , 0.curl curl div div div ρ = = = = =H J E 0 B D J

electrostatic field:, , .curl div ρ ε = = =E 0 D D E

magnetostatic field: , 0, .curl div µ = = =H J B B H

static current field: , 0, ( ).ecurl div γ = = = +E 0 J J E E

5

Page 6: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 6/170

2. Quasi-static field

∂>>

t

DJ

,

,

0,

curl

curlt

div

=

∂= −

∂=

H J

BE

B

).(, eEEJHB +== γ µ

6

Page 7: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 7/170

,

,

0,

,

curlt

curlt

div

div ρ

∂= +∂

∂= −

=

=

DH J

BE

B

D

3. Electromagnetic waves

).(,, eEEJHBED +=== γ µ ε

7

Page 8: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 8/170

1.2 Fundamentals of circuit theory

Circuit signals:

,2

1

12 ∫ ⋅= rE d u ,∫Γ

Γ Γ⋅= d i nJ

ideal capacitor:

resistor: , Riu =

,CuQ =

ideal inductor: . Li=Φ

Circuit elements:

,

∫∫∫ ΓΩΩΩ Γ⋅=Ω=Ω= d d divd Q nDD ρ .

∫ΓΓ Γ⋅=Φ d nB

8

Page 9: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 9/170

ii Γ

t ∂∂D

Current-voltage relationships:

C

Capacitor

iu

Ω

Integrating the law of continuity over Ω:

n

dt

duC i =

0d dQ

div d d d i .t dt dt

ρ ρ

Ω Γ Ω

∂ + Ω = ⋅ Γ + Ω = − + = ∂

∫ ∫ ∫J J n

9

Page 10: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 10/170

Inductor

C Γ

u

i

B

Γ n

Integrating Faraday’s law over Γ:

u

i L

0.C

d d curl d d d ut dt dt

ΓΓ Γ

∂ Φ + ⋅ Γ = ⋅ + ⋅ Γ = − + = ∂ ∫ ∫ ∫

BE n E r B n

dt

di Lu =

10

Page 11: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 11/170

Kirchhoff’s current law:

Γn

Ω

i1 i2

i3

i4

0 on , since

cuts no capacitor.

t ∂ = Γ Γ∂D

Integrating the law of continuity over Ω:

∑ =ν

ν 0i

0div d div d d d .t t t

ρ

Ω Ω Γ Γ

∂ ∂ ∂ + Ω = + Ω = + ⋅ Γ = ⋅ Γ = ∂ ∂ ∂ ∫ ∫ ∫ ∫D DJ J J n J n

11

Page 12: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 12/170

Kirchhoff‘s voltage law:

u L1

uC 1

u R1

uq1

u Lµ

uC µ

u Rµ

uqµ

uqm u Rm

uCm

u Lm

Γ

Integrating Faraday’s law over Γ:

0.C

d curl d d d

t dt ΓΓ Γ

∂ + ⋅ Γ = ⋅ + ⋅ Γ = ∂

∫ ∫ ∫B

E n E r B n

C Γ

( ) 01

=+++∑=

m

LC Rq uuuuµ

µ µ µ µ 12

Page 13: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 13/170

1.3 Energy conversion in electromagnetic field

curlt

curlt

∂− ⋅ = − ⋅ − ⋅∂

∂⋅ = − ⋅

DE H E J E

BH E H

curl curlt t

∂ ∂⋅ − ⋅ = − ⋅ − ⋅ − ⋅∂ ∂

B DH E E H H E J E

I. MGl. (-E)

II. MGl. H +

( ) ( )curl curl⋅ − ⋅ = ⋅ ∇ × − ⋅ ∇ × =H E E H H E E H

( ) ( ) ( ) ( )HEHEHEHE ×=×⋅∇=×⋅∇+×⋅∇= divcc

13

Page 14: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 14/170

Integration over a volume Ω:

( )∫∫∫ΩΩΩ

Ω×+Ω⋅=Ω

∂∂⋅+

∂∂⋅− d divd d

t t HEJE

DE

BH

∂=⋅

∂=

∂=⋅

∂=

∂⋅ ∫

2

0

2

1

2

1HBHBH

BH µ

t t t

wd

t t

m

B

( ) JEJE

J

JEE

J

EEEJ ⋅−=⋅−=⋅⇒−=⇒+= eeee pγ γ γ

2

∂=⋅

∂=

∂=⋅

∂=

∂⋅ ∫

2

02

1

2

1EDEDE

DE ε

t t t

wd

t t

e

D

for

linearmedia

( ) ( )∫∫ΓΩ

Γ⋅×=Ω× d d div nHEHE (Gauss’ theorem)

14

Page 15: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 15/170

( ) ( )∫∫ ∫∫ΓΩ ΩΩ

Γ⋅×+Ω⋅−Ω=Ω+− d d d d wwdt

d eem nHEJE

J

γ

2

Poynting’s theorem:

right hand side:

reasons for the decrease of energy in a volume

HES ×= Poynting’s vector: power through unit surface

∫Γ

Γ⋅ d nS is the power leaving the volume Ω through

radiation.

15

Page 16: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 16/170

1.4 Existence of a unique solution to Maxwell’s equations

The solution of Maxwell’s equations in a volume Ω with the boundary Γ is unique for , provided that the

1. initial conditions

,),(),(),(),( 0000 Ω∈∀==== rrErErHrH anf anf t t t t and the

2. boundary conditions for the tangential components

0 0 0( , ) ( , ) or ( , ) ( , ), ,t tan t tant t t t t t = = ∀ ∈ Γ ≥H r H r E r E r r

0t t >

are fulfilled. Both the functions ),(),( 00 rErH anf anf

0 0( , ) and ( , )tan tant t H r E r and the impressed field intensity Ee

must be known. The material properties are assumed to be linear. 16

Page 17: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 17/170

Proof :

two solutions exist., and ,′ ′ ′′ ′′E H E H Assumption:

Their differences: HHHEEE ′′−′=′′−′= 00 ,satisfy Maxwell’s equations (these are linear). The initial and

boundary conditions for the difference fields are homogenousand Ee0=0. Therefore, Poynting’s theorem :

( )∫∫∫ΓΩΩ

Γ⋅×+Ω=Ω

+− d d d dt

d nHE

JEH 00

2

02

0

2

02

1

2

1

γ ε µ

Since the boundary conditions imply that either E0 or H0

point in the normal direction n, the vector 000 HES ×=has no normal component. Therefore, the surface integral is zero.

17

Page 18: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 18/170

∫∫ΩΩ

Ω=Ω

+− d d

dt

d

γ

ε µ

2

02

0

2

0

2

1

2

1 JEH

The right hand side is obviously non-negative, therefore

the quantity whose negative time derivative is written in

the left hand side can never increase. The initial

conditions, however, fix it as zero at the time instant t 0 and, since it is obviously non-negative, it can never

decrease either. Therefore it is always zero:

.02

1

2

1 2

0

2

0

+

∫Ωd EH ε µ

Therefore, 0 0, , i.e. und .′ ′′ ′ ′′= = = =E 0 H 0 E E H H

q. e. d.

18

Page 19: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 19/170

2. Static fields

,

,

0,

,

0.

curl

curl

div

div

div

ρ

=

=

=

=

=

H J

E 0

B

D

J

electrostatic

field:

,,

.

curldiv ρ

ε

==

=

E 0D

D E

magnetostatic

field:

,0,

.

curldiv

µ

==

=

H JB

B H

static current

field:

,0,

( ).e

curldiv

γ

==

= +

E 0J

J E E

Maxwell’s equations :0

=∂

t

19

Page 20: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 20/170

2.1 Boundary value problems for the scalar potential

Electrostatic field and static current field:

,curl gradV = ⇒ = −E 0 E V : electric scalar potential

Magnetostatic field, if J=0:

0 ,curl grad ψ = ⇒ = −H H ψ : magnetic scalar potential

Differential equations:

,)( ρ ε ρ =−⇒= gradV divdivD

,0)(0 =−⇒= gradV divdiv γ J

,0)(0 =−⇒= ψ µ grad divdivBgeneralized Laplace-Poisson

and Laplace equation.

20

Page 21: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 21/170

The solution of the Laplace-Poisson equation in

unbounded free space (ε =ε 0):

0

1 ( )( ) , ( ) 0.

4

d V V

ρ

πε Ω

′ ′Ω= → ∞ =

′−∫r

r rr r

In regions free of charges, the electrostatic field is also

described by the generalized Laplace equation:

.0)( =− gradV div ε

21

Page 22: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 22/170

Boundary conditions:

Dirichlet boundary condition: 0

(known) on , D

V V = Γ

0 (known) on . D

ψ ψ = Γ

D

Γ is typically constituted by electrodes in case of

electrostatic and static current field. Indeed:

konstant.=⇒= V 0Et

Magnetostatic field: interface to highly permeable

regions, to magnetic walls ).( ∞→µ

0µ µ = ∞→µ

0→ EisenH0Ht =since Eisen=t tH H

This means the prescription of Et or Ht.

22

Page 23: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 23/170

Neumann boundary condition: (known) on , N

V

nε σ

∂= Γ

0 on , N V n

γ ∂ = Γ∂

(known) on . N bn

ψ µ

∂= Γ

This means the prescription of Dn , J n or Bn.

In case of static current field, Γ N is the interface to

the non-conducting region.

If σ =0 in the electrostatic case and b=0 in themagnetostatic case, Γ N is a surface parallel to the

field lines. Otherwise, Dn , Bn is known on Γ N .

23

Page 24: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 24/170

Boundary value problems:

0

( ) in

on , on . D N

div gradV

V V V

n

ε ρ

ε σ

− = Ω,

∂= Γ = Γ

electrostaticfield:

0

( ) 0 in

on , on . D N

div grad

bn

µ ψ

ψ ψ ψ µ

− = Ω,

∂= Γ = Γ

magnetostaticfield:

0

( ) 0 in

on , 0 on . D N

div gradV

V V V

n

γ

γ

− = Ω,

∂= Γ = Γ∂

static currentfield:

24

Page 25: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 25/170

2.2 Analytic methods for solving the Laplace equation

Laplace equation: ,02

2

2

2

2

2

=∂

+∂

+∂

=∆= z

V

y

V

x

V

V divgradV

electrostatic field: 00, constant ( ), ρ ε ε = = =

magnetostatic field: 0, constant ( ),µ µ = = =J 0

static current field: constant.γ =

).0( =ψ divgrad

0 is a harmonic function.V V ∆ = ⇒

There exist infinitely many harmonic functions!

25

Page 26: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 26/170

Dirichlet or Neumann boundary conditions :

V =constant on Γ D

Ω=∆ in0V Ω∉ Ω∉

Analytic methods:

Generation of harmonic functions and selection of the one

satisfying the boundary conditions.

This yields the true solution, since that is unique.

0 on N

V

n

∂= Γ

26

Page 27: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 27/170

2.2.1 Method of fictitious charges (method of images)

The potential function of a point charge is harmonic in all

points in space except in the point where the charge is

located.

x

y

z ),,( z y x ′′′Q

( ) ( ) ( )[ ] 2

1222

04),,(

−′−+′−+′−= z z y y x x

Q z y xV

πε

, z y x z y x eeer ++=

r

r′ z y x z y x eeer ′+′+′=′

27

Page 28: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 28/170

( ) ( ) ( ) ( )[ ] =′

−+′

−+′

−′

−−=∂

∂ −2

3222

04 z z y y x x x x

Q

x

V

πε

( )3

04

−′−′−−= rr x xQ

πε

( )[5

23

0

2

2

34

−−

′−′−−′−−=∂∂ rrrr x xQ xV

πε

( ) ( ) ( )=

′−

′−+′−+′−−

′−

−=∂

∂+

∂+

∂5

222

3

0

2

2

2

2

2

2

33

4 rrrr

z z y y x xQ

z

V

y

V

x

V

πε 2

3 5

0

13 0, if .

4

Q

πε

′−′= − − = ≠

′ ′− −

r rr r

r r r r

Proof:

q. e. d.28

Page 29: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 29/170

In two dimensions (planar problems, ),0=∂

z

the potential function of an infinitely long line charge isharmonic.

τ ),( y x ′′

( ) ( )[ ]21

22

0

0

ln2

),(

y y x x

r y xV

′−+′−

=πε

τ

x

y

r

r′

( ) ( )[ ] ′−+′−−= 220

0

ln21ln

2),( y y x xr y xV

πε τ

, y x y x eer += y x y x eer ′+′=′

29

Page 30: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 30/170

( ) ( )22

02 y y x x

x x

x

V

′−+′−

′−−=

πε

τ

( ) ( ) ( )

( ) ( )[ ] =

′−+′−

′−−′−+′−−=

∂222

222

0

2

2 2

2 y y x x

x x y y x x

x

V

πε

τ

( ) ( )( ) ( )[ ]222

22

02 y y x x y y x x

′−+′−

′−−

′−= πε

τ

( ) ( ) ( ) ( )

( ) ( )[ ]

0

2

222

2222

0

2

2

2

2

=

′−+′−

′−−′−+′−−′−=

∂+

y y x x

x x y y y y x x

y

V

x

V

πε

τ

q. e. d.

30

Page 31: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 31/170

Due to its linearity, the Laplace equation is satisfied by the

potential function of an arbitrary charge distribution (in regions

free of charges).

Satisfaction of the boundary conditions: a fictitious chargedistribution within the electrodes should have equipotential

surfaces which coincide with the electrodes.

Examples:

• One point charge: concentric spherical surfaces (sphericalcapacitor)

• One infinitely long line charge: concentric cylindrical

surfaces (cylindrical capacitor)

• Line dipole: non-concentric cylindrical surfaces• Mirror image over a plane: infinite conducting plane

• Multiple mirror images over planes: planar electrodes

forming an angle )/180( n=α

31

Page 32: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 32/170

2.2.2 Separation of variables

General orthogonal coordinates x1, x2, x3

Cartesian coordinates: .,, 321 z x y x x x ===

Cylindrical coordinates:

.,, 321 z x xr x === φ

Spherical coordinates:

.,, 321 φ θ === x xr x

),,( zr φ

x

y

z

φ r φ φ sin,cos r yr x ==

),,( φ θ r

x

y

z

φ

r

θ

,sinsin,cossin φ θ φ θ r yr x ==

θ cosr z =32

Page 33: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 33/170

1 2 3, , form a right handed system: x x x

x1

x2

x3

⋅ ⋅⋅

Generally, x1

, x2

and x3

do not

represent lengths.

The differential distance ds1 between the points ( x1, x2, x3)

and ( x1+dx1, x2, x3) is h1dx1.

x1

x2

x3

),,( 321 x x x11 dx x +

22 dx x +

33 dx x +11dxh

22dxh

33dxhIn general:iii dxhds =

h1, h2, h3: metric coefficients

33

Page 34: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 34/170

Metric coefficients in various coordinate systems:

Cartesian coordinate system: ,,, 321 dzdsdydsdxds ===

.1,1,1 321 === hhh z x y x x x === 321 ,,

Cylindrical coordinate system: z x xr x === 321 ,, φ

,,, 321 dzdsrd dsdr ds === φ .1,,1 321 === hr hh

Spherical coordinate system:

φ θ === 321 ,, x xr x

,sin,, 321 φ θ θ d r dsrd dsdr ds ===

.sin,,1 321 θ r hr hh ===

34

Page 35: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 35/170

Gradient in a general orthogonal coordinate system:

),,( 321 x x xuLet be a scalar function.

( )111

3213211

01

1),,(),,(lim

1 x

u

hs

x x xu x x x xugradu

s ∂

∂=

−∆+=

→∆

333

222

111

321

111

),,( eee x

u

h x

u

h x

u

h x x xgradu ∂

+∂

+∂

=

z y x z

u

y

u

x

u z y xgradu eee

∂∂

+∂∂

+∂∂

=),,(

zr zuu

r r u zr gradu eee

∂∂+∂∂+∂∂= φ φ

φ 1),,(

φ θ φ θ θ

φ θ eee∂∂

+∂∂

+∂∂

=u

r

u

r r

ur gradu r

sin

11),,(

35

Page 36: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 36/170

Divergence in a general orthogonal coordinate system:

),,( 321 x x xv

∫Γ

→ΩΓ⋅

Ω= d div nvv

1lim

0

x1

x3

x2 v1

1

1

11 dx

x

vv

∂∂

+

111 dxhds =

333 dxhds =222 dxhds =

2ΓΩ

32321

1

dxdxhhvd −=Γ⋅∫Γ

nv

=

∂+

∂+=Γ⋅∫

Γ

321

1

32321

1

11

2

dxdxdx x

hhhhdx

x

vvd nv

( ) )( 3211321

1

32132321 dxdxdxdxOdxdxdx

xhhvdxdxhhv +

∂∂+=

Let be a vector function.

36

Page 37: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 37/170

( )321

1

321

2121

dxdxdx x

hhvd d d

∂=Γ⋅+Γ⋅=Γ⋅ ∫∫∫

ΓΓΓ+Γ

nvnvnv

( ) ( ) ( ) 321

3

213

2

312

1

321 dxdxdx x

hhv

x

hhv

x

hhvd

∂+∂

∂+∂

∂=Γ⋅∫Γ nv

321321321 dxdxdxhhhdsdsds ==Ω

( ) ( ) ( )

∂∂+∂∂+∂∂= 213

3

312

2

321

1321

321 1),,( hhv x

hhv x

hhv xhhh

x x xdivv

∂+

∂+

∂=

z

v

y

v

x

v z y xdiv z y x),,(v

( ) z

vv

r r

rv

r zr div zr

∂∂+

∂∂+

∂∂=

φ φ

φ 11),,(v

( )

φ θ θ

θ

θ

φ θ φ θ

∂+

∂+

∂=

v

r

v

r r

vr

r

r div r

sin

1sin

sin

11),,(

2

2v

37

Page 38: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 38/170

Curl in a general orthogonal coordinate system:

( )1

1

1 01

1lim

C

curl d Γ →

= ⋅Γ ∫v v r

x1

x3 x2

333 dxhds =222 dxhds =1Γ

222)1(

1

dxhvd

C

=⋅∫ rv

=

∂+

∂+−=Γ⋅∫ 23

3

223

3

22

)3(1

dxdx x

hhdx

x

vvd

C

nv

( ))(

332323

22

222

dxdxdxOdxdx x

hvdxhv +

∂−−=

)2(

1C

)1(1C

)3(

1C

)4(1C

)4(1

)3(1

)2(1

)1(11 C C C C C +++=

( )32

3

22

)3(1

)1(1

dxdx x

hvd

C C ∂

∂−=⋅∫

+

rv ( )

32

2

33

)4(1

)2(1

dxdx x

hvd

C C ∂

∂=⋅∫

+

rv

),,( 321 x x xvLet be a vector function.

38

( )

Page 39: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 39/170

( ) ( )32

3

2232

2

33

1

dxdx x

hvdxdx

x

hvd

C ∂

∂−

∂=⋅∫ rv 3232321 dxdxhhdsds ==Γ

( )

( ) ( )

1 2 3 1

3 3 2 2

2 3 2 3

( , , )

1

curl x x x

v h v hh h x x

=

∂ ∂= − ∂ ∂

v 1 2 3

2 3 3 1 1 2

1 2 3

1 1 2 2 3 3

1 1 1

h h h h h h

curl x x x

h v h v h v

∂ ∂ ∂=

∂ ∂ ∂

e e e

v

x y z

x y z

curl x y z

v v v

∂ ∂ ∂

= ∂ ∂ ∂

e e e

v

e. g. Cartesian coordinates:

39

Page 40: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 40/170

Laplacian in a general orthogonal coordinate system:

( )gradudivu =∆

∂+

∂+

∂=∆

33

21

322

13

211

32

1321

1

x

u

h

hh

x x

u

h

hh

x x

u

h

hh

xhhhu

2

2

2

2

2

2

),,( z

u

y

u

x

u z y xu

∂+

∂+

∂=∆

2

2

2

2

2

11),,(

z

uu

r r

ur

r r zr u

∂+

∂+

∂=∆

φ φ

2

2

222

2

2 sin

1sin

sin

11),,(

φ θ θ θ

θ θ φ θ

∂∂+

∂∂

∂∂+

∂∂

∂∂=∆

u

r

u

r r

ur

r r r u

40

Page 41: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 41/170

Page 42: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 42/170

Cartesian coordinates, 2D case:

Assumption: )()(),( yY x X y xV =

Laplace equation: .02

2

2

2

=∂∂+

∂∂

yV

xV

0)(

)()(

)(2

2

2

2

=+dy

yY d x X

dx

x X d yY

Division by X ( x)Y ( y) yields:

This is only possible if

( ) constant, ( ) constant. f x g y= =

0)(

)(

1)(

)(

1

)(

2

2

)(

2

2

=+

yg x f

dy

yY d

yY dx

x X d

x X

42

Page 43: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 43/170

Hence, the ordinary differential equations are:

),(

)(

),(

)(2

2

2

2

ygY dy

yY d

x fX dx

x X d

==

:, 22 pg p f =−= pxC pxC x X sincos)( 21 +=

pyC pyC eC eC yY py py sinhcosh)( 4343

′+′=+= −

where . f g −=

One solution:

A further solution is obtained by interchanging x and y:

cos sinn n p y p y

n n n n

n

V A e p x B e p x± ±± ±= +∑

cos sinn n p x p x

n n n n

n

V A e p y B e p y± ±± ±= +∑

43

Page 44: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 44/170

x

Example:

y

a

b

0=V

0=V 0=V

)( x f V =

boundary conditions:

.0,)4(

;0,0)3(

;0,0)2(

);(,)1(

==

==

==

==

V a x

V x

V y

x f V b y

....2,1,

,/,sin

,sinh

=

=⇒

n

an p x p

y p

nn

n

π

:sinsinh),(1

=

= a

xn

a

yn B y xV

nn

π π

Fourier series of f ( x):

(2), (3), (4)

erfüllt.

.sin)(1

∑∞

=

=

n

na

xnb x f

π

=

= a

xn

a

bn Bb xV

n

n

π π sinsinh),(

1

nn b

a

bn B =

π sinh

.sin

sinh

sinh

),(1

= ∑∞

= a

xn

a

bn

a

yn

b y xV n

n

π

π

π

44

Page 45: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 45/170

Cylindrical coordinates, 2D case:

Assumption: )()(),( φ φ Φ= r Rr V

Laplace equation:

Multiplication by r 2 and division by R(r )Φ(φ ) yield:

( ) constant, ( ) constant. f r g φ = =

.0112

2

2 =∂∂+

∂∂

∂∂

φ V

r r V r

r r

.0)(1

)()(1

)(2

2

2 =

Φ+

Φφ

φ φ

d

d

r r R

dr

r dRr

dr

d

r

.0)(

)(

1)(

)(

1

)(

2

2

)(

Φ+

φ

φ

φ

φ

gr f

d

d

dr

r dRr

dr

d r

r R

This is only possible if

45

Page 46: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 46/170

),(

)(

),(

)(2

2

φ φ

φ

Φ=

Φ

=

gd

d

r fRdr

r dR

r dr

d

r

where . f g −=

Since Φ(φ ) must be periodic with the period 2π , the only

possibility is g = -n2 ( n: integer)).0(sincos)( 43 >+=Φ nnC nC φ φ φ

The case n = 0 yields .)( 43 φ φ C C +=Φ

This is only periodic if C 4 = 0. The case ,04 ≠C makes sense only if the problem region is max0 φ φ ≤≤

maxwhere 2 .φ π <Ω

Hence, the ordinary differential equations are:

46

Page 47: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 47/170

).()( 2

r Rndr

r dRr

dr

d r =

:0a) =n .ln)( ,)(

211 C r C r RC dr

r dRr +==

:0 b) >n Assumption:

,)(

,)(

,)( 121 −− =

== α α α α α α r

dr

r dRr

dr

d r

dr

r dRr r

dr

r dR

,)( α r r R =

⇒= α α α r nr 22 :n±=α nn

r C r C r R −+= 21)(

Solution:

( )( ) ( )1 2 3 4ln cos sinn n

n n

n

V C r C C C A r n B r nφ φ φ ± ± ± ±= + + + +∑

47

Page 48: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 48/170

Example: cylindrical capacitor

i Ra R

iV

aV

.ln0 21 C r C V +=⇒=∂

∂φ Axisymmetry:

.ln

,ln

21

21

C RC V

C RC V

aa

ii

+=

+= boundary conditions:

.ln

lnln,

ln21

ia

iaai

ia

ia

R R

RV RV C

R R

V V C

−=−=

.

ln

lnln

ia

aiia

R R

Rr V Rr V V

−=

The same solution is obtained by the method of fictitious

charges.

48

E l di l t i li d i h fi ld

Page 49: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 49/170

Example: dielectric cylinder in a homogeneous field

x E eE 00 =

R

1>r ε homogeneous field: .cos0 φ r E V −=

Proof:

.sin1

,cos 00 φ φ

φ φ E V

r E E

r

V E r −=

∂∂

−==∂∂

−=

r φ

x

y

r E

φ E

,sincossincos 0

2

0

2

0 E E E E E E r x =+=−= φ φ φ φ φ

.0cossinsincoscossin 00 =−=+= φ φ φ φ φ φ φ E E E E E r y

q. e. d.

>

<=

.wenn),,(

,wenn),,(),(

Rr r V

Rr r V r V

a

i

φ

φ φ

⇒∞<→),(lim

0φ r V i

r

⇒−=∞→

φ φ cos),(lim 0r E r V ar

,sincos1∑≥

+=n

ninnini nr Bnr AV φ φ

.sincoscos1

0 ∑≥

−− ++−=n

n

an

n

ana nr Bnr Ar E V φ φ φ

boundary

conditions:

49

Page 50: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 50/170

Boundary and interface conditions:

⇒=⇒=== ),(),()()( φ φ φ φ RV RV Rr E Rr E aiai

⇒∂

∂=

∂⇒===

r

RV

r

RV Rr D Rr D ai

r rari

),(),()()(

φ φ ε

n

an

n

in

n

an

n

inai R B R Bn R A R A R A R E R A −−− =>=+−= ),1(,1

101

),1(,

112

101 >−=−−=

−−−−

nnR AnR A R A E A

n

an

n

inr air ε ε .11 −−− −= n

an

n

inr nR BnR Bε

Solution: ,1

1,

1

2 2

0101 R E A E Ar

r a

r

i +−

=+

−=

ε

ε

ε

),1(0 >== n A A anin .0== anin B B

50

Page 51: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 51/170

.cos11cos),(

,cos1

2),(

2

00

0

φ ε ε φ φ

φ ε

φ

r R E r E r V

r E

r V

r

r a

r

i

+−+−=

+−

=

The field within the

cylinder is homogeneous.

51

Page 52: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 52/170

2.3 Numerical methods for solving the boundary value

problems for the scalar potential

Disadvantages of analytical methods:

• special geometry

• homogeneous materials

Numerical methods:

• geometry discretized

• taking account of non-homogeneous materials

52

Page 53: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 53/170

Discretization of geometry:

V =constant on Γ D

Ω= in0)( gradV div ε

Ω∉ Ω∉

Numerical methods:

on N

V

nε σ

∂ = Γ∂

The potential is approximated in discrete nodes. The field iscomputed by numerical differentiation. The Dirichlet

boundary conditions in the nodes are satisfied exactly, the

Neumann boundary conditions can only be approximately

fulfilled.53

Page 54: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 54/170

2.3.1 Method of finite differences

Two-dimensional planar problems are treated only, the

generalization to 3D problems is straightforward.

Homogeneous materials are assumed: Laplace equation.

Generalization for piecewise homogeneous materials is

possible.

Uniform mesh,generalization for non-

uniform mesh is

possible.Ω

Γ h

h 54

432

Page 55: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 55/170

a

bc

d

A

0=∆V

...!4

1

!3

1

!2

1

!1

1 4

4

43

3

32

2

2

+∂

∂+

∂+

∂+

∂+= h

x

V h

x

V h

x

V h

x

V V V Aa

...!4

1

!3

1

!2

1

!1

1 4

4

43

3

32

2

2

+∂

+∂

+∂

+∂

+= h y

V

h y

V

h y

V

h y

V

V V Ab

...!4

1

!3

1

!2

1

!1

1 4

4

43

3

32

2

2

±∂

∂+

∂−

∂+

∂−= h

x

V h

x

V h

x

V h

x

V V V Ac

...!4

1

!3

1

!2

1

!1

1 4

4

43

3

32

2

2

±∂

∂+∂

∂−∂

∂+∂

∂−= h y

V h y

V h y

V h y

V V V Ad

0

4

0

2

2

2

2

2 )()(

4

≈=

+∂∂+∂∂+

+=+++

hO yV

xV h

V V V V V Ad cba

h

h

04 =−−−− d cba A V V V V V

+

x

y

55

Page 56: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 56/170

The equation

( )d cba A V V V V V +++= 4

1

corresponds approximately to the mean value

theorem of potential theory:

Sphere

M R

2

1( )

4Sphere

V M Vd Rπ

= Γ∫

a A

dc

b

4 0, i.e. A a b c d V V V V V − − − − =

56

Page 57: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 57/170

h

h

Γ N

Γ D

e

f g

h

ik

lm

n

o

Taking account of boundary conditions:

Dirichlet boundary condition on Γ D:0 (known).gV V =

⇒=−−−− 04 hg f ei V V V V V 04 V V V V V h f ei =−−−

Neumann bondary condition on Γ N :

0 at the point .V on

ε σ ∂ =∂k : fictitious node outside of Ω

( ) σ ε ε =−≈∂∂ hV V o

nV mk

200

0

σ hV V mk +=⇒

⇒=−−−− 04 nmlk o V V V V V 0

224

ε

σ hV V V V

nmlo =−−−

57

E l

Page 58: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 58/170

Example:V =U

V =0

1 2 3

4 5 6 7 84′ 8′

node 1: U V V V 24 521 =−−

10 σ ε =∂∂

n

V 20 σ ε =

∂∂

n

V

node 2: U V V V V =−−+− 6321 4h

node 3: U V V V 24 732 =−+−node 4:

154

02

σ ε =−′

h

V V

0

154

2

ε

σ hV V +=′

278

02

σ ε =−′

h

V V

0

278

2

ε

σ hV V +=′

U V V V =−+− ′ 544 4

0

154

224

ε

σ hU V V +=−

node 5: 04 6541 =−+−− V V V V

node 6: 04 7652 =−+−− V V V V

node 7: 04 8763 =−+−− V V V V

node 8: U V V V =−+− ′887 4

0

287

242

ε

σ hU V V +=+−

58

Page 59: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 59/170

+

+=

−−

−−−

−−−

−−

02

01

8

7

6

5

4

3

2

1

/2

0

00

/2

2

2

4200

1410

01410014

0000

0100

00101001

0002

0100

0010

0001

4000

0410

0141

0014

ε σ

ε σ

hU

hU

U

U

U

V

V

V V

V

V

V

V

Equations system in matrix form:

Sparse matrix.

59

Page 60: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 60/170

2.3.2 Variational problem of electrostatics

0

( ) in

on , on D N

div gradV

V V V

n

ε ρ

ε σ

− = Ω,

∂= Γ = Γ

The boundary value problem of electrostatic field

is equivalent to the following variational problem:

Find V (V=V 0 on Γ D) , so that the functional

∫∫∫ ΓΩΩΓ−Ω−Ω=

N

Vd Vd Vd grad V W σ ρ ε 2

21)(

attains a minimum.

60

Page 61: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 61/170

Physical meaning of the functional

:21

21 2

∫∫ ΩΩΩ⋅=Ω d Vd grad DEε energy of electrical field: W e

:∫∫ΓΩ

Γ+Ω N

Vd Vd σ ρ potential energy of the charges: W p

is the action!e pW W W = −

The variational problem corresponds to the principleof least action.

61

2 3 3 Rit ‘s procedure

Page 62: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 62/170

2.3.3 Ritz s procedure

Since the variational problem and the boundary value problem

are equivalent, an approximate solution of the variational problem is simultaneously an approximate solution of the

boundary value problem.

The variational problem can be solved approximately by means

of the Ritz’s procedure.An approximate solution is sought in the following form:

,1

)( ∑=

+=≈n

j

j j D

n wV V V V 0: arbitrary function with on ,

, 1, 2, ..., : numerical parameters,, 1, 2, ..., : basis functions with

0 on .

D D D

j

j

j D

V V V

V j nw j n

w

= Γ

==

= Γ( ) satisfies the Dirichlet boundary conditions for arbitrary !n

jV V 62

Page 63: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 63/170

The unknown parameters V j, j = 1, 2, ..., n are determined from

the condition that the approximate solution minimizes the

functional. The necessary conditions are:

....,2,1, ,0)( )(

niV

V W

i

n

==∂

These are n equations (the Ritz equations system), allowing

the determination of the n unknowns V j, j = 1, 2, ..., n.

63

Page 64: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 64/170

21

2 N

( n )( n ) ( n ) ( n )

i i i i

W (V )grad V d V d V d

V V V V ε ρ σ

Ω Ω Γ

∂ ∂ ∂ ∂= Ω − Ω − Γ =

∂ ∂ ∂ ∂∫ ∫ ∫

.)()(

)()(

∫∫∫ΓΩΩ

Γ∂

∂−Ω

∂−Ω⋅

∂=

N

d V

V d

V

V d gradV

V

V grad

i

n

i

nn

i

n

σ ρ ε

.)(1

)(

i

n

j

j j D

ii

n

wwV V V V

V =+∂∂=∂∂ ∑=

The Ritz equations system:

,1 ∫∫∫∫∑ ΓΩΩΩ=

Γ+Ω+Ω⋅−=Ω⋅ N

d wd wd gradV gradwd gradwgradwV ii Di ji

n

j

j σ ρ ε ε

....,2,1, ni =Symmetric matrix!64

2 3 4 The method of finite elements (Finite Element Method=FEM)

Page 65: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 65/170

2.3.4 The method of finite elements (Finite Element Method=FEM)

Ω

Discretization of the geometry

Triangular elements: simplest possible approach

Unknowns: potential values in nodesPotential in each element: low order polynomial

finite elements

65

Page 66: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 66/170

Linear interpolation of the potential function within elements

66

Page 67: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 67/170

i

k

j

1

iV

i N

V i N i

V

i

k

j

1

jV

j N

V j N j

V

i

k

j

1k V

k N

V k N k

V

i

k

j

k V

V i N i + V j N j +V k N k

iV

jV

+ + =

=

Shape functions

67

V

Page 68: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 68/170

1 N j

V

j

∑=

=nn

j

j j

n N V V

1

)(nn: number of nodes

V j: nodal potential values

1 in node

0 in all other nodes j

j N

=

68

B i f tiV D V 0

Page 69: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 69/170

Basis functions:

....,2,1, , n j N w j j == Γ D

1

2

n

n+1n+2 ...

nn ...

D

=+== ∑∑∑=+==

n

j

j j

n

n j

j j

n

j

j j

n N V N V N V V

nn

111

)( .1

∑=

+n

j

j j D N V V

69

Rit eq ations:

Page 70: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 70/170

,

1

∫∫∫∫∑

ΓΩΩ

Ω=

Γ+Ω+Ω⋅−=

=Ω⋅

N

d N d N d gradV gradN

d gradN gradN V

ii Di

ji

n

j j

σ ρ ε

ε

Ritz equations:

....,2,1, ni =

.i jij bV A =

,∫Ω

Ω⋅= d gradN gradN A jiij ε

.∫∫∫ΓΩΩ

Γ+Ω+Ω⋅−= N

d N d N d gradV gradN b ii Dii σ ρ ε

In matrix form:

70

N N

Page 71: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 71/170

i j

i N j N

i

j

i N j N

,0≠Ω⋅= ∫Ω

d gradN gradN A jiij ε

.0=Ω⋅= ∫Ω

d gradN gradN A jiij ε

Sparse matrix.

71

Page 72: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 72/170

8-node quadrilateral elements

13

2

4

5

6

7

8

72

Page 73: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 73/170

20-node hexahedral elements

73

Shape and basis functions for 20-node hexahedral elements

Page 74: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 74/170

Shape and basis functions for 20 node hexahedral elements

74

Page 75: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 75/170

2.5 Boundary value problems for the vector potential

Magnetostatic field:

A: magnetic vector potential

Differential equation:

1( ) ,curl curl curlµ

= ⇒ =H J A J

,div curl= ⇒ =B 0 B A

75

Page 76: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 76/170

2.5.1 Planar 2D problems

.),(),(,),(:0 y y x x z y x B y x B y x J z

eeBeJ +===∂

Magnetostatic field:

J

Field lines of B z y x A eA ),(=

0 .

0 0

x y z

x y

A Acurl

x y y x

A

∂ ∂ ∂ ∂= = = −

∂ ∂ ∂ ∂

e e e

B A e e

76

Page 77: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 77/170

Differential equation for the single component vector potential in

planar 2D case:

1[ ( )] 0

1 1 0

x y z

zcurl curl A x y

A A y x

µ

µ µ

∂ ∂= =

∂ ∂

∂ ∂−∂ ∂

e e e

e

1 1 1( ). z z

A Adiv gradA

x x y yµ µ µ

∂ ∂ ∂ ∂= − + = − ∂ ∂ ∂ ∂

e e

,)1

( J gradAdiv =−µ

generalized Laplace-Poisson equation.

77

Page 78: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 78/170

Magnetic flux by means of A:

.C

d curl d d Γ Γ

Φ = ⋅ Γ = ⋅ Γ = ⋅∫ ∫ ∫B n A n A r

C

Γ

n Γd

B

A

rd

z=constant

x

y

PQ zP A e)(

zQ A e)(

C PQ

PQΓ

Planar 2D case:

1

ΓPQ: surface of unit length

through the points P and Q

)()( Q AP Ad PQC

PQ −=⋅=Φ ∫ rA

ze

78

Page 79: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 79/170

Page 80: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 80/170

Boundary conditions:

Dirichlet boundary condition: 0 (known) on , D A A= Γ

This means the prescription of Bn:

( ) ( ) ( )n z z z B curl curl A gradA gradA= ⋅ = ⋅ = ⋅ × = ⋅ × =n A n e n e e n

n

ze

tne =× z

: tangential derivative of ! A

gradA At

∂= ⋅ =

∂t

In most cases A0=constant:

Then, the section of Γ D with a plane z=constant is

a flux line. The differences in the values of A0

yield the flux per unit length between the lines.

80

Page 81: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 81/170

Page 82: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 82/170

Duality between the boundary conditions for the scalar potential

and the single component vector potential in the planar 2D case

Magnetic wall:

constant,ψ =

1 0. Anµ ∂ =∂

Magnetic wall

Flux line:

0, constant. An

ψ µ

∂= =

Flux line

82

Boundary value problem for the single component vector

Page 83: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 83/170

y p g p

potential function in the planar 2D case:

0

1

( ) in

1 on , on . D N

div gradA J

A A A

n

µ

α µ

− = Ω,

∂= Γ = Γ

magnetostaticfield:

Similar boundary value problem to the ones for the scalar potential

functions.

83

Page 84: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 84/170

2.5.2 Axisymmetric 2D problems

.),(),(,),(:0 z zr r zr B zr B zr J eeBeJ +===∂

∂φ

φ

Magnetostatic field:

φ eA ),( zr A=

1 1

0

0 0

r zr r

curlr z

rA

φ

∂ ∂= = =

∂ ∂

e e e

B A

.)(1

zr r

rA

r z

Aee

∂+

∂−=

84

Differential equation for the single component vector potential in the

Page 85: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 85/170

1 1

1[ ( )] 0

1 1 ( )

0

r zr r

curl curl Ar z

A rA

z r r

φ

φ µ

µ µ

∂ ∂= =

∂ ∂∂ ∂

− ∂ ∂

e e e

e

Differential equation for the single component vector potential in the

axisymmetric case:

1 1 1( rA ) Adiv( gradA ).

r r r z z ϕ ϕ

µ µ µ

∂ ∂ ∂ ∂= − + ≠ − ∂ ∂ ∂ ∂

e e

1 1 1 1 A Adiv( gradA ) r r r r z zµ µ µ

∂ ∂ ∂ ∂= + ∂ ∂ ∂ ∂

1 1( rA ) A J

r r r z zµ µ

∂ ∂ ∂ ∂− + = ∂ ∂ ∂ ∂

85

Page 86: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 86/170

Q

P

φ e)(Q A

φ e)(P AC PQ

PQΓ

Flux in axisymmetric 2D case:

ΓPQ: Conical surface throughthe points P and Q

)].()([2 Q Ar P Ar d QP

C

PQ

PQ

−=⋅=Φ ∫ π rA

z

constantφ =

constantφ =

Qr

Pr

Flux lines: Lines of constant rA(r , z).

86

Page 87: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 87/170

2.5.3 3D problems

The vector potential function is not unique:

( )curl curl gradu= = +B A A u is an arbitrary scalar function,

Differential equation:

1( ) in ,curl curl curlµ

= ⇒ = ΩH J A J

Boundary conditions:

Prescription of Bn or of H t on Γ.

87

Page 88: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 88/170

Special case: vector potential due to a given current

density in infinite free space 0( and ) :µ µ = Γ → ∞

0 ,

( ) 0 ( ( ) or ( ) ).

curlcurl

curl curl

µ =

∞ = ⇒ ⋅ ∞ = ∞ × =

A J

A n A 0 A n 0

Only B=curlA is defined uniquely, but not A.

A becomes unique if divA is additionally defined: gauging.

The choice divA = 0 is the Coulomb gauge.

88

Page 89: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 89/170

The gauge makes A unique:

( ) 0, .( ) ( ) ( ) ( ) ,

div div gradu u gradugradu gradu

= + ⇒ ∆ = ⇒ =∞ = ∞ + ∞ ⇒ ∞ = A A 0

A A 0

Boundary value problem for A:

0 ,

0,

( ) .

curlcurl

div

µ =

= ⇒∞ =

A J

A

A 0

0 ,

( ) .

curlcurl graddiv µ − = −∆ =

∞ =

A A A J

A 0

Vector Laplace-Poisson differential equation.

89

The Coulomb gauge follows from the vector Laplace-

Page 90: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 90/170

Solution of

0 ( )( ) .4

d µ π Ω

′ ′Ω= ′−∫ J rA rr r

0 ,

( ) .

curlcurl graddiv µ − = −∆ = ⇒∞ =

A A A J

A 0

0

( ) 0

( )

0.

( ) 0,

div

div curlcurl graddiv div

div

div

µ

− =

⇒ =∞ =

A

A A J

A

A

0 , ( ) :µ −∆ = ∞ =A J A 0

The Coulomb gauge follows from the vector Laplace

Poisson differential equation:

90

3 Quasi static fields

Page 91: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 91/170

3. Quasi-static fields

Maxwell’s equations :

∂>>

t

DJ

,

,

0,

curl

curlt

div

=

∂= −∂

=

H J

BE

B

).(, 0EEJHB === eγ µ

In conducting media (Ωl): In non-conducting media (Ωi):

,

0,

curl

div

==

H J

B

.HB µ =

J is unknown:

time dependent

quasi-static field

J is known:

time dependent

magnetostatic field 91

E l

Page 92: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 92/170

)(t J

Example:

92

Boundary and interface conditions:

Page 93: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 93/170

non-conducting region

JlΩ

conducting region

liΓ ,: nH × nB ⋅ continuous

: BΓ b−=⋅nB

: HiΓ

=×nH

: E Γ 0nE =×

: HlΓ 0nH =×

n

n

n

Boundary and interface conditions:

93

Summary

Page 94: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 94/170

Differential equations in Ωi

(eddy current free region):

0

,

i i

i

i i i i

curldiv

µ ν

==

= =

H JB

B H H B

boundary conditions:

0nH =×l on HlΓ ,

0nE =×l on E Γ ,KnH =×i

on HiΓ ,

bi −=⋅ nB on BΓ .

interface conditions on Γli:

0=⋅+⋅=×+×

iill

iill

nBnB0nHnH

initial conditions at t =0:iiilll

Ω=Ω= in,in00

BBBB

Differential equations in

Ωl (eddy current region):

0

, ,

l l

ll

l

l l l l l l

curl

curlt

div

µ ν γ

=

= −

=

= = =

H JB

E

B

B H H B J E

94

C l t ti f ti h i titi

Page 95: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 95/170

Complex notation for time harmonic quantities:

Complex amplitude:

)(

)(ˆ)(

r

rBrB

ϕ j

e=Time derivative:

Maxwell’s equations for complex amplitudes(quasi-static case):

0curl , curl j , div .ω = = − =H J E B B

))(cos()(ˆ),( rrBrB ϕ ω += t t

Time function :

specially for linear polarization:

ˆ( , ) ( )cos( ( )) x x x

B t B t ω ϕ = +r r r

ˆ( , ) ( )cos( ( )) y y y B t B t ω ϕ = +r r rˆ( , ) ( )cos( ( ))

z z z B t B t ω ϕ = +r r r

in time domain multiplication by in frequency domain jt

ω ∂

→∂

95

Poynting’s theorem for complex amplitudes in quasi-static

Page 96: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 96/170

( )* * * * *1 1 1 1 1

2 2 2 2 2curl curl div jω ⋅ − ⋅ = − × = ⋅ + ⋅E H H E E H E J B H

y g p p q

case:

( ) S d d jd =Γ⋅×−=Ω⋅+Ω⋅ ∫∫∫ ΓΩΩnHEHBJE

***

2

1

2

1

2

1

ω

S : complex power flowing into the region Ω through the

boundary Γ.

96

Proof:

Page 97: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 97/170

=+×+=×= )cos(ˆ)cos(ˆ)()()( H E t t t t t ϕ ω ϕ ω HEHES

[ ] =+++−×= )2cos()cos(ˆˆ2

1 H E H E t ϕ ϕ ω ϕ ϕ HE

[ ]

Effective part

1 ˆ ˆ cos( ) 1 cos 2( )2

E H E t ϕ ϕ ω ϕ = × − + + +E H

[ ]

Reactive part

1 ˆ ˆ sin( ) sin 2( )2

E H E t ϕ ϕ ω ϕ + × − +E H

∫Γ

Γ⋅−×−= d P H E nHE )cos(ˆˆ21 ϕ ϕ

∫Γ

Γ⋅−×−= d Q H E nHE )sin(ˆˆ2

1ϕ ϕ

Effective power:

Reactive power:

Time function of Poynting’s vector:

97

∫ ˆˆ1

Page 98: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 98/170

=Γ⋅−+−×−=+= ∫Γ

d j jQPS H E H E nHE )]sin()[cos(ˆˆ2

1ϕ ϕ ϕ ϕ

=Γ⋅×−=Γ⋅×−= ∫∫Γ

Γ

−d eed e H E H E j j j

nHEnHE ϕ ϕ ϕ ϕ ˆˆ

2

1ˆˆ2

1 )(

( ) .

2

1 * Γ⋅×−= ∫Γ

d nHE q. e. d.

Complex Poynting’s vector:*

2

1HES ×=

),(,2

1

2

12

*

0E

J

JE =Ω=Ω⋅= ∫∫ ΩΩ

ed d P γ

.2

1

2

1 2*

∫∫ΩΩ

Ω=Ω⋅= d d Q HHB µ ω ω

Effective power:

Reactive power:

98

3.1 Some analytical solutions of the boundary value problem for

Page 99: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 99/170

In conducting region (Ωl): 0 ,div curl= ⇒ =B B A

( ) 0 .curl

curl curl curl gradV t t t t

∂ ∂ ∂ ∂+ = + = + = ⇒ = − −

∂ ∂ ∂ ∂

B A A AE E E E

Differential equations:

1( ) ,curl curl curl gradV

t γ γ

µ

∂− = ⇒ + + =

AH J 0 A 0

=

∂∂−−⇒= .0)()(0

t divgradV divdiv

AJ γ γ

boundary conditions: ( ) 0, ( ) 0.V ∞ = ∞ =A

3.1 Some analytical solutions of the boundary value problem for

the magnetic vector potential

99

Special case: µ = constant, γ = constant, time harmonic case.

Page 100: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 100/170

Coulomb gauge: divA=0

( ) ( ) 0 0

0 0

( ) 0

div gradV j div V j div

V V

V

γ ω γ ω

− − = ⇒ −∆ = =

∆ = ⇒ =

∞ =

A A

Differential equation in Ωl:

0AA =+∆− ωµγ j vector diffusion equation.

Planar 2D problems:

0),(),( =+∆− y x A j y x A ωµγ scalar diffusion equation.

100

Page 101: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 101/170

Page 102: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 102/170

Page 103: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 103/170

,)()( 1

py

e A j y A j y E

−−=−= ω ω

Field quantities:

,)()( 1

pye A j y A j y J

−−=−= ωγ ωγ

,

)(

)( 1

py

e pAdy

ydA

y B

−==

Determination of the constant A1: the current through a

conductor of width b is assumed to be given.

.)(1

)( 1

pye A p

dy

ydA y H −−==

µ µ

103

z IbyHdd ===⋅=Γ⋅ ∫∫ )0(rHnJ

Page 104: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 104/170

b x

y

I l

0Γ0C

I b y H d d C

Γ ∫∫Γ

)0(

00

rHnJ

pb I A I A pb µ

µ −=⇒=− 11

,)( δ δ

γ

ωµ y y

j jpy ee I

b

pe I

pb

j y E

−−− ==

,)()( δ δ γ y y

j

ee I b

p y E y J

−−

==

.)( ,)( δ δ δ δ µ

y y j

y y j

ee

b

I y H ee I

b

y B−−−−

==

δ

δ

y

eb

I y J

= 2)(

)( y J

Magnitude of the

current density

decays exponentially

Skin effect:

104

Page 105: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 105/170

3.1.2 Current flow in an infinite conducting plate

Page 106: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 106/170

f f g p

x

y

z

2h

2b2b2h

I

),()( 2

2

2

y A pdy

y Ad = .

1

2

1

δ ωµγ

ωµγ j j

j p +

=+

==

Diffusion equation:

,)()( z z y E y A j eeE =−= ω ,)()( z z y J y A j eeEJ =−== ωγ γ

,)()(

x x y Bdy

ydAeeB == .)(

)(1 x x y H

dy

ydAeeH ==

µ

106

Solution of the diffusion equation:

Page 107: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 107/170

).sinh()cosh()( 2121 pyC pyC e Ae A y A py py +=+= −

)()( y A j y J ωγ −=The current density has to be an even function

( J ( y) = J (-y) ): .02 =C

).cosh()( 1 pyC y A =

)cosh()()( 1 pyC j y A j y E ω ω −=−=Field quantities:

)cosh()()( 1 pyC j y A j y J ωγ ωγ −=−=

)sinh()(

)( 1 py pC dy

ydA y B ==

)sinh()(1

)( 1 pyC p

dy

ydA y H

µ µ ==

107

D i i f h C C h h

Page 108: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 108/170

Determination of the constant C 1: Current through a

conductor of width b is assumed to be given.

x z

y0Γ

I

0C

2h y =

2h y −=

=−=+=−=⋅=Γ⋅ ∫∫Γ

bh y H bh y H d d C

)2()2(

00

rHnJ

b

,)2sinh(2

)2(2 1 I ph

C pb

bh y H =−==−= µ

.

)2

sinh(21 ph

pb

I C

µ −=

108

IIj

Page 109: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 109/170

),cosh(

)

2

sinh(2

)cosh(

)

2

sinh(2

)( py ph

b

I p py

ph pb

I j y E

γ

ωµ ==

),cosh(

)2

sinh(2

)()( py ph

b

I p y E y J == γ

),sinh(

)2

sinh(2

)( py ph

b

I y B

µ −=

).sinh(

)2

sinh(2

)( py ph

b

I y H −=

109

Impedance of a conductor of width b and length l:

Page 110: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 110/170

( ) Γ⋅×−==

∫Γd Z I S nHE

*2

2

1

2

1

y x z y H y E y H y E eeeHE )()()()( *** =×=×

for 2, for 2, otherwise . y y y y h y h= = = − = −n e n e n e

=−=−=+==−= blh

y H h

y E blh

y H h

y E Z I )2

()2

(2

1)

2()

2(

2

1

2

1 **2

bl

h I

x

y

z

Γ

.2

)2

sinh(2

)2

cosh()

2()

2(

*

*bl

b

I

phb

ph I p

blh

y H h

y E

γ

===−=

Impedance of a conductor of width b and length l:

110

ph

Page 111: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 111/170

,

)2sinh(2

)2

cosh(

phb

ph pl

Z

γ

= .

2

1

2

1

2 2

+=

+=

ωµγ

δ

h jh j ph

Low frequency:

High frequency:

.2

)2

sinh(,1)2

cosh(12

ph ph ph ph≈≈⇒<<

:bhl Z

γ ≈ like D. C. in the entire height h.

).2

sinh()2

cosh(12

ph ph ph≈⇒>>

:2

)1(2 b

l j

b

pl Z

γδ γ +=≈ D. C. resistance of two layers each of

thickness δ , reactance same as

resistance.111

4. Electromagnetic waves

Page 112: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 112/170

, ,

0, ,

curl curlt t

div div ρ

∂ ∂= + = −∂ ∂

= =

D BH J E

B D , , ( )eε µ γ = = = +D E B H J E E

The full set of Maxwell’s equations:

describes electromagnetic waves.

t

D

( )t H

t

∂−

B

( )t E

The time varying electric and

magnetic fields mutually sustaineach other:

electromagnetic field

in vacuum:

112

4.1 Transmission lines

Page 113: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 113/170

Transmission line: a very (infinitely) long arrangement of

two parallel conductors of constant cross section:

e. g.:

General transmission line

z

d

0r 0r

Two parallel wires of circular cross section

Coaxial cable

z

z

ir

ar

Material properties:

, ,µ γ ε around the conductors,

lγ in the conductors.

113

Distributed circuit parameters:

Page 114: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 114/170

Resistance, inductance, conductance and capacitance per unit

length: R, L, G, C . Units: Ω/m, H/m, S/m, F/m.

Series parameters:

z z + dz

1du

2du( , )i z t

( , )i z t

1 2 ,du du du iRdz= + =

R depends on thegeometry and on γ l.

,d iLdzψ = L depends on the

geometry and on µ .

Current field in the

conductorslγ

z z + dz

( , )i z t

( , )i z t

d ψ Magnetic fieldaround the

conductors

µ

114

Page 115: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 115/170

Parallel parameters:

z z + dz

( , )u z t Electric field

around the

conductors

ε

,di uGdz=

G depends on the

geometry and on γ . z z + dz

( , )u z t di Current fieldaround the

conductors

γ

dQ

dQ−,dQ uCdz=

C depends on thegeometry and on ε .

115

Page 116: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 116/170

Page 117: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 117/170

T i i liu i∂ ∂

Page 118: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 118/170

Transmission line

equations:,

u i Ri L

z t

∂ ∂− = +

∂ ∂

.i u

Gu C z t

∂ ∂− = +

∂ ∂

2 2

2 ,

u i i i i

R L R L z z z t z t z

∂ ∂ ∂ ∂ ∂ ∂

− = + = +∂ ∂ ∂ ∂ ∂ ∂ ∂2 2

2 2( ) .

u u u LC RC LG RGu

z t t

∂ ∂ ∂= + + +

∂ ∂ ∂

Similarly:

2 2

2 2( ) .

i i i LC RC LG RGi

z t t

∂ ∂ ∂= + + +

∂ ∂ ∂118

4.1.1 Solution of the transmission line equations in time harmonic

Page 119: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 119/170

case

Assumption: ˆ( , ) ( )cos( ( )),uu z t U z t zω ϕ = +

ˆ( , ) ( )cos( ( )).ii z t I z t zω ϕ = +

Complex amplitudes: ( )ˆ( ) ( ) ,u j zU z U z e

ϕ =

( )ˆ( ) ( ) .i j z I z I z e

ϕ =

Transmission line equations in the frequency domain:

( ) ( ) ( ),dU z R j L I zdz

ω − = +

( )( ) ( ).

dI zG j C U z

dzω − = +

119

2 ( ) ( )d d

Page 120: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 120/170

2

2

( ) ( )( ) ( )( ) ( ).

d U z dI z R j L R j L G j C U z

dz dzω ω ω = − + = + +

2 ( )( ), p R j L G j C ω ω = + +

( )( ) : p R j L G j C ω ω = + + propagation coefficient .

22

2

( )( ).

d U z p U z

dz=

( ) . pz pzU z U e U e+ − −= +

Re( ) 0, Im( ) 0. p pα β = ≥ = ≥, p jα β = +

120

Page 121: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 121/170

1 ( )( ) , pz pzdU z p p

I z U e U e R j L dz R j L R j Lω ω ω

+ − −= − = −+ + +

0 : R j L R j L

Z p G j C

ω ω

ω

+ += =

+wave impedance.

0 0

( ) . pz pzU U I z e e

Z Z

+ −−= −

121

Page 122: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 122/170

Page 123: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 123/170

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

z

t t t + ∆ z

U e α + −

z v t ∆ = ∆

λ

123

Page 124: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 124/170

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

124

Similarly,

Page 125: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 125/170

( )( ) pz j zU z U e U e

α β − − − += =

describes an attenuated wave propagating in the negative z-direction:

( , ) cos( ). zu z t U e t z

α ω β − −= +

Condition for the same phase at the time instant t and location z as well as at the time instant t +∆t and at location z+∆ z:

( ) ( )t z t t z zω β ω β + = + ∆ + + ∆ ,t zω β ⇒ ∆ = − ∆ . z

vt

ω

β

∆= = −

: ,attenuation constant α : . phase constant β

125

General solution: ( ) , pz pzU z U e U e

+ − −= +

Page 126: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 126/170

( ) ,

0 0( ) .

pz pzU U

I z e e Z Z

+ −−

= −

The wave impedance Z 0 is the ratio between the complex

amplitudes of the voltage and current waves propagating in

the positive direction.

The same ratio is - Z 0 for the waves propagating in the

negative direction.

126

4.1.2 Ideal transmission line

Page 127: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 127/170

0, 0. R G= =

( )( ) 0, . p j L j C j LC LC ω ω ω α β ω = = ⇒ = =

No attenuation!

0 . j L L

Z j C C

ω

ω = = The wave impedance is real!

1.v

LC

ω

β

= = in general: . LC µε =

In vacuum: 8

0 0

12.9979 10 :

mv c

sµ ε = ≈ ⋅ = velocity of light!

127

Ideal transmission line at general time dependence:

Page 128: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 128/170

Transmission line equations: ,u i

L

z t

∂ ∂− =

∂ ∂

.i u

C

z t

∂ ∂− =

∂ ∂2 2

2 2,

u u LC

z t

∂ ∂=

∂ ∂

2 2

2 2:

i i LC

z t

∂ ∂=

∂ ∂scalar 1D wave equation.

All functions of the form ( , ) ( ) z f z t f t v

= are solutions

of the 1D wave equation1

( ) :v LC

=

2

2 21 ( ), f z f t z v v

∂′′=∂

2

2 21( ) ( ). f z z LC LCf t f t t v v v∂ ′′ ′′= =∂

q. e. d.

128

( ) z

f t v

− describes a wave propagating with the velocity v

Page 129: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 129/170

vin the positive z-direction:

e.g. ( ) f x− x

( , ) f z t 0t = t t = ∆

z

v t ∆

129

4.1.3 Termination of transmission lines

Page 130: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 130/170

0U 2 Z

z0 l

( ) I z

( )U z

0(0) ,U U = 2( ) ( ).U l Z I l=

( ) , pl plU l U e U e

+ − −= +0 0

( ) . pl plU U I l e e

Z Z

+ −−= −

2 0 0

1

.1

pl

pl pl pl

pl pl pl

pl

U e

U e U e U e Z Z Z U eU e U e

U e

+ − − + −

−+ − −

+ −

++

= =− −

130

2 pl

lU e U− −

Page 131: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 131/170

2

2 : pl

pl

U e U r e

U e U + − +

= = Reflection coefficient .

22 0

2

1,

1

r Z Z

r

+=

−2 0

2

2 0

. Z Z

r Z Z

−=

+

( ) ( )

2( ) ( ), pl p l z p l zU z U e e r e+ − − − −= +

( ) ( )

2

0

( ) ( ). pl p l z p l zU I z e e r e

Z

+− − − −= −

incident waves reflected waves

131

At the beginning of the transmission line:

Page 132: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 132/170

At the beginning of the transmission line:2

0 2(0) (1 ), plU U U r e+ −= = +

0

2

2

,1 pl

U U

r e

+−

=+

2

2 . plU U r e

− + −=

If 2 0 2: 0. Z Z r = = No reflection:

( ) ,

pz

U z U e

+ −=0

( ) . pzU I z e

Z

+−= 0

( ).

( )

U z Z

I z=

Matching:

2 02

2 0

. Z Z

r Z Z

−=

+

132

Short circuit :

Page 133: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 133/170

If 2 20 : 1. Z r = = −

( ) ( ), pl px pxU x U e e e

+ − −= −

Using the notation : x l z= −

0

( ) ( ). pl px pxU I x e e e

Z

+− −= +

Special case: ideal transmission line ( 0, ) p jα β = =

( ) ( ) 2 sin , j l j x j x j lU x U e e e jU e x

β β β β β + − − + −= − =

0 0

( ) ( ) 2 cos . j l j x j x j lU U I x e e e e x Z Z

β β β β β + +

− − −= + =

Standing waves.133

( , )u x t 1t

t t>

Voltage and current in case of short circuit.

Page 134: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 134/170

0 1 2 3 4 5 6 7-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 6.2832-1

0

1

x

1

2 1t t >

0

3 2t t >

4 3t t >

5 4t t >

0 6.2832-1

0

1

x 1t 2 1t t >

03 2t t >

4 3t t >

( , )i x t

5 4t t >

134

Open circuit :

Page 135: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 135/170

If 2 2: 1. Z r → ∞ =

For ideal transmission lines:

( ) ( ) 2 cos , j l j x j x j lU x U e e e U e x

β β β β β + − − + −= + =

0 0

( ) ( ) 2 sin . j l j x j x j lU U I x e e e j e x

Z Z

β β β β β + +

− − −= − =

135

Page 136: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 136/170

4.2 Planar waves

Page 137: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 137/170

Maxwell’s equations in vacuum (µ = µ 0, ε = ε 0), in

absence of charges and currents ( ρ = 0, J = 0):

0 ,curlt

ε ∂

=∂E

H 0 ,curlt

µ ∂

= −∂H

E

0,div =H 0.div =E2

0 0 0 2,curlcurl graddiv curl

t t ε ε µ

=

∂ ∂= − ∆ = = −

∂ ∂0

HH H H E

2

0 0 2,

t ε µ ∂∆ =

∂HH

Similarly:2

0 0 2.

t ε µ

∂∆ =

EE

vector 3D wave equation

137

Assumption: 0, 0. x y

∂ ∂= =

∂ ∂The electromagnetic field is

constant in any plane z = constant:

Page 138: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 138/170

y constant in any plane z constant:

Planar waves:2 2

0 02 2,

z t ε µ

∂ ∂=

∂ ∂

H H2 2

0 02 2:

z t ε µ

∂ ∂=

∂ ∂

E E

Vector 1D wave equation.

All components E x, E y, E z, H x, H y, H z of the electromagnetic field

satisfy the scalar 1D wave equation:

2 2

0 02 2. f f

z t ε µ ∂ ∂=

∂ ∂Solution:

0 0

1( ), . z f t v cv µ ε

= =

138

Waves propagating with light velocity:

Page 139: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 139/170

( , ) ( ), x x

z E z t E t

c

= ( , ) ( ), y y

z E z t E t

c

= ( , ) ( ), z z

z E z t E t

c

=

( , ) ( ), x x

z H z t H t

c= ( , ) ( ), y y

z H z t H t

c= ( , ) ( ).

z z

z H z t H t

c=

Relationship between E and H:

0 ,

x y z

x y z

curl x y z t

H H H

ε ∂ ∂ ∂ ∂

= =∂ ∂ ∂ ∂

e e e

EH

10, 0, .

x y z c t

∂ ∂ ∂ ∂= = =

∂ ∂ ∂ ∂Planar waves:

139

x y ze e e

e e e

Page 140: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 140/170

1 1 10 0 0 0 1 ( ).

x y z

z

x y z x y z

curl

c t c t c t H H H H H H

∂ ∂ ∂= = = ×

∂ ∂ ∂

e e e

H e H

0

0 0

0

1 1

( ) ( ) ; ( ) . z z zc t t c

ε

ε ε µ

∂ ∂

× = ⇒ × = × =∂ ∂

E

e H e H E e H E

Similarly, from Faraday’s law: 0

0

( ) . z

µ

ε × = ±e E H

Sign above: propagation in the positive z-direction,

Sign below: propagation in the negative z-direction.

140

( , ) ( ) z

z t t c

= −E E ( , ) ( ) z

z t t c

= +H H

direction of propagation direction of propagationS S

Page 141: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 141/170

( , ) ( ) z z t t c

= −H H

ze

( , ) ( ) z

z t t c= +E E

zep p g p p g

The direction of Poynting’s vector coincides with the

direction of propagation.

2 20 00

0 0 0 0

1( ) , z z z

µ µ µ

ε ε µ ε = × = × × = ± = ±S E H e H H e H e H

2 20 00

0 0 0 0

1[ ( )] , z z z

ε ε ε µ µ µ ε = × = × ± × = ± = ±S E H E e E e E e E

2 2

0 0

1( ).

2 zc ε µ = ± +S e E H

141

More general material properties: , , konstant.µ ε γ =

Page 142: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 142/170

Maxwell’s equations in absence of charges ( ρ = 0):

2

2,curlcurl graddiv curl curl

t t t γ ε γµ εµ

=

∂ ∂ ∂= − ∆ = + = − −∂ ∂ ∂

0

H HH H H E E

2

2

,t t

γµ εµ ∂ ∂

∆ − − =∂ ∂

H HH 0

Similarly:2

2.

t t γµ εµ

∂ ∂∆ − − =

∂ ∂

E EE 0

, ,

0, 0.

curl curlt t

div div

γ ε ∂ ∂

= + = −∂ ∂

= =

E BH E E

H E

142

For planar waves:2

20, 0 .

x y z

∂ ∂ ∂= = ⇒ ∆ =

∂ ∂ ∂

Page 143: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 143/170

y

2

2 2,

z t t µε µγ ∂ ∂ ∂= +

∂ ∂ ∂

2

E E E

2

2 2.

z t t µε µγ ∂ ∂ ∂= +

∂ ∂ ∂

2

H H H

Total analogy with the transmission line equations:

2 2

2 2( ) ,

u u u LC RC LG RGu

z t t

∂ ∂ ∂= + + +

∂ ∂ ∂2 2

2 2( ) .

i i i LC RC LG RGi

z t t

∂ ∂ ∂= + + +

∂ ∂ ∂, , 0, , , .u i R L G C µ γ ε ⇔ ⇔ ⇔ ⇔ ⇔ ⇔E H

143

Time harmonic case, complex notation

Page 144: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 144/170

( ), ( ) : complex amplitudes. z zE H

Solution (due to analogy):

( ) , pz pz z e e

+ − −= +E E E0 0

( ) . pz pz z e e Z Z

+ −−= −

E EH

Propagation coefficient: ( ) , p j j jωµ γ ωε α β = + = +

Wave impedance:0 .

j Z

j

ωµ

γ ωε =

+

Attenuated waves propagating in the positive and

negative z-direction.

144

Lossless medium: 0.γ =

Page 145: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 145/170

( )( ) 0, . p j j jωµ ωε ω µε α β ω µε = = ⇒ = =

0 . j

Z j

ωµ µ

ωε ε = =

0 0

1 1 1 .r r r r

cv cω β µε µ ε µ ε µ ε = = = = ≤

Optics: ,c

vn

= n: refraction index

Maxwell’s relationship:2; ,r r n nε ε = =

r since for optically transparent media 1.µ =145

4.3 Electromagnetic waves in homogeneous, infinite space

Page 146: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 146/170

Assumptions:

• current density J and charge density ρ are known everywhere at

any time instant:

• material properties µ and ε are constant everywhere, e. g. µ = µ 0,

ε = ε 0,• lossless medium: γ = 0.

( , ) and ( ,t) are given,t ρ J r r

e. g. antenna:

( , )t J r

homogeneous medium

0 0(e. g. vacuum or air: , )µ ε

electromagnetic field: E(r,t ), H(r,t )

146

4.3.1. Solution of Maxwell’s equations with retarded potentials

Page 147: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 147/170

Maxwell’s equations:

,curlt

∂= +

∂D

H J ,curlt

∂= −

∂B

E

0,div =B ,div ρ =D

Potentials:0

1, ,curl curl

µ = =B A H A

0 0, .gradV gradV t t

ε ε ∂ ∂= − − = − −∂ ∂A A

E D

0 0, .µ ε = =B H D E

147

2

0 0 0 0 02.

V curlcurl graddiv grad

t tµ µ ε µ ε

∂ ∂= − ∆ = − −

∂ ∂

AA A A J

Page 148: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 148/170

t t ∂ ∂

The divergence of A can be freely chosen:

0 0 :V

divt

µ ε ∂

= −∂

A Lorenz gauge.

0 0 02 .t µ ε µ

2∂

−∆ + =∂

A

A J

0

( ) .div

div gradV V t t

ρ

ε

∂ ∂− − = −∆ − =

∂ ∂A A

Using the Lorenz gauge:

0 0 2

0

.V

V t

ρ µ ε

ε

2∂−∆ + =

Non-homogeneous 3D

wave equations

148

In the static case ( 0)t

∂=

∂these equations reduce to the

Laplace Poisson eq ations ∆A J V ρ

∆ =

Page 149: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 149/170

Laplace-Poisson equations 0 ,µ −∆ =A J0

V ε

−∆ =

whose solutions are known to be

0

1 ( )( ) .

4

d V

ρ

πε Ω

′ ′Ω=

′−∫r

rr r

0 ( )( ) ,

4

d µ

π Ω

′ ′Ω=

′−∫J r

A rr r

In regions with vanishing current density and charge density,

one obtains the wave equations

0 0 2,

t µ ε

2

∂−∆ + =∂

AA 0 0 0 20.V V

t µ ε

2

∂−∆ + =∂

149

The solutions of the non-homogeneous wave equations in

infinite free space are

Page 150: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 150/170

infinite free space are

0

( , )( , ) ,

4

t d ct

µ

π Ω

′−′ ′− Ω=

′−∫

r rJ r

A rr r

0

( , )1

( , ) ,4

t d cV t

ρ

πε Ω

′−′ ′− Ω=

′−∫r rr

rr r

( , ) and ( , ) are the potentials.t V t retarded A r r

0 0

1( ).c

µ ε =

150

Time harmonic case:

Page 151: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 151/170

( ), ( ), ( ) and ( ) are complex amplitudes.V ρ ′ ′A r r J r r

ˆ( , ) ( ) cos[ ( ) ( )].t t c c

ω ϕ ′ ′− −

′ ′ ′− = − +r r r r

J r J r r

In frequency domain: 0( )ˆ ( ) ( ) , j

jk j ce e eω

ϕ

′−− ′− −′′ ′=

r r

r rrJ r J r

0 0 0 : wave number (phase factor).k cω ω µ ε = =

0

0 ( )( ) ,

4

jk e d µ

π

′− −

Ω

′ ′Ω=

′−∫

r rJ r

A r

r r

0

0

1 ( )( ) .

4

jk e d

V ρ

πε

′− −

Ω

′ ′Ω=

′−∫

r rr

r

r r

In time domain:

151

Using the Lorenz gauge, V can be eliminated:

V∂

Page 152: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 152/170

0 0

V div

t

µ ε ∂

= −

A is in the frequency domain 0 0 .div j V ωµ ε = −A

0 0

1.V div

jωµ ε = − A

,curl=B A

0 0

1 j gradV j graddiv j

ω ω ωµ ε

= − − = − + =E A A A

2

0 0

0 0

1( ).graddiv

jω µ ε

ωµ ε = +A A

2

0

0 0

1( ).k graddiv

jωµ ε = +E A A

152

4.4 Guided waves

Transmission lines: transversal (x y) dimensions are much

Page 153: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 153/170

Transmission lines: transversal ( x, y) dimensions are much

smaller than the wave length.

D

2 2 1.

v D

k f f

π π λ

ω µε µε = = = =

If this condition is not fulfilled: waveguide.

e. g.: cylindrical

waveguideMetallic tube( )γ → ∞

z

a

b ,µ ε

153

Assumptions:

Page 154: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 154/170

Assumptions:

• sinusoidal time dependence: all quantities are

complex amplitudes,

• material properties are constant:

µ , ε = constant,

• Lossless medium: γ = 0,

• No free charges: ρ = 0.

154

4.4.1 TM and TE waves

Page 155: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 155/170

Wave equations for the potentials A and V :

2,

t µε

2∂−∆ + =

AA 0

20.

V V

t µε

2∂−∆ + =

In time domain:

In frequency domain:

2 ,ω µε −∆ − =A A 02 ,V V ω µε −∆ − = 0

2 .k −∆ − =A A 0:k ω µε =

155

Electromagnetic field in case ( , , ) ( , , ) : z

x y z A x y z=A e

e e e

Page 156: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 156/170

1 1 1 1( ) ,

0 0

x y z

z x y A Acurl A x y z y x

A

µ µ µ µ ∂ ∂ ∂ ∂ ∂= = = −∂ ∂ ∂ ∂ ∂

e e e

H e e e

The magnetic field is transversal: TM waves.

21[ ( )] z zk A graddiv A

jωµε

= + =E e e

2 2 22

2

1[ ( ) ]. x y z

A A Ak A

j x z y z zωµε

∂ ∂ ∂= + + +

∂ ∂ ∂ ∂ ∂e e e

0 : the longitudinal component of the magnetic field is zero. z H =

156

Page 157: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 157/170

1

Using the Lorenz gauge, ψ can be eliminated:

Page 158: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 158/170

1.div j div

j

ωµεψ ψ

ωµε

= ⇒ =F F

,curl=D F21 ( ).k graddiv

jωµε = − +H F F

1 j grad j graddiv

jω ψ ω

ωµε = − = − =H F F F

21( ).graddiv

jω µε

ωµε = − +F F

158

( , , ) ( , , ) : z

x y z F x y z=F e

e e e

Electromagnetic field in case

Page 159: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 159/170

1 1 1 1( ) ,

0 0

x y z

z x yF F curl F x y z y x

F

ε ε ε ε ∂ ∂ ∂ ∂ ∂= = = −∂ ∂ ∂ ∂ ∂

e e e

E e e e

21[ ( )] z zk F graddiv F

jωµε

= − + =H e e

2 2 22

2

1[ ( ) ]. x y z

F F F k F

j x z y z zωµε

∂ ∂ ∂= − + + +

∂ ∂ ∂ ∂ ∂e e e

0 : the longitudinal component of the electric field is zero. z E =

The electric field is transversal: TE waves.

159

Page 160: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 160/170

The general solution of Maxwell’s equations inhomogeneous media can be written as the superposition

of TM and TE waves.

Hence, the single component vector potentials allow the

description of the electromagnetic field by means of twoscalar functions.

160

4.4.2 Waves in rectangular waveguides

z

Page 161: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 161/170

z

x

y

0,0 x a=

y b=

Assumption:Wave propagation in the

positive z-direction.

TM waves: ( , , ) ( , , ) ( , ) , j z

z z x y z A x y z A x y e β −= =A e e

TE waves: ( , , ) ( , , ) ( , ) . j z

z z x y z F x y z F x y e β −= =F e e

Boundary conditions: on the walls of the waveguide.× =E n 0

0, 0 at 0 and , y z E E x x a= = = =

0, 0 at 0 and . x z E E y y b= = = =161

22

2, . j

z z β β

∂ ∂= − = −

∂ ∂Boundary conditions for the potentials:

Page 162: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 162/170

2 2 22

2

1

[ ( ) ] x y z

A A A

k A j x z y z zωµε

∂ ∂ ∂

= + + + =∂ ∂ ∂ ∂ ∂E e e e

2 21[ ( ) ]. x y z

A A j j k A

j x y β β β

ωµε

∂ ∂= − + + −

∂ ∂e e e

TM waves:

0 at 0, , 0 and , A x x a y y b= = = = =

TE waves:1 1

. x y

F F

y xε ε

∂ ∂= −

∂ ∂E e e

0 at 0 and ,

F

x x a x

= = =∂

0 at 0 and ,F

y y b y

∂= = =

Dirichlet B.C.

Neumann B.C.

162

Page 163: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 163/170

2 2( ) ( )d X x d Y y

The following ordinary differential equations are obtained:

Page 164: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 164/170

2 2

( ) ( )( ), ( ).

d X x d Y y fX x gY y

dx dy

= =

2 2, : x y f k g k = − = − 1 2( ) cos sin , x x x x X x C k x C k x= +

1 2( ) cos sin . y y y yY y C k y C k y= +

Solution:

boundary conditions: 1(0) ( ) 0 0, , 1,2,... , x x X X a C k m ma

π = = ⇒ = = =

1

(0) ( ) 0 0, , 1,2,... . y y

Y Y b C k n nb

π = = ⇒ = = =

164

Page 165: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 165/170

2 ,k −∆ − =F F 0 .k ω µε =

( , , ) ( , ) : j zx y z F x y e

β −=F e

TE waves:

Page 166: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 166/170

( , , ) ( , ) : z x y z F x y eF e

2 22 2

2 20.

F F F k F

x y β

∂ ∂− − + − =

∂ ∂

( , ) ( ) ( ).F x y X x Y y=

2 22 2

2 2

( ) ( )( ) ( ) ( ) ( ) ( ) 0,

d X x d Y yY y X x k X x Y y

dx dy β − − + − =

2 22 2

2 2

( ) ( )

1 ( ) 1 ( )0.

( ) ( ) f x g y

d X x d Y yk

X x dx Y y dy

β − − + − =

Solution by separation:

This is only possible if ( ) constant, ( ) constant. f x g y= =166

2 2( ) ( )d X x d Y y

The following ordinary differential equations are obtained:

Page 167: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 167/170

2 2

( ) ( )( ), ( ).

d X x d Y y fX x gY y

dx dy

= =

2 2, : x y f k g k = − = − 1 2( ) cos sin , x x x x X x C k x C k x= +

1 2( ) cos sin . y y y yY y C k y C k y= +

Solution:

boundary conditions:

2

(0) ( )0 0, , 0,1,2,... , x x

dX dX aC k m m

dx dx a

π = = ⇒ = = =

2

(0) ( )0 0, , 0,1,2,... .

y y

dY dY bC k n n

dy dy b

π = = ⇒ = = =

167

1 1 : x yC C C = ( , , ) cos( )cos( ) . j zm nF x y z C x y e

a b

β π π −=

1 1∂ ∂ C

TEmn waves:

Page 168: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 168/170

1 1:

x y

F F

y xε ε

∂ ∂= −

∂ ∂E e e cos( )sin( ) , j z

x

C n m n E x y e

b a b

β π π π

ε

−= −

sin( ) cos( ) , j z

y

C m m n E x y e

a a b

β π π π

ε

−=

0. z E =

sin( )cos( ) , j z

x

C m m n H x y e

a a b

β β π π π

ωµε

−= −

cos( )sin( ) , j z

y

C n m n H x y eb a b

β β π π π

ωµε

−= −

2 2( )cos( )cos( ) . j z

z

C k m n H x y e

j a b

β β π π

ωµε

−−=

2 21[ ( ) ] : x y z

F F j j k F

j x y β β β

ωµε

∂ ∂= + + −∂ ∂

H e e e

168

Satisfaction of the separation equation:2 2 0. f g k β − − + − =

2 2 2 2 2 2m nπ π

Page 169: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 169/170

2 2 2 2 0, x yk k k β + + − = 2 2, , x y

m nk k k

a b

π π ω µε = = = .

2 2 2 2( ) ( ) 0,m n

a b

π π β ω µε + + − = m, n = (0), 1, 2, ... .

At given values of n and m (wave modes), the angular

frequency is not arbitrary: cannot be negative!2 β

If 2 0, β < one had , : j z z j j e e

β α β α β α −= ± − = ⇒ =

attenuation only, no wave propagation.

169

2 2 2 2 2 2( ) ( ) 0 ( ) ( )m n m nπ π π

β ω µε ω≥ ⇒ ≥ +

Page 170: Belajar Teknik Elektro

8/10/2019 Belajar Teknik Elektro

http://slidepdf.com/reader/full/belajar-teknik-elektro 170/170

2

( ) ( ) 0 ( ) ( ) .

g f

a b a b

π

β ω µε ω µε

= − − ≥ ⇒ ≥ +

2 21( ) ( ) .

2g

m n f f

a bµε ≥ = +

f g: cut-off frequency.

Any particular mode is only propagable above the cut-off

frequency.