an experimental study of impact of surface...

24
ii 3 UNIVERSITI TEKNIKAL MALAYSIA MELAKA AN EXPERIMENTAL STUDY OF IMPACT OF SURFACE GRINDING PARAMETERS ON THE SURFACE ROUGHNESS Thesis submitted in accordance with the requirements of the University Technical Malaysia Melaka (UTeM) Bachelor of Engineering (Honours) Manufacturing (Process) By RUSYDAH BINTI JAMALUDIN Faculty of Manufacturing Engineering May 2008

Upload: haque

Post on 11-May-2019

224 views

Category:

Documents


0 download

TRANSCRIPT

ii 3

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

AN EXPERIMENTAL STUDY OF IMPACT OF

SURFACE GRINDING PARAMETERS ON THE

SURFACE ROUGHNESS

Thesis submitted in accordance with the requirements of the

University Technical Malaysia Melaka (UTeM)

Bachelor of Engineering (Honours) Manufacturing (Process)

By

RUSYDAH BINTI JAMALUDIN

Faculty of Manufacturing Engineering

May 2008

ii ii

DECLARATION

I hereby, declared this thesis entitled “An experimental study of surface grinding

parameters impact on the surface roughness” is the results of my own research

except as cited in references.

Signature : ………………………………………….

Author’s Name : RUSYDAH BINTI JAMALUDIN

Date : 28 MARCH 2008

ii iii

APPROVAL

This PSM submitted to the senate of UTeM and has been as partial fulfillment of the

requirements for the degree of Bachelor of Manufacturing Engineering (Process). The

members of the supervisory committee are as follow:

………………………………

Main supervisor

(En Mohd Shahir Kasim)

(Official Stamp & Date)

ii iv

ABSTRACT

Surface roughness and tolerances are the most critical quality measures in many

mechanical products. As competition among industries grows rapidly, customers have

highly demand on quality, making surface roughness become a main competitive demand

in manufacturing industry nowadays. Grinding is one the most popular methods of

machining hard materials. The aim of this researches it to finding the significant

parameter of surface grinding machine that affected surface roughness. There are

parameters such as feed rate, depth of cut that are known to have a large impact on the

surface roughness. This research experiment the specimen using surface grinding

machine which can produce a surface roughness to the specimens. The parameters has

been identified such as material, feed rate (m/min) and depth of cut (µm) to machining

each specimen that running 16 samples for both material of mild steel and carbon steel.

Surface of a mechanical product can created with a number of manufacturing processes.

This research applied Design of Experiment (DOE) approach to studying the effect of

surface grinding parameters on the surface roughness of ground surfaces. Analysis of

variances used to examine the impact of grinding factor and factor interactions on surface

roughness.

ii v

ABSTRAK

Kekasaran permukaaan dan ‘tolerance’ adalah ukuran kualiti yang kritikal di dalam

kebanyakan produk mekanikal. Persaingan di dalam industri yang semakin berkembang

maju menyebablan para pengguna mementingkan kualiti menjadikan kekasarasan

permukaaan sebagai permintaaan yang amat tinggi di dalam industri pembuatan pada

masa kini. Mesin pengasah permukaan (surface grinding) adalah antara kaedah yang

popular di dalam permesinan bahan keras. Tujuan kajian ini adalah untuk mencari

parameter yang paling signifikan di dalam mesin pengasah permukaan (surface

grinding). Di antara parameter yang dikaji adalah kelajuan (feed rate), kedalaman

pemontongan (depth of cut) yang dikenalpasti memberikan impak yang besar terhadap

kekasaran permukaaan. Kajian ini akan menjalankan eksperimen menggunakan mesin

pengasah permukaan (surface grinding) di mana dapat menghasilkan kekasaran

permukaan pada bahan kajian. Parameter yang dikenalpasti adalah seperti jenis material,

kelajuan (feed rate) dan kedalaman pemotongan (depth of cut) untuk permesinan di mana

sebanyak 16 spesimen untuk kedua jenis material; mild steel dan carbon steel. Permukaan

bagi produk mekanikal boleh dihasilkan daripada pelbagai proses pembuatan. Kajian ini

mengaplikasikan kaedah rekabentuk eksperimen untuk mengkaji kesan parameter mesin

pengasah permukaaan (surface grinding) ke atas kekasaran permukaan. Analisis bagi

perbezaan ini digunakan untuk menentukan impak factor mesin dan factor interaksi ke

atas kekasaran permukaaan.

ii vi

DEDICATION

For my beloved dad, mom, and my brother and my sister.

Especially for my special one.

Special thanks for my supervisor.

ii vii

ACKNOWLEDGEMENTS

Alhamdulillah, finally I have finished my Final Year Project for the fulfillment of

Bachelor of Manufacturing Engineering (Process). First and foremost, I would like to

dedicate my deepest gratitude to University Teknikal Malaysia Melaka, especially for

Manufacturing Faculty for the provision of funding to carry out this research and my

bachelor degree study.

A special thanks to my supervisor, Encik Mohd Shahir Kasim for the supervision along

the time I was doing this project. I greatly appreciate his consistent encouragement,

advice and invaluable guidance throughout the course of this project.

I wish to extend my special appreciation to Miss Liew Pay Jun for helping me in

understanding the result of my studies with her comments and valuable time to complete

this project.

I also like to express my thanks to all technician staff at FKP Laboratory that helping me

in conducting my experiment especially to Encik Mohd Hisyam Ibrahim, a technician at

mesinsyop Lab in guidance me in handling surface grinding machine. Encik Jaafar Lajis,

for helping me in material order and guidance me in using facilities in metrology Lab for

the experimental analysis process.

Finally, I would like to express my deepest appreciation and gratitude to my

familymembers for their love, sacrifice, motivation and support given during the course

ofthis project. Last but not least, I would like to thank those who have contributed

directly or indirectly toward the success of this project.

ii viii

TABLE OF CONTENTS

Declaration……………………………………………………………………………ii

Approval…………………………………………………………..…………………iii

Abstract………..…………………………………………………………...………...iv

Abstrak……………………………………………………………………………......v

Dedication……………………………………………………………………………vi

Acknowledgements…………………………………………………………...……..vii

Table of Contents…………………………………………………………………..viii

List of Figures……………………………………………………………………….xii

List of Tables………………………………………………………………………..xv

List of Abbreviations, Symbols, Specialized Nomenclature………………………xvii

List of Appendices………………………………………………………………...xviii

1.INTRODUCTION………………………………………………………………....1

1.1 Background……………………………………………………….....………….1

1.2 Problem Statements……………………..……………………………………...2

1.3 Objectives...…………………………………………………………………….3

1.4 Scope of Study …………………...…………………………………………….3

1.5 Structure of the reportTopic.……………………………………………………3

1.5.1 Chapter 1: Introduction...…………………………………………………2

1.5.2 Chapter 2: Literature Review …………………………………………….4

1.5.3 Chapter 3: Methodology………………………………………………….4

1.5.4 Chapter 4: Result…………………………………………………………4

1.5.5 Chapter 5: Discussion and Analysis……………………………………...5

1.5.6 Chapter 6: Conclusion and Recommendation…………………………….5

2. LITERATURE REVIEW………..………………………………………………8

2.1 Introduction to surface roughness……………………………………………....8

2.2 Surface structure and properties………………………………………………...9

2.3 Surface texture ………………………………………………………………..10

2.4 Surface roughness profile parameters…………………………………………11

ii ix

2.4.1 Roughness average, Ra……………………………………………….....11

2.4.2 Arithmetic mean, Rz……………………………………………………11

2.4.3. Root mean square, Rq………………………………………………….12

2.5 Application of surface roughness……………………………………………..12

2.6 Surface finish measuring method……………………………………………..14

2.7 Surface grinding parameter……………………………………………………15

2.7.1 Material …………………………………………………………………15

2.7.1.1 Carbon steel……………………………………………………..15

………...2.7.1.2 Mild steel………………………………………………………..17

2.7.2 Depth of cut……………………………………………………………...19

2.7.3 Feed rate…………………………………………………………………19

2.8 Surface grinder and accessories……………………………………………….20

…..2.8.1 The grinding process…………………………………………………….21

….2.8.2 Surface finish…………………………………………………………….22

2.8.3 Surface grinding operation……………………………………………….23

2.9 Design of Experiment (DOE)…………………………………………………23

2.10 Vibration……………………………………………………………………..25

3.METHODOLOGY……………..………………………………………………..28

3.1 Introduction……………………………………………………………………..28

...3.2 Design of Experiment (DOE)…………………………………………………28

3.2.1 Stage 1: The objectives of the experiment was defined………………...29

3.2.2 Stage 2: The control factors and their level were identified……………..29

……3.2.3 Stage 3: Suitable response variables was identified……………………..30

3.2.4 Stage 4: The appropriate orthogonal array (OA) was selected…………..30

……3.2.5 Stage 5: The experiment was prepared…………………………………..31

………….3.2.5.1 Machine preparation …………………………………………….31

………………….3.2.5.1.1 Machine setup………………………………………….32

………….3.2.5.2 Workpiece preparation…………………………………………...37

3.2.5.3 Experiments procedure and equipments…………………………39

3.2.5.3.1 Machine specification…………………………………..39

3.2.5.3.2 Tools and equipments………………………………….43

ii x

3.2.5.4 Testing…………………………………………………………….50

3.2.5.4.1 Surface roughness……………………………………….50

3.2.5.4.2 Data processing flow……………………………………52

3.2.5.4.3 Eliminate error………………………………………......53

3.2.6 Stage 6: An interpreted result of experiments trials was analyzed……..54

3.2.7 Stage 7: Conclusion and recommendation……………………………...54

3.3 Material testing specification………………………………………………..55

3.3.1 Spark test……………………………………………………………...55

3.3.2 Hardness test…………………………………………………………..55

3.4 Project flow chart……………………………………………………………57

4. RESULT………………………………………………………………………..58

4.1 Introduction…………………………………………………………………58

4.2 Analysis method…………………………………………………………….58

4.3 Mild steel analysis…………………………………………………………...59

4.3.1 Vibration……………………………………………………………….60

4.3.1.1 Vibration versus roughness…………………………………...60

4.3.1.2 Feed rate versus vibration……………………………………..61

4.3.1.3 Depth of cut versus vibration………………………………… 62

4.3.2 Roughness………………………………………………………………64

4.4 Carbon steel analysis………………………………………………………...70

4.4.1 Vibration………………………………………………………………71

4.4.1.1 Vibration versus roughness……………………………………71

4.4.1.2 Feed rate versus vibration……………………………………..72

4.4.1.3 Depth of cut versus vibration…………………………………..73

4.4.2 Roughness……………………………………………………………..75

4.5 Microscopic surface…………………………………………………………81

4.5.1 Mild steel AISI 1020………………………………………………......81

4.5.2 Carbon steel AISI 1045………………………………………………..82

5. DICUSSION AND ANALYSIS………………………………………………...83

5.1 Introduction…………………………………………………………………..83

5.2 Vibration………………………………………………………………………83

ii xi

5.3 Surface roughness on mild steel……………………..………………………..85

5.4 Surface roughness on carbon steel………………..…………………………..85

5.5 Factors affecting the surface roughness……………………...……………….86

5.5.1 Workpiece material……………………...……………………………...86

5.5.2 Grinding vibration………...………………………………………….….86

5.5.3 Grinding wheel wear…..………………………………………………..87

5.5.4 Coolant……….……………………………………………………...…..88

6. CONCLUSION AND RECOMMENDATION……………………………….89

6.1 Conclusion……………………………………………………………………89

6.2 Recommendation……………………………………………………...……...90

6.2.1 Investigation with other workpiece……………………………………..90

6.2.2 Investigation with ANOVA method…………………………………….90

6.2.3 Investigation with other machining parameter…………………………..90

6.2.4 Investigation on other machining characteristics………………………...91

6.2.5 Improvement in surface grinding performance…………………………..91

6.2.5.1 Improved grinding machines and auxiliary equipment……….....91

6.2.5.2 Determine the effect of grinding condition……………………….91

6.2.5.3 Machine conditions and cost factors……………………………...92

6.2.5.4 Vibration stability………………………………………………...92

REFERENCES……………………………………………………………………..93

APPENDICES……………………………………………………………………...96

ii xii

LIST OF FIGURES

1.1 PSM 1 Gantt Chart 6

1.2 PSM 2 Gantt Chart 7

2.1 Schematic illustration of a cross-section of the surface structure

of metals. The thickness of the individual layers depends on both

processing conditions and processing environment (Kalpakjian,

2001)

9

2.2 Surface texture (Kalpakjian, 2001) 10

2.3 Standard terminology and symbols to describe surface finish

(Kalpajian, 2001)

11

2.4 Coordinates used surface roughness (David, 2002) 12

2.5 Surface measurement in manufacture and performance sequences

(David, 2002)

13

2.6 Elements of a contact stylus profilometer 14

2.7 Carbon steel AISI 1045 15

2.8 Mild Steel AISI 1020 17

2.9 Depth of cut of the workpiece 19

2.10 Cutting actions of abrasive grains 21

2.11 Three stages of chip generation and grinding force components 26

3.1 PSGC-60220 AHR grinding surface machine 31

3.2 A grinding wheel balancing stand 32

3.3 Adjusting counterbalances to balance a grinding wheel 33

3.4 A diamond dresser used to true and dress a grinding wheel 34

3.5 Truing makes the wheel round and true with its axis 34

3.6 Many grinding operation use the flood system to keep the

workpiece cool

36

ii xiii

3.7 Horizontal table reverse 36

3.8 Workpiece was placed at a constant place on the horizontal table 36

3.9 Samples of workpieces 37

3.10 AISI 1020 specimens 38

3.11 AISI 1045 specimens 38

3.12 Surface grinding machine 39

3.13 Controller 40

3.14 Grinding wheel 40

3.15 Magnetic table 41

3.16 Pretech cool SYN 3000 Green 41

3.17 Horizontal bandsaw 42

3.18 Cutting the material specimens (carbon steel) 42

3.19 Padestal grinding machine 43

3.20 Digital vibration meter 44

3.21 Taking a reading of vibration during machining 44

3.22 Portable roughness measuring machine 45

3.23 Portable roughness measuring machine accessories 45

3.24 Stylus 45

3.25 Vickers micro hardness tester 46

3.26 Mallet 47

3.27 Specimens arrangement on the magnetic table 47

3.28 Filing the burr on the specimen after cutting 48

3.29 Burr on the specimens after cutting 48

3.30 Oils 49

3.31 Specimens after oiling 49

3.32 Degreaser and cleaner 50

3.33 The specimens need to be cleaning before analysis the roughness 50

3.34 Measuring roughness of the workpieces 51

3.35 Measured the surface by press key “start” on the machine 51

3.36 Data processing flow 52

3.37 Calibrate the precision roughness specimens 53

ii xiv

3.38 AISI 1020 spark test 55

3.39 AISI 1045 spark test 55

3.40 Hardness measurement 56

3.41 Project Flow chart 57

4.1 Graph of vibration versus roughness for mild steel 60

4.2 Graph of feed rate (m/min) versus vibration (RMS) 62

4.3 Graph of depth of cut (µm) versus vibration (RMS) 63

4.4 Minitab report for mild steel analysis 64

4.5 Data analysis in Minitab 14 65

4.6 Normal probability plot of standardized effects 65

4.7 Pareto chart of the standardized effects 66

4.8 Main effects plot (fitted means) for Ra (µm) 67

4.9 Interaction plot (fitted means) for Ra (µm) 68

4.10 Estimate response surface plot of Ra (µm) vs depth of cut, feed

rate

69

4.11 Graph of vibration (RMS) versus Ra (µm) 71

4.12 Feed rate (m/min) versus vibration (RMS) 73

4.13 Graph of depth of cut versus vibration (RMS) 74

4.14 Minitab report for carbon steel analysis 75

4.15 Data analysis in Minitab 14 76

4.16 Normal probability plots of the standardized effects 76

4.17 Pareto chart of the standardized effects 77

4.18 Main effect (data means) for Ra (µm) 78

4.19 Interaction plot (data means) for Ra (µm) 79

4.20 Estimate surface plot of Ra (µm) vs depth of cut, feed rate 80

4.21 Surface of mild steel AISI 1020 specimens (0.21 µm) 81

4.22 Surface of carbon steel AISI 1045 specimen (0.24 µm)) 82

5.1 Types of grinding wheel wear (Marinescu, 2001) 87

5.2 Influence of arrangement and number of cleaning nozzle on

surface quality during surface grinding (Marinescu, 2001)

88

5.3 Influence of different type of cooling lubricant on surface quality 88

ii xv

during surface grinding (Marinescu, 2001)

ii xvi

LIST OF TABLES

2.1 Chemical composition carbon steel AISI 1045 properties

(Geocities, 2008)

16

2.2 Carbon steel AISI 1045 mechanical properties (Geocities, 2008) 16

2.3 Chemical properties of ANSI 1020 (Geocities, 2008) 18

2.4 Mild steel AISI 1020 mechanical properties (Geocities, 2008) 18

2.5 Fundamental pattern of a 2-level, 3 factor factorial (Del,Vecchio,

1997)

25

3.1 Factors and levels selected for the experiments 29

3.2 Chemical composition of the materials 29

3.3 Experimental layout with response value 30

3.4 Chemical compositions of AISI 1020 and AISI 1045 (Geocities,

2008)

38

3.5 AISI 1020 mechanical properties 38

3.6 AISI 1045 mechanical properties 38

3.7 Digital vibration meter machine information 44

3.8 Portable roughness measuring machine accessories function 46

3.9 Hardness standard of workpiece material (Pertik, 2008) 56

3.10 Hardness test result of workpiece material with load of 100N 56

4.1 Mild steel analysis data 59

4.2 Vibration and roughness results for mild steel specimens 60

4.3 Feed rate (m/min) versus vibration (RMS) 61

4.4 Depth of cut (µm) versus vibration (RMS) 62

4.3 Feed rate (m/min) versus vibration (RMS) 67

ii xvii

4.4 Depth of cut (µm) versus vibration (RMS) 68

4.5 Carbon steel analysis data 70

4.6 Vibration (RMS) versus Ra (µm) 71

4.7 Feed rate (m/min) versus vibration (RMS) 72

4.8 Depth of cut (µm) versus vibration (RMS) 73

ii xviii

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED

NOMENCLATURE

ANOVA - Analysis of Variance

DOE - Design of Experiment

UTeM - Universiti Teknikal Malaysia Melaka

PSM - Projek Sarjana Muda

ANSI - American National Standard Institute

ISO - International Standard Organization

Ra - Roughness average

AA - Arithmetic average

CLA - Centre line average

Rz - Arithmetic mean

RMS - Root mean square

ii xix

LIST OF APPENDICES

A - Summary of findings from past research

B - Surface texture standard

C - Picture of experiment samples

D - Surface roughness graph

E - Journals of Experimental study of surface grinding

parameters impact on the surface roughness

1

CHAPTER 1

INTRODUCTION

1.1 Background

Surface roughness has been one the most important quality measures in many

mechanical products. As early as in 1984, Tarbekin has brought its significant to our

attention (Chang, 2001). The impact of two factors, namely the depth of cut and work

piece materials on surface roughness is depicted in (Grover, 1996). For clarify of

presentation, the most notable models for estimating the ideal surface roughness in

surface grinding are brief next. In gathering a good surface finish, grinding machining

used in the production and is an important part of the machine tool trade to improved

machine construction has permitted the production of parts to extremely fine tolerances

with improved surface finish and accuracy of the finish product (Krar,2006). Because of

the dimensional accuracy obtained by grinding, interchangeable manufacture has

become commonplace in most industries.

The mechanism behind the formation of surface roughness is very dynamic,

complicated, and process dependent; it is very difficult to calculate its value through

theoretical analysis (Julie, 2007), so other method like Design of Experiment (DOE) has

been using for the analysis. In many cases, grinding eliminate the need of

conventional machining. A new development of abrasives and better machines, the

rough part is often finished in one grinding operation can reduce need for other

machining. Nowadays, grinding is applied extensively to productions of unhardened

parts where high accuracy and surface finish. Design of Experiments (DOE) is the most

2

powerful tool currently available to experimenters. DOE helps in design an experiment

that will provide the most information with the least amount of work. In order to analyze

the data, the fractional factorial design as a method in DOE to study which surface

grinding parameters that influence surface roughness of the work piece. The parameters

clarify to be studied in this project is work piece materials, depth of cut and feed rate.

1.2 Problems Statements

The importance of surface roughness during grinding machining relationship with

the parameters has to be studied in this project. While, the surface also contributed an

importance factor in the industry, the surface technology currently becomes importance

in the engineering industry because of several factors.

The importance of the manufacturing process is the final link in design through the

manufacturing route to reduce costs and improve quality among competition. The study

of surface grinding parameters impact that effected surface roughness contributed for

further studies in manufacturing process in producing a good surface quality. The

important influence of geometry and roughness in tribological problems has been

accepted for many years only limited progress has been made in understanding the exact

mechanisms involved and incorporating this knowledge into surface finishing processes

designed to improve performance. This project presents an approach to surface

topography measurement and analysis which allows many of these problems to be

examined in a great detail. The influence of surface roughness on contact behavior ia a

great tribological situations.

This research study is aimed to find out the answers for the following questions:

i. What are the influence of machining parameters (feed rate and depth of cut) of

the surface grinding machine to the surface roughness for mild steel and carbon

steel?

ii. What are the most significant machining parameter that most influences the

surface roughness of mild steel and carbon steel?

3

1.3 Objectives

The objectives of the project are to:

i. To finds the significant machining parameters (feed rate and depth of cut) that

influence machining characteristics through Design of Experiment (DOE).

ii. To analyzed a data from the experiment by using MINITAB 14 software.

1.4 Scope of Study

This project will involve experimentation by machining parts using surface grinding

machine in UTeM machine shop. This experimentation will concerned about the

parameters as stated in this project like work piece material, feed and depth of cut.

There are 16 pieces of work piece machining during the experimentation period by

following factorial design of Design of Experiment (DOE) method which the data is

analyzed the same as full factorial or block design. The experiment will be run for 2

samples (mild steel and carbon steel) each machining to get a better data. 8 first of

work piece was analyzed by using portable roughness measuring machine located at

the UTeM metrology lab and then other 8 pieces. This study will analyzed the surface

profile in order to verify the surface grinding parameters impact influence on the

surface roughness.