universiti putra malaysia - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/fk 2012...

54
UNIVERSITI PUTRA MALAYSIA RUZINOOR CHE MAT FK 2012 155 FOUR TIER FRAMEWORK FOR ONLINE APPLICATIONS OF 3D GIS VISUALIZATION

Upload: ngoque

Post on 28-May-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

UNIVERSITI PUTRA MALAYSIA

RUZINOOR CHE MAT

FK 2012 155

FOUR TIER FRAMEWORK FOR ONLINE APPLICATIONS OF 3D GIS VISUALIZATION

Page 2: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

FOUR TIER FRAMEWORK FOR ONLINE APPLICATIONS

OF 3D GIS VISUALIZATION

By

RUZINOOR BIN CHE MAT

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

October 2012

Page 3: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

DEDICATION

I dedicate this thesis to my wife Norani Nordin, my kids Naufal, Nazihah, Nabil and

to my mum Romlah Hamzah.

Page 4: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy

FOUR TIER FRAMEWORK FOR ONLINE APPLICATIONS

OF 3D GIS VISUALIZATION

By

RUZINOOR CHE MAT

October 2012

Chairman: Associate Professor Abdul Rashid Mohammed Shariff, PhD

Faculty: Institute of Advanced Technology

The aim of this study is to discuss on the issues related to the use of a new proposed four-

tier architecture for online applications of 3D GIS visualization. Conventional design of

the system is generated from client/server based architecture. This architecture is the

main platform for designing online system architecture, which works based on the

distributing concept, which is a tier. The tier is normally set by the developers to separate

the works/tasks between the system architecture. Currently, three tiers architecture is the

most well-known architecture used in GIS applications and also other application.

However, this architecture has some drawback on scalability, maintainability, and also its

need more processing power in the middle tier to process the request from multiple of

users. Based on the literature study, GIS applications, especially systems, which involve

3D visualization generate a massive amount of data. Due to this situation, the current

three-tier architecture used for online application of 3D GIS visualization decrease the

performance of the system in terms of time for processing the request from the users.

Page 5: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

ii

This research explores the use of the four-tier framework to overcome current

impediments in the use of the three-tier framework for online applications of 3D GIS

visualization. The new framework is designed based on client/server architecture with the

tasks distributed using the tier‟s concept. It is formalized into four tiers framework by

advancing one more tier into the existing three tiers framework for handling the

visualization process. The four tiers framework is divided into the client, logic,

visualization process, and database tiers respectively. The unique part of this new

architecture is the middle tier which is divided into two other tier‟s, which handle the

visualization process and logical process separately and make the framework more

flexible and increase its performance. The framework has been successfully implemented

in oil palm plantations application using a prototype developed to prove that the

framework functions well based on the requirements. Several experiment related to

terrain visualization application conducted to give an operational guidelines for

developer. The results of experiments helps developer on utilising the best data and

technique for developing the required system. The prototype shows that it can aid the oil

palm plantation management to visualize their plantation easily in 3D. The oil palm trees

can be visualized with 3D terrain in an online environment with GIS capabilities. The

characteristic of the oil palm tree data is stored in the database tier, and the data can be

modified based on users need. The 3D terrain is generated from the topographic data

(LiDAR Data) and overlaid with the high- resolution satellite image (QUICK BIRD).

The validation of the framework was performed by comparing the results from the

existing three-tier framework with the new four tier framework. The new framework

shows superiority in its performance based on loading time, response time, frames per

second, CPU usage and memory usage. These results show that the approach in this

research helps solve the processing power problem. The framework can be applied by

Page 6: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

iii

users to visualize a multitude of applications with GIS capabilities in an online 3D

environment.

Page 7: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

KERANGKA EMPAT TAHAP UNTUK APLIKASI DALAM TALIAN

BAGI VISUALISASI 3D GIS

Oleh

RUZINOOR CHE MAT

Oktober 2012

Pengerusi: Profesor Madya Abdul Rashid Mohammed Shariff, PhD

Fakulti: Institut Teknologi Maju

Applikasi talian visualasi 3D untuk data GIS bukan sahaja menjadi tarikan bagi banyak

bidang seperti kartografi, geografi, geologi dan psikologi tetapi ia juga popular

dikalangan orang awam. Rekabentuk konvensional bagi sistem ini dihasilkan berasaskan

kepada arkitektur pelayan/pelanggan. Arkitektur ini merupakan tapak utama bagi

merekabentuk arkitektur sistem talian yang berfungsi berdasarkan kepada konsep sebaran

iaitu ‘tahap’. Biasanya konsep ‘tahap’ digunakan oleh pemaju perisian bagi

mengasingkan tugas-tugas antara sistem arkitektur. Ketika ini, arkitektur 3 ‘tahap’ adalah

yang paling terkenal digunakan di dalam aplikasi GIS dan juga lain-lain aplikasi. Namun

aplikasi ini mempunyai kekurangan dalam penskalaan, penyelengaraan, dan juga

memerlukan pemprosesan yang lebih pada ‘tahap pertengahan’ bagi memproses

permintaan dari pelbagai pengguna. Berdasarkan kajian literatur, aplikasi GIS terutama

sistem yang melibatkan visualisasi 3D menghasilkan jumlah data yang besar. Oleh

kerana situasi ini, penggunaan arkitektur tiga ‘tahap’ yang biasa digunakan untuk

aplikasi dalam talian untuk visualisasi 3D bagi data GIS akan menurunkan prestasi

sistem ini dari segi masa untuk memproses permintaan dari pengguna. Penyelidikan ini

Page 8: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

v

cuba mengenengahkan penggunaan kerangka empat ‘tahap’ untuk mengatasi kelemahan

yang ada dalam sistem arkitektur tiga ‘tahap’ bagi penggunaan aplikasi dalam talian

untuk visualisasi 3D GIS. Objektif kajian ini adalah (i) untuk memperkenalkan kerangka

baru bagi aplikasi talian visualasi 3D GIS. (ii) untuk melaksanakan kerangka baru ini

dalam aplikasi talian visualasi 3D GIS. (iii) untuk menganalisis dan mengesahkan

kerangka baru ini dalam aplikasi talian visualasi 3D GIS. Kerangka baru ini direka

bentuk berdasarkan arkitektur pelayan/pelanggan yang mengagihkan tugas kepada

konsep ‘tahap’. Ia telah diformalisasikan kepada kerangka empat ‘tahap’ dengan cara

menambahkan satu lagi ‘tahap’ ke dalam kerangka tiga ‘tahap’ yang sedia ada bagi

mengendalikan proses visualisasi. Kerangka kerja empat ‘tahap’ dibahagikan kepada

‘tahap’ pelanggan, ‘tahap’ logik, ‘tahap’ proses visualisasi, dan ‘tahap’ pangkalan data.

Bahagian yang unik dalam arkitektur baru ini adalah dimana „tahap‟ pertengahan

dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi dan proses

logic secara berasingan yang membuatkan kerangka kerja ini lebih fleksibel dan

meningkatkan prestasinya. Kerangka ini telah berjaya dilaksanakan dengan jayanya

dalam perladangan kelapa sawit dan satu prototaip juga telah dibina untuk menunjukkan

bahawa kerangka ini boleh digunakan dengan baik. Beberapa eksperimen berkaitan

aplikasi visualisasi permukaan tanah telah dijalankan untuk memberi garis panduan

operasi kepada pemaju sistem. Keputusan dari eksperimen ini membantu pemaju sistem

dalam menggunakan data dan teknik terbaik untuk membangunkan sistem yang

dikehendaki. Prototaip ini menunjukkan bahawa ia boleh membantu pengurusan ladang

kelapa sawit untuk menggambarkan ladang mereka dengan mudah dalam 3 dimensi.

Pokok kelapa sawit dan permukaan tanah juga boleh di visualisasi dalam bentuk 3D

dalam persekitaran dalam talian dengan kemudahan GIS. Data mengenai ciri-ciri yang

dimiliki oleh pokok kelapa sawit disimpan dalam ‘tahap’ pangakalan data dan data ini

Page 9: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

vi

boleh diubahsuai mengikut keperluan peengguna. Permukaan tanah 3D dihasilkan

daripada data topografi (data „LiDAR‟) dan diselaputi dengan imej satelit resolusi tinggi

(QUICK BIRD). Pengesahan kerangka kerja baru ini dilakukan dengan cara

membandingkan hasil daripada kerangka tiga ‘tahap’ yang sedia ada dengan kerangka

empat ‘tahap’. Kerangka terbaru menunjukkan kelebihan yang banyak dari segi

prestasinya berdasarkan „masa muat turun‟, „masa tindak balas‟, „rangka sesaat‟,

„penggunaan CPU‟ dan penggunaan memori‟. Prestasi ini menunjukkan bahawa ia boleh

menyelesaikan masalah keperluan kuasa pemprosesan. Kerangka ini boleh diaplikasikan

oleh pengguna untuk menggambarkan bermacam-macam jenis aplikasi dengan

kemampuan GIS dalam talian persekitaran 3D.

Page 10: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

vii

ACKNOWLEDGEMENTS

I am thankful and syukur to Allah for making things possible, Alhamdulillah. I would

like to acknowledge the support and assistance that I have received from my supervisor,

Associate Prof. Dr. Abdul Rashid Mohamed Shariff and to thank him for his untiring

guidance, advice, help and encouragement throughout my study in UPM.

I am very much grateful to the members of my supervisory committee, Associate Prof.

Dr. Ahmad Rodzi Mahmud, Dr. Habil. Biswajeet Pradhan and Dr. Mohd Shafry Mohd

Rahim for their valuable guidances, helps and supports throughout my study. Thanks also

to Assoc. Prof. Dr. Helmi, Dr. Lawal Billa and Dr. Fazel who always provided moral

supports. Special thanks also goes to Prof. Dr. Ravshan Ashurov and my postgraduate

colleague Almaz Butaez for helping me on preparing the mathematical models and

formula for my algorithm.

I would like to express my true appreciation to Taman Pertanian Universiti UPM and

Digital Globe Incorporation for providing the satellite image of UPM area. My sincere

thanks to Professor Dr. Shattri Mansor and Pejabat Pembangunan dan Pengurusan Aset

(PPPA) UPM who well provided me the LiDAR data of the study area. Thanks to

Department of Survey and Mapping Malaysia (JUPEM) for providing the contour data

for UPM area and for giving me placement to perform two months training in their

organization.

Thanks to my friends Mohammed Mustafa Al-Habshi for assisting me on preparing the

programming code for my research. To all my colleagues; Halim, Zakri, Hafiz, Fadhil,

Nik, Wan, Veena, Roshidul, Ebrahim, Ramin, Khosro, Osama, Meftah, Harib, Mobarak,

Ranya, Islah and Shahzard thank you for making my study life in UPM a valuable one.

Finally, I would like to thank my family, especially my wife, my kids and my mum for

all their support and encouragement.

Page 11: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

viii

I certify that a Thesis Examination Committee has met on 12 December 2012 to conduct

the final examination of Ruzinoor Che Mat on his thesis entitled "Four Tier Framework

for Online Applications of 3D GIS Visualization" in accordance with the Universities

and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia

[P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded

the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Shattri b. Mansor, PhD

Professor

Faculty of Engineering

Universiti Putra Malaysia

(Chairman)

Fazel Amiri, PhD

Faculty of Engineering

Universiti Putra Malaysia

(Internal Examiner)

Samsuzana binti Abdul Aziz, PhD Department of Biological and Agricultural Engineering

Faculty of Engineering

Universiti Putra Malaysia

(Internal Examiner)

Takaharu Kameoka, PhD

Professor

Mie University

Japan

(External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 23 January 2013

Page 12: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

ix

This thesis was submitted to the senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The

members of the Supervisory Committee were as follows:

Abdul Rashid Mohamed Shariff, PhD

Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Chairman)

Ahmad Rodzi Mahmud, PhD

Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Member)

Biswajeet Pradhan, PhD

Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Member)

Mohd Shafry Mohd Rahim, PhD

Associate Professor

Department of Computer Science

Universiti Teknologi Malaysia, Malaysia

(Member)

_______________________________

BUJANG BIN KIM HUAT, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

Page 13: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

x

DECLARATION

I declare that the thesis is my original work except for quotations and citations which

have been duly acknowledged. I also declare that it has not been previously, and is not

concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other

institution.

______________________

RUZINOOR CHE MAT

Date: 4 October 2012

Page 14: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xi

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iv

ACKNOWLEDGEMENTS vii APPROVAL viii

DECLARATION x

TABLE OF CONTENTS xi

LIST OF TABLES xiv LIST OF FIGURES xviii LIST OF ABBREVIATIONS xxiv

CHAPTER

1 INTRODUCTION 1.1 Introduction 1 1.2 Problem Background 3 1.3 Problem Statement 4 1.4 Motivations 6 1.5 Objectives 8

1.6 Scope of Research 9 1.7 Thesis Structure 9

2 LITERATURE REVIEW 2.1 Introduction 11 2.2 3D Visualization 11

2.2.1 Virtual Reality 13 2.2.2 The importance of 3D visualization analysis 14

2.2.3 3D GIS Visualization Software 19 2.2.4 Web based 3D Visualization 22

2.3 3D Terrain Visualization 24 2.3.1 Manual Representation of Terrain 25

2.3.2 Automated Methods for Visualising Terrain 28 2.3.3 Visualizing Terrain in Photo realism 31

2.3.4 Online 3D Terrain Visualization 34 2.4 The Concept of Tier 38

2.4.1 What is Tier? 39 2.4.2 One Tier 40 2.4.3 Two Tier 40

2.4.4 Three Tier 41 2.4.5 N-Tier 43 2.4.6 Interaction between Tiers 43

2.5 Online Visualization Framework 44

2.6 Summary 50

Page 15: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xii

3 RESEARCH METHODOLOGY

3.1 Methodology 51 3.2 Information Gathering & Conceptual Framework 52 3.3 Task and Technology Analysis 52

3.3.1 Task Analysis 53 3.3.2 Technology Analysis 54

3.4 Framework Development 55 3.4.1 Client Tier 57 3.4.2 Logic Tier 58 3.4.3 Visualization Process Tier 58 3.4.4 Database Tier 65 3.4.5 The Interaction between Each Tier 66

3.5 Comparison of three-tier frameworks and four-tier frameworks 68 3.6 Mathematical Model 69 3.7 Implementation and Refinement 73 3.8 Analysis 74 3.9 Experiments for Operational Guide 75 3.10 Summary 77

4 IMPLEMENTATION OF FOUR TIER FRAMEWORK FOR

ONLINE OIL PALM PLANTATION 4.1 Introduction 79 4.2 Implementation of the Framework 80

4.2.1 Visualization Process Tier 81

4.2.2 Database Tier 89 4.3 Prototype of the Framework 90

4.3.1 User Manual 91 4.3.2 3D Oil Palm Plantation 93 4.3.3 Database Management 99 4.3.4 Comment 103 4.3.5 Contact Us 103 4.3.6 Link 104

4.4 Summary 105

5 RESULTS AND DISCUSSION 5.1 Introduction 106

5.2 Oil Palm Plantation Application 106 5.3 Analysis 107

5.3.1 Comparison on loading time 108 5.3.2 Comparison on response time 111 5.3.3 Comparison on frames per second 113 5.3.4 Comparison on CPU usage 116 5.3.5 Comparison on memory usage 119

5.4 Analysis with 1000 trees 122 5.4.1 Comparison of three-tier and four-tier framework with

1000 of trees 123 5.5 Analysis with 500, 600, 700 and 1000 trees 124

5.5.1 Comparison on loading time 124

5.5.2 Comparison on response time 127 5.5.3 Comparison on frames per second 130

Page 16: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xiii

5.5.4 Comparison on CPU usage 133

5.5.5 Comparison on memory usage 135 5.6 Analysis with different location 138

5.6.1 Comparison on loading time 138 5.6.2 Comparison on response time 141 5.6.3 Comparison on frames per second 144 5.6.4 Comparison on CPU usage 147 5.6.5 Comparison on memory usage 151

5.7 Experiments 154 5.7.1 Experiments 1: Comparison of different types of

topographic data 154 5.7.1.1 Results of Experiments 1 155

5.7.2 Experiments 2: Comparison of different types of

rendering technique 160 5.7.2.1 Results of Experiments 2 162 5.7.3 Experiments 3: Comparison of different types of GIS software 167 5.7.3.1 Results of Experiments 3 169 5.7.4 Experiments 4: Comparison of different types of

satellite images 175 5.7.4.1 Results of Experiments 4 177 5.7.5 Experiments 5: Comparison of different types of web server 188 5.7.5.1 Results of Experiments 5 189 5.8 Summary 195

6 SUMMARY, CONCLUSION, AND RECOMMENDATIONS

FOR FUTURE RESEARCH 6.1 Summary 196 6.2 Conclusion 196 6.3 Recommendation for Future Research 199

6.3.1 Application to other crops 199 6.3.2 Improved the quality of 3D visualization 200 6.3.3 Adding more oil palm trees 200 6.3.4 Enhancing the security 200

REFERENCES 201

APPENDICES 217 A Programming Code: Main Menu 218

B Programming Code: User Manual 220 C1 Programming Code: Oil Palm with 100 Trees 221 C2 Programming Code: Terrain Visualization 225 C2a Programming Code: Scene Tree for Terrain Visualization 247 D Programming Code: Database Management 249 E Programming Code: Comment 253 F Programming Code: Contact Us 255 G Programming Code: Link 256

BIODATA OF STUDENT 258

LIST OF PUBLICATIONS 260

Page 17: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xiv

LIST OF TABLES

Table Page

2.1 Classes for manual representation of terrain 25

2.2 Different techniques of visualizing terrain in photorealism 33

3.1 Comparison between three-tier frameworks and four-tier frameworks 68

3.2 Procedures for requesting and response the data through normal situation 71

3.3 Procedures for requesting and response of the data when the data is edited 72

5.1 Comparison of loading times for three-tier and four-tier system frameworks 109

5.2 Percentage difference of loading times for three-tier and four-tier

system frameworks 110

5.3 Comparison of response times for three-tier and four-tier-system

frameworks 111

5.4 Percentage difference of response time for three-tier and four-tier

system frameworks 113

5.5 Comparison of frames per second (fps) for three-tier and four-tier

system frameworks 114

5.6 Percentage difference of fps value for three-tier and four-tier system

frameworks 116

5.7 Comparison of CPU usage for three-tier and four-tier system frameworks 117

5.8 Percentage difference of CPU usage for three-tier and four-tier system

frameworks 119

5.9 Comparison of memory usage for three-tier and four-tier system

frameworks 120

5.10 Percentage difference of memory usage for three-tier and four-tier

system frameworks 122

Page 18: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xv

5.11 Comparison of loading times, response time, frame per second, CPU

usage and memory usage for three-tier and four-tier system frameworks

with 1000 of trees 123

5.12 Comparison of loading times for three-tier and four-tier system

frameworks with 500, 600, 700 and 1000 trees 125

5.13 Percentage difference of loading times for three-tier and four-tier

system frameworks with 500, 600, 700 and 1000 trees 127

5.14 Comparison of response times for three-tier and four-tier system

frameworks with 500, 600, 700 and 1000 trees 128

5.15 Percentage difference of response time for three-tier and four-tier

system frameworks with 500, 600, 700 and 1000 trees 129

5.16 Comparison of frames per second (fps) for three-tier and four-tier

system frameworks with 500, 600, 700 and 1000 trees 131

5.17 Percentage difference of fps value for three-tier and four-tier system

frameworks with 500, 600, 700 and 1000 trees 132

5.18 Comparison of CPU usage for three-tier and four-tier system

frameworks with 500, 600, 700 and 1000 trees 133

5.19 Percentage difference of CPU usage for three-tier and four-tier

system frameworks with 500, 600, 700 and 1000 trees 135

5.20 Comparison of memory usage for three-tier and four-tier system

frameworks with 500, 600, 700 and 1000 trees 136

5.21 Percentage difference of memory usage for three-tier and four-tier

system frameworks with 500, 600, 700 and 1000 trees 138

5.22 Comparison of loading times for three-tier and four-tier system

frameworks of new location 139

Page 19: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xvi

5.23 Percentage difference of loading times for three-tier and four-tier

system frameworks of new location 141

5.24 Comparison of response times for three-tier and four-tier system

frameworks of new location 142

5.25 Percentage difference of response time for three-tier and four-tier

system frameworks of new location 144

5.26 Comparison of frames per second (fps) for three-tier and four-tier

system frameworks of new location 145

5.27 Percentage difference of fps value for three-tier and four-tier system

frameworks of new location 147

5.28 Comparison of CPU usage for three-tier and four-tier system

frameworks of new location 148

5.29 Percentage difference of CPU usage for three-tier and four-tier system

frameworks of new location 150

5.30 Comparison of memory usage for three-tier and four-tier system

frameworks of new location 152

5.31 Percentage difference of memory usage for three-tier and four-tier

system frameworks of new location 153

5.32 Comparison of different contour interval for 3D terrain visualization 159

5.33 Comparison of different GIS software for online 3D terrain visualization 174

5.34 The technology specification for QUICK BIRD 176

5.35 The technology specification for IKONOS 176

5.36 The technology specification for SPOT 5 177

5.37 The comparison between three satellite imageries QUICK BIRD,

IKONOS, and SPOT 5 with data coverage of 34.5 hectares 179

Page 20: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xvii

5.38 The comparison between three satellite imageries QUICKBIRD,

IKONOS, and SPOT5 with data coverage of 69 hectares 182

5.39 The comparison between three satellite imageries QUICKBIRD,

IKONOS, and SPOT5 with the data coverage of 138 hectares 186

5.40 The distance of the web servers from the users together with address

of data launched 188

5.41 Loading time during office hours and out of office hours 189

5.42 Loading time for different number of users 190

5.43 Frame per second for different number of users 192

5.44 CPU usage for different number of user 193

Page 21: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xviii

LIST OF FIGURES

Figure Page

1.1 Image of Malaysia geospatial data in 2D 7

2.1 Image of bridge along the road site 18

2.2 Figure indicated a) mountains in the shape of molehill b) skeletal lines 26

2.3 Profile lines 27

2.4 Figure indicated (a) hill shading; (b) hachures 28

2.5 Image of overlapping method 29

2.6 Image of chunk level of detail 30

2.7 Image of terrain developed from the extansion of GeoMipMap algorithm 30

2.8 Image of Grand Canyon 35

2.9 Two tier client/server architecture 41

2.10 Three tier client/server architecture 42

2.11 Three tier architecture based on 3D browser 46

2.12 Three tier architecture for CVIS 47

2.13 Three tier architecture for hurricane occurance simulation 48

2.14 Four tier architecture 49

3.1 The flow chart of research methodology 51

3.2 Components of new framework; a)client tier; b)logic tier;

c)visualization process tier; d)database tier 57

3.3 The operations at Visualization Process Tier 59

3.4 Extruding image in CAD package; (a) before extrude, (b) after extrude 60

3.5 3D object in Google Earth (from Sketch Up) 61

3.6 The image of roadway generated from 3D scanner 62

Page 22: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xix

3.7 The image of complex trunk 62

3.8 The image of single leaf 63

3.9 The sample of 3D surface; (a) raster, (b) TIN, (c) terrain surface 64

3.10 Sample of contour convert ;(a) 3m contour map, (b) TIN of 3m contour map 65

3.11 The interaction between each tier in the proposed framework 67

3.12 Framework of mathematical model 69

4.1 PHP header 81

4.2 PHP looping function 81

4.3 View of the frond from the (a) front, (b) back, (c) right, (d) left,

(e) top, (f) bottom 85

4.4 The oil palm trunk with textured image 86

4.5 The complete visualization of oil palm tree in 3D 87

4.6 Flowchart a method of visualizing 3D terrain 88

4.7 Sample of 3D data in MySQL database 90

4.8 Online 3D terrain visualization for oil palm plantation 91

4.9 The menu of User Manual 92

4.10 System rendered for fly through function for 10 trees 93

4.11 System rendered for flythrough function for 30 trees 94

4.12 System rendered for flythrough function for 50 trees 94

4.13 System rendered for flythrough function for 100 trees 95

4.14 Walkthrough inside the oil palm plantation 96

4.15 View of the tree from the front 97

4.16 View of the tree from the back 97

4.17 View the tree from the left 98

4.18 View of the tree from the right 98

Page 23: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xx

4.19 Flythrough over the oil palm plantation 99

4.20 The print preview of the database 100

4.21 Searching inside the database 101

4.22 Highlighting the correct data 102

4.23 Editing menu 102

4.24 The menu of Comment 103

4.25 The menu of Contact Us 104

4.26 The menu of Link 105

5.1 The loading time record using stopwatch software 108

5.2 The loading time graph for comparison of three-tier and four-tier

system frameworks 110

5.3 The value of response time recorded using YSlow 111

5.4 The response time graph for comparison of three-tier and four-tier

system frameworks 112

5.5 The value of frames per second (fps) recorded using Fraps software 114

5.6 The frames per secod (fps) graph for comparison of three-tier and

four-tier system frameworks 115

5.7 The value of CPU usage is recorded using Window Task Manager 116

5.8 The CPU usage graph for comparison of three-tier and four-tier

system frameworks 118

5.9 The value of memory usage is recorded using Window Task Manager 120

5.10 The memory usage graph for comparison of three-tier and four-tier

system frameworks 121

5.11 The loading time record using stopwatch software for 1000 trees 125

5.12 The loading time graph for comparison of three-tier and four-tier

Page 24: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xxi

system frameworks with 500, 600, 700 and 1000 trees 126

5.13 The value of response time recorded using Yslow for 1000 trees 127

5.14 The response time graph for comparison of three-tier and four-tier

system frameworks with 500, 600, 700 and 1000 trees 129

5.15 The value of frames per second (fps) recorded using Fraps software

for 1000 trees 130

5.16 The frames per secod (fps) graph for comparison of three-tier and

four-tier system frameworks with 500, 600, 700 and 1000 trees 132

5.17 The value of CPU usage is recorded using Window Task Manager

for 1000 trees 133

5.18 The CPU usage graph for comparison of three-tier and four-tier

system frameworks with 500, 600, 700 and 1000 trees 134

5.19 The value of memory usage is recorded using Window Task Manager

for 1000 trees 136

5.20 The memory usage graph for comparison of three-tier and four-tier

system frameworks with 500, 600, 700 and 1000 trees 137

5.21 The loading time record using stopwatch software of new location 139

5.22 The loading time graph for comparison of three-tier and four-tier

system frameworks of new location 140

5.23 The value of response time recorded using Yslow of new location 142

5.24 The response time graph for comparison of three-tier and four-tier

system frameworks of new location 143

5.25 The value of frames per second (fps) recorded using Fraps software

of new location 145

5.26 The frames per secod (fps) graph for comparison of three-tier and

Page 25: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xxii

four-tier system frameworks of new location 146

5.27 The value of CPU usage is recorded using Window Task Manager

of new location 148

5.28 The CPU usage graph for comparison of three-tier and four-tier

system frameworks of new location 149

5.29 The value of memory usage is recorded using Window Task Manager

of new location 151

5.30 The memory usage graph for comparison of three-tier and four-tier

system frameworks of new location 153

5.31 The image of VRML data for 5m intervals 156

5.32 The image of VRML data for 3m intervals 157

5.33 The image of VRML data for 1m intervals 158

5.34 Three different images of 3D terrain visualization for golf field area;

(a) satellite overlaid, (b) colour shading, (c) silhouette rendering 163

5.35 Three different images of 3D terrain visualization for the public field area;

(a) satellite overlaid, (b) colour shading, (c) silhouette rendering 164

5.36 Three different images of 3D terrain visualization for the research field

area; (a) satellite overlaid, (b) colour shading, (c) silhouette rendering 165

5.37 Image of online 3D terrain visualization generated from R2V software 170

5.38 Image of online 3D terrain visualization generated from ERDAS software 171

5.39 Image of online 3D terrain visualization generated from Arc

GIS 9.2 software 173

5.40 Image of online 3D terrain visualization generated from ENVI software 174

5.41 Image of online terrain draped with IKONOS satellite imageries

with data coverage of 34.5 hectares 178

Page 26: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xxiii

5.42 Image of online terrain draped with QUICKBIRD satellite imageries

with data coverage of 34.5 hectares 178

5.43 Image of online terrain draped with SPOT 5 satellite imageries with

data coverage of 34.5 hectares 178

5.44 Image of online terrain draped with IKONOS satellite imageries with

data coverage of 69 hectares 181

5.45 Image of online terrain draped with QUICKBIRD satellite imageries

with data coverage of 69 hectares 181

5.46 Image of online terrain draped with SPOT5 satellite imageries

with data coverage of 69 hectares 181

5.47 Image of online terrain draped with IKONOS satellite imageries with

data coverage of 138 hectares 184

5.48 Image of online terrain draped with QUICKBIRD satellite imageries with

data coverage of 138 hectares 184

5.49 Image of online terrain draped with SPOT5 satellite imageries with

data coverage of 138 hectares 185

5.50 Loading time in different web servers 189

5.51 Loading time for different number of users 191

5.52 Frame per second for different number of users 192

5.53 CPU usage for different number of users 194

Page 27: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xxiv

LIST OF ABBREVIATIONS

AJAX Asynchronous JavaScript Technology and XML

CPU Central Processing Unit

CVIS Computerized Visitor Information System

DTM Digital Terrain Model

DEM Digital Elevation Model

ESRI Environmental Systems Research Institute

fps frames per second

Gb Gigabytes

GIF Graphics Interchange Format

GIS Geographic Information System

GPS Global Positioning System

GUI Graphical User Interface

IIS Internet Information Server

JDBC Java Database Connectivity

JNI Java Native Interface

JNLP Java Network Launching Protocol

JSP JavaServer Page

JUPEM Jabatan Ukur dan Pemetaan Malaysia

LKIM Lembaga Kemajuan Ikan Malaysia

LiDAR Light Detection and Ranging

LOD Level of detail

MBNMS Monterey Bay National Marine Sanctuary

MyGDI Malaysian Geospatial Data Infrastructure

MySQL My Structured Query Language

Page 28: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

xxv

ms Milliseconds

NPR Non-photorealistic Rendering

NSDI National Geospatial Data Infrastructure

ODBC Open Database Connectivity

OGC Open Geospatial Consortium

OpenGL Open Graphic Library

PHP PHP: Hypertext Preprocessor

RDBMS Relational Database Management System

ROAM Real-time Optimally Adapting Meshes

RS Remote Sensing

sec Seconds

SHP Shapefile

SOA Service Oriented Architecture

SQL Structured Query Language

SRG Spatial Research Group

TIFF Tagged Image File Format

UPM Universiti Putra Malaysia

UUM Universiti Utara Malaysia

WebGL Web-based Graphics Library

WFS Web Feature Service

XML Extensible Markup Language

X3D Extensible 3D

2D Two dimension

3D Three dimension

Page 29: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Visualization is the process of exploring, transforming, and viewing data as images

(or other sensory forms) to gain understanding and insight into the data (Schroeder,

et al., 1998). Generally, visualization can be divided into 2D visualization, 3D

visualization, and currently 4D visualizations are also being explored (Ding, et al.,

2012). The 2D visualization has the capability on rendering the objects in two

dimensions (2D) while 3D visualization rendered the objects in three dimensions

(3D). Nowadays, most of the systems still maintain 2D visualizations while lacking

on 3D visualizations, especially in GIS communities (Zlanatova and Stoter, 2003).

The trend currently is moving towards using the internet to visualize the information.

This platform enables people to interact and share information more efficiently

(Huang, et al., 2001). It received most intention in the early 1990s because of the

development of standard visual tools for information exchange, Web browsers

(Mosaic, Netscape Navigator and Microsoft Explorer). Due to this aspect, the

number of internet users and its technology also increased dramatically. In 2009, the

numbers of internet users grew in the rural areas, accumulating to about 4 million

users in Malaysia (Sulaiman, 2009). Concurrent with these, the new generation of

geo-browsers such as Google Earth, Microsoft Virtual Earth and NASA's World

Wind (Sipes, 2007) emerged since in 2005. Many people currently depend on these

geo-browsers for their daily work and also for decision making purpose. This

technology creates an opportunity to perform mix client/server visualization. Most

Page 30: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

2

the system architecture for WWW is developed based upon client/server architecture

(Nations, 2010). This architecture is the main platform for designing online system

architecture, which works based on the distributing concept which is the tier.

The term tier refers to the physical distribution of components of a system on

separate servers, computers, or networks (processing nodes). It can be defined as

"one of two or more rows, levels, or ranks arranged one above another"

(Encyclopedia Britannica Company, 2011). However, Chartier (2001) has defined

tier as any number of levels arranged above another, each serving distinct and

separate task. It means that each tier has its own function, which is connecting each

other in separate level of the physical layer for processing the request from the client.

Besides that, Microsoft Library (2011) defined the tier whereby the tier is composed

of one or more computers that share one or more of this system characteristic such as

resource consumption profile, operational requirement, and design constraints.

Moreover, the concept of tier is actually generated from distributed architecture,

which means that systems are collected from multiple hosts running the programs.

This host can be a web server and a database server which can be virtually

distributed on a single host whereby the tier may be a logical or physical layer of the

system (Sun, 2005). The tier is normally set by the developers to separate the

works/tasks between the system architecture.

Three-tiers is the most well-known architecture used in GIS applications, but it has

disadvantages on scalability, maintainability, and needs more processing power on

the web server. This research explores the use of the four-tier framework to

overcome current impediments in the use of the three-tier framework for online

Page 31: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

3

applications of 3D visualization for GIS data, focusing specifically on the needs of

processing power.

1.2 Problem Background

Google Earth was released to the public on June 2005 and followed by Google Maps,

which was released on February 2007 (Hollinger, 2011). This geo-browsers has the

capability of displaying the world in 3D, although due to the data availability, the

accuracy of the height value is low, where there only hilly areas are shown while low

areas are not. There is a limitation in this software where the interaction of 3D

visualization is only possible in fly through and not walk through mode.

Zlatanova et al. (2002) mentioned that “the increasing number of applications needs

more advanced tools for representing and analyzing the 3D world”. That is why the

research on online 3D visualization has been interest to many researchers, until now.

Yu et al. (2010) has stated that ″at present, there are still some difficulties in

researching and implementing 3D visualization and spatial analysis based on the

internet because of the network bandwidth constraints‟ and the immature 3D

graphics display technology″. Other than that, most of the three-tier framework

developed by researchers is for 2D visualization (Chen, et al., 2003; Man, et al.,

2006; Varun, et al., 2004; Zhou, et al., 2009) which is not appropriate to be used for

3D visualization.

Page 32: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

4

Xu & Lee (2002) mentioned that ″although there have been some serious studies into

specific issues, we still lack a framework to consider the problem as a whole and to

coordinate the various studies. In our opinion, fully networking GIS, although

desirable, is extremely difficult″. They stated that ″layering GIS has not been studied

extensively″ and that ″while truly distributed GIS system involving highly

autonomous component is still a long way to go″. Based on the above statement,

there is a need to introduce a new framework for solving the problem in distributed

GIS, especially for online applications of 3D visualization for 3D GIS data.

A web 2.0 concept has the capability on handling the data accessibility, data

interoperability, and data information sharing over the internet and the World Wide

Web. Nevertheless, in terms of information visualization, the representation of the

data is still limited to 2 or 2.5 dimensions such as text, pictures, or videos (Settapat,

et al., 2010). That is why there is a need for implementing 3D visualization over the

internet.

1.3 Problem Statement

Based on the literature survey, the use of four tiers architecture for design of GIS

application is only for visualization in 2D and not for 3D (Luqun, et al., 2002; Luqun

and Minglu, 2004). The current use of this framework, mainly for 2D visualization

and not related to GIS application. For example, in health geographic, four-tier

frameworks are designed for mapping and sharing the disease information. The

product of this framework is only for 2D maps, which can monitor the information of

the disease without any GIS capabilities. The advantage of this system is that it can

Page 33: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

5

collaborate interactively between the partners such as public health officials,

researchers, policy makers and the public (Gao, et al., 2008). Mahmoudi et al. (2010)

introduced the interactive web based 2D and 3D medical image processing and

visualization based on the four layer architecture. Their architecture consists of an

algorithm, manage code, server communication and user-interface layer respectively.

They also mentioned that they have a wrapper layer inside the manage code layer.

Their architecture, with consideration of wrapper layer therefore contains five layers.

As mentioned by Simmons (Simmons, 2009) the term layer and tier has different

meaning, whereby each layer could sit on a single tier or multiple tiers. It means that,

the layer is just the organizational concept in an application but tier implies physical

separation, if needed. Mahmoudi system applied the layer concept and is different

with our approach which proposed four-tier frameworks. Mahmoudi does not

mention which layers sit on a particular tier. VRML is used for visualizing their

images. However, Mahmoudi system is specifically for medical image with raster

image processing and does not address GIS vector data. Our approach is specifically

of visualization of GIS data and in particular this thesis research address vector

based coordinate information. ″The development of efficient and reliable systems

with more than three-tiers is still an imprecise science, but research in distributed

computing continues to increase the availability and usefulness of such systems″

(Lewandowski, 1998).

The design of online applications which involve 3D visualization of GIS data

normally involves a great amount of spatial data, especially for terrain information

(Xu and Lee, 2002). By combining terrain data with other objects on its surface, a

massive amount of data will be generated. The existing three-tier framework has

Page 34: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

6

some drawbacks on scalability, maintainability, and it needs more processing power

in the middle tier to process the request from multiple of users. Due to this situation,

the use of the current three-tier framework for online application of 3D visualization

for GIS data is not capable of processing the huge amount of data from the users.

Hence, this research explores how to develop a new four tier framework which can

solve the existing problem of processing power. The following specific research

questions are addressed:

1. How to develop a new four-tier framework of online applications of 3D

visualization for GIS data by enhancing the existing three-tier framework?

2. How to implement a new four-tier framework of online applications of 3D

visualization for GIS data?

3. How to analyse the performance and validate the accuracy of a new four-tier

framework of online applications of 3D visualization for GIS data?

1.4 Motivations

By creating 3D visualizations that look as photorealistic as current technology

allows, it becomes possible to see, explore, and spatially understand parts of the

Earth as if we were actually there (Patterson, 2003).

In Malaysia, the need for 3D visualization is crucial whereby Malaysian Geospatial

Data Infrastructure (MaCGDI) is responsible to providing the services of National

Geospatial Data Infrastructure (NSDI). The service provided by this agency is the

system which can view the spatial data and also map (MaCGDI, 2011). This system

Page 35: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

7

restricts the user to view the data in 2D (Figure 1.1) and require further commands to

see further information. Furthermore, the user cannot view the data in 3D where

more realistic information can be viewed. That is why 3D visualization is important

for organizations, which provide services to its users. The required service of 3D

visualization is not in place yet in Malaysia.

Figure 1.1 Image of Malaysia geospatial data in 2D Image source MaCGDI

(2011))

Many researchers utilized Virtual Reality Markup Language (VRML) as their file

format for implementing online 3D visualization (Basic and Nuantawee, 2004;

Beard, 2006; Honjo and Lim, 2001; Huirong, et al., 2009). VRML is fundamentally a

3D interchange format designed for visualizing 3D objects in web-based

environments (Carey and Bell, 1997). Basic and Nuantawee (2004) quoted that

″VRML has proven to be a useful tool for modeling reality, producing 3D

animations, and interactive mapping″.

Page 36: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

8

By utilizing the VRML, the techniques such as level of details, tile‟s technique,

progressive technique, and selective visualization was introduced by researchers to

achieved real time visualization (Araya, et al., 2002; Beard, 2006; Huirong, et al.,

2009; Zhu, et al., 2003). VRML format can be used as an effective stimulus for

landscape assessment (included terrain data) (Lim, et al., 2006). In terms of terrain

visualization, Martinez (2010) stated that ″the use of VRML for the creation of

terrain visualization is viable″. VRML is a high-performance language, and the

VRML technology is still a valid environment for implementing 3D visualization,

especially terrain visualization. For this reasons much research still use VRML as

their tools for 3D visualization. This is the reason why VRML is still being used in

this research for the output format. The 3D information can be easily transferred

through the internet by using this technology (Honjo and Lim, 2001).

As quoted by Huang & Lin (2000) ″3D visualization and analysis become more

powerful when combined with internet based technologies. Through the network,

data, analysis, and interaction can be distributed to the desktops of decision makers

who are able to act upon the most recent information″.

1.5 Objectives

The goal of this research is to develop a new method of online 3D

visualization for GIS data. In order to achieve this goal, three objectives have been

formulated:

develop a new four-tier framework for online application of 3D visualization

for GIS data.

Page 37: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

9

implement a new four-tier framework for online application of 3D

visualization for GIS data.

analyze the performance and validate the accuracy of a new four-tier

framework for online application of 3D visualization for GIS data.

1.6 Scope of Research

The scope of this research is meant for a client/server architecture. The new four tier

frameworks is develop based on tier concept for online applications of 3D

visualization for GIS data focusing specifically on the processing power problem.

For application development, this research focused only on the oil palm plantation

application. The visualization of 3D for oil palm plantation generates 3D objects like

the oil palm tree together with pseudo of 3D terrain visualization.

1.7 Thesis Structure

The thesis is organized into six chapters. This is the introductory chapter. It provides

the problem background, problem statement, goal, objectives, motivation, and the

scope of the research.

In Chapter 2, detailed descriptions of the study background are discussed. It explains

the background of 3D visualization, 3D terrain visualization, the concept of tier, and

on-line visualization framework. All the topics are discussed in details which

distributed into other sub topics. The discussion guide the author to find the research

gaps on why the new framework needs to be introduced. This chapter ends with the

Page 38: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

10

conclusion on the research gap being attempted that trying to be solved in this

research.

Methodology of the research is discussed in chapter 3. It includes the framework of

the study and other contributing factors in this research study. This chapter discusses

the formalization of the framework, its design and the interaction between each tier.

Chapter 4 discusses an example implementation of the research in oil palm

plantation. The details of the implementation of each tier are explained in this

chapter. The explanation on how to develop 3D terrain is described in detail in this

chapter. It describes the prototype developed to suit an oil palm plantation.

Chapter 5 continues the discussion on the operational guideline‟s experiments for on-

line 3D terrain visualization, which is divided into five experiments. The results give

the visualization developer an idea on the best way of implementing on-line 3D

terrain visualization in terms of topographic data, rendering technique, GIS software,

satellite data, and web server. In order to analyse and validate the new framework,

the comparison between the new four-tier framework and three-tier frameworks is

made. The measurement of the comparison is based on response time, loading time,

frames per second (fps), Central Processing unit (CPU) usage, and memory usage.

The result of the comparison is presented and analysed.

Chapter 6 concludes the thesis. This chapter describes the research contributions of

the study. Suggestions on future research are also discussed.

Page 39: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

201

REFERENCES

Abdul-Rahman, A., Pilouk, M., & Zlatanova, S. (2001). The 3D GIS software

development: global efforts from researchers and vendors. Geoinformation

Science Journal, 1(2).

Able Software Corp. (2005). Automated Raster to Vector Conversion Software for

GIS, Mapping and CAD. Lexington, USA.

Appleton, K., Lovett, A., Sünnenberg, G., & Dockerty, T. (2002). Rural landscape

visualisation from GIS databases: a comparison of approaches, options and

problems. Computers, Environment and Urban Systems, 26(2-3), 141-162.

Araya, S., Hyunsuk, J., & Araya, R. (2002). An Effective Terrain Model for Web-

Based 3D Geographic Information Systems. Electronics and

Communications in Japan, 85(9), 1153–1161.

Basic, F., & Nuantawee, M. (2004). Generating a VRML World from Database

Contents: Illustrated by Application to Flood Risk Communication. Journal

of Spatial Science, 49(1), 37-47.

Beard, D. J. (2006). Using VRML to Share Large Volumes of Complex 3D

Geoscientific Information via the Web. Proceedings of the Web3D 2006 11th

International Conference on 3D Web Technology, Columbia, Maryland, 163-

167

Beard, D. J., Hay, R. J., Nicoll, M. G., & Edge, D. O. (2005). 3D Web Mapping – 3D

Geoscience Information Online. Proceedings of the SSC 2005 Spatial

Intelligence, Innovation and Praxis: The national biennial Conference of the

Spatial Sciences Institute, Melbourne: Spatial Sciences Institute

Beepa Pty Ltd. (2010). Fraps real-time video capture and benchmarking. Retrieved

29 March, 2010, from http://www.fraps.com

Page 40: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

202

Brandes, D. (1983). Sources for Relief Representation. The Cartographic Journal,

20(2), 87 - 94.

Brodersen, A. (2005). Real-time visualization of large textured terrains. Proceedings

of the 3rd international conference on Computer graphics and interactive

techniques in Australia and SouthEast Asia, Dunedin, New Zealand, 439-442

Brodlie, K. W., Carpenter, L. A., Earnshaw, R. A., Gallop, J. R., Hubbold, R. J.,

Mumford, A. M., Osland, C. D., & Quarendom, P. (1992). Scientific

Visualisation : Techniques and Applications (Vol. eds ed.): Springer-Verlag.

Brooks, S., & Whalley, J. (2008). Multilayer hybrid visulizations to support 3D GIS.

Computer, Environment and Urban Systems, 32, 278-292.

Bryson, S. (1996). Virtual reality in scientific visualization. Communincation of the

ACM, 39(5), 62-71.

Carey, R., & Bell, G. (1997). The Annotated VRML 2.0 Reference Manual. U.S:

Addison-Wesley Professional.

Chang, Z., & Li, S. (2005). VRML-Based 3D Collaborative GIS: A Design

Perspective. In Y.-J. Kwon, A. Bouju & C. Claramunt (Eds.), Web and

Wireless Geographical Information Systems (Vol. 3428): Springer Berlin

Heidelberg. 232-241

Chartier, R. (2001). 15 Seconds: Application Architecture: An N-Tier Approach -

Part I. from

http://mediakit.internet.com/icom_cgi/print/print.cgi?url=http://www.15secon

ds.com/issue/011023.htm

Chaudhry, O. Z., & Mackeness, W. A. (2008). Creating mountains out of mole hills:

Automatic of Hills and Ranges Using Morphometric Analysis. Transaction in

GIS, 12(5), 567-589.

Page 41: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

203

Chen, S. C., Gulatit, S., Hamid, S., Huang, X., Luo, L., Morisseau-Leroy, N., Powell,

M. D., Zhan, C., & Zhang, C. (2003). A three-tier system architecture design

and development for hurricane occurrence simulation. Proceedings of the

International Conference on Information Technology: Research and

Education (ITRE2003), Neward, NJ, USA, 113-117

CityGML. (2009). Virtual 3D City Models. Retrieved 21 November, 2009, from

http://www.citygml.org/

Cruz, D. d., & Henriques, P. R. (2009). Assessing Databases in .NET - Comparing

Approaches. . Proceedings of the 11th International Conference on Enterprise

Information Systems (ICEIS 2009), Milan, Italy, 278-282

D¨ollner, J., Baumann, K., & Hinrichs., K. (2000). Texturing Techniques for Terrain

Visualization. Proceedings of the IEEE Visualization 2000, Salt Lake City,

207-234

Demiralp, C., Laidlaw, D. H., Jackson, C., Keefe, D., & Zhang, S. (2003). Subjective

Usefulness of CAVE and Fish Tank VR Display Systems for a Scientific

Visualization Application. Paper presented at the Proceedings of the 14th

IEEE Visualization 2003 (VIS'03).

Demotride. (2010). VRML viewer. Retrieved 29 March, 2010, from

http://www.demotride.com

Ding, L. Y., Zhou, Y., & Chen, L. J. (2012). Application of 4D visualization

technology for safety management in metro construction. [doi:

10.1016/j.autcon.2012.10.011]. Automation in Construction(0).

Dowson, K. (1994). Towards Extracting Artistic Sketches and Maps from Digital

Elevation Models. Unpublished PhD Thesis, The Department of Computer

Science, The University of Hull.

Page 42: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

204

Encyclopedia Britannica Company. (2011). Tier. Retrieved 1 February, 2011, from

http://www.m-w.com/cgi-bin/dictionary?Tier

Escobar-Molano, M. L., Barrett, D. A., Carson, E., & McGraw, N. (2007). A

representation for databases of 3D objects. Computers,Environment and

Urban Systems, 31(4), 409-425.

ESRI. (2009). About 3D surfaces. Retrieved 8 April, 2011, from

http://webhelp.esri.com/arcgiSDEsktop/9.3/index.cfm?TopicName=About_3

D_surfaces

ESRI. (2010). GIS and Mapping Software. Retrieved 29 March, 2010, from

http://www.esri.com

ESRI. (2011). Gathering basic raster dataset information. Retrieved 12 May, 2011,

from http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html

FAO. (2011). Palm Oil. Retrieved 11 November, 2011, from http://www.fao.org-

/DOCREP/006/T0309E/T0309E01.htm

Foley, J. (2000). Getting There: The Ten Top Problems Left. IEEE Computer

Graphics and Applications, 20(1), 66 - 68.

Gao, S., Mioc, D., Anton, F., Yi, X., & Coleman, D. J. (2008). Online GIS services

for mapping and sharing disease information. International Journal of Health

Geographics, 7(8).

Gore, A. (1998a). The Digital Earth: Understanding out planet in the 21st Century.

Speech delivered at the California Science Center Retrieved 19 Nov. 2005,

2005, from http://www.digitalearth.gov/VP19980131.html

Gore, A. (1998b). The Digital Earth: Understanding out planet in the 21st Century.

Speech delivered at the California Science Center Retrieved 27 January,

2007, from http://www.digitalearth.gov/VP19980131.html

Page 43: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

205

Gröger, G., & Plümer, L. (2005). How to Get 3-D for the Price of 2-D Topology and

Consistency of 3-D Urban GIS. GeoInformatica, 9(2), 139-158.

Gruen, A., & Roditakis, A. (2003). Visualization and animation of Mount Everest.

Proceedings of the International Workshop on Visualization and Animation

of Reality-based 3D Models (ISPRS), Engadin, Switzerland

Guth, P. L., Oertel, O., Bénard, G., & Thibaud, R. (2003). Pocket Panorama: 3D GIS

on a Handheld Device. Proceedings of the 3rd International Workshop on

Web and Wireless Geographical Information Systems, Rome, Italy, 92-96

Haji, A. (2008). Personal Communication. Kuala Lumpur: JUPEM.

Hashim, M., Marghany, M., Mahmud, M., & Anuar, M. (2010). Utilization of

LiDAR and IKONOS Satellite Data for Security Hotspot Analysis Based on

Realism of 3D City Model. In D. Taniar, O. Gervasi, B. Murgante, E.

Pardede & B. Apduhan (Eds.), Computational Science and Its Applications

(ICCSA 2010) - Lecture Notes in Computer Science (Vol. 6016): Springer

Berlin / Heidelberg. 331-345

Hesse, M., & Gavrilova, M. (2003). Quantitative Analysis of Culling Techniques for

Real-time Rendering of Digital Elevation Models. Proceedings of the 11th

International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision (WSCG '2003), Bory, Czech Republic

Hoechstetter, S., Walz, U., Dang, L. H., & Thinh, N. X. (2008). Effects of

topography and surface roughness in analyses of landscape structure – A

proposal to modify the existing set of landscape metrics. Journal of the

International Association for Landscape ecology, , Landscape Online (1), 1-

14.

Page 44: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

206

Hollinger, A. (2011). United States Holocaust Memorial Museum: Crisis in Darfur

Retrieved 30 February, 2011, from http://www.google.com/earth/outreach/-

stories/darfur.html

Homer, A., Anderson, R., Blexrud, C., Chiarelli, A., Denault, D., & Esposito, D.

(1999). Components and Web Application Architecture Professional Active

Server Pages 3.0 (1 ed.: Wrox Press

Honjo, T., & Lim, E. M. (2001). Visualization of landscape by VRML system.

Landscape and Urban Planning, 55(3), 175-183.

Hori, M., Kanbara, M., & Yokoya, N. (2009). A mixed reality telepresence system

with limited DOF motion base and immersive display. Paper presented at the

Proceedings of the International Conference on Advances in Computer

Enterntainment Technology.

Huang, B., Jiang, B., & Li, H. (2001). An integration of GIS, virtual reality and the

Internet for visualization, analysis and exploration of spatial data.

International Journal of Geographical Information Science, 15(5), 439 - 456.

Huang, B., & Lin, H. (2000). GIS-based Interactive 3D Visualization and Analysis

on the Internet. Journal of Geospatial Engineering, 2(2), 27-35.

Huirong, C., Rencan, P., Shujun, L., & Caixia, Y. (2009). The Visualization of 3D

Terrain Based on VRML. Proceedings of the International Forum on

Information Technology and Applications, Chengdu, China

Hunter, G. (2007). Conceptual Modelling, Semantics and Interoperability for GIS:

Progress and Prospects. Proceedings of the 1st International Workshop on

Semantics and Conceptual Issues in Geographical Information Systems

(SeCoGIS'07) Auckland, New Zealand

Page 45: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

207

Hurni, L., & Räber, S. (2004). Atlas of Switzerland 2.0. Proceedings of the 4th ICA

Mountain Cartography Workshop, Catalonia, Spain

Imhof, E. (1982). Cartographic Relief Presentation (Steward, H.J. ed.): Walter de

Gruyter.

Jayaram, S., Connacher, H. I., & Lyons, K. W. (1997). Virtual assembly using virtual

reality techniques. [doi: 10.1016/S0010-4485(96)00094-2]. Computer-Aided

Design, 29(8), 575-584.

Johnson, R. (2003). Expert One-on-One J2EE Design and Development. United

State: Wiley Publishing, Inc.

Kessel, J. C. (2011). Numion your speed, sitespeed, stopwatch and calculators.

Retrieved 29 January, 2011, from http://www.numion.com

Kofler, M., Gervautz, M., & Gruber, M. (1998). The Styria Flyover-LOD

management for huge textured terrain models. Proceedings of the Computer

Graphics International 1998, Hannover, Germany, 444-454

Koutek, M., Hees, J. v., Post, F. H., & Bakker, A. F. (2002). Virtual spring

manipulators for particle steering in molecular dynamics on the responsive

workbench. Paper presented at the Proceedings of the workshop on Virtual

environments 2002.

Leaver, R. G. (1998). VRML Terrain Modelling for the Monterey Bay National

Marine Sanctuary (MBNMS). Unpublished Master Thesis, Naval

Postgraduate School, Monterey California.

Lei, W., & Qiuming, C. (2007). Design and implementation of a web-based spatial

decision support system for flood forecasting and flood risk mapping.

Proceedings of the IEEE International Geoscience and Remote Sensing

Symposium, 2007 (IGARSS 2007), Barcelona, 4588-4591

Page 46: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

208

Lengler, R., & Eppler, M. J. (2007). Towards A Periodic Table of Visualization

Methods for Management. Proceedings of the Graphics and Visualization in

Engineering (GVE 2007), Clearwater, Florida, USA

Lerma, J. L., Vidal, J., & Portales, C. (2004). Three-Dimensional City Model

Visualization for Real-Time Guided Museum Tours. The Photogrammetric

Record, 19(108), 360-374.

Lewandowski, S. M. (1998). Frameworks for component-based client/server

computing. ACM Computing Surveys, 30(1), 3-27.

Lim, E.-M., Honjo, T., & Umeki, K. (2006). The validity of VRML images as a

stimulus for landscape assessment. Landscape and Urban Planning, 77(1-2),

80-93.

Limp, W. F. (2000, September). Put the "Fizz" into "Data Viz" GeoWorld, 13, 40-45.

Liu, J. (2001). Computer Generated pen-and-ink Illustration. Technical Reports

Stony Brook: Department of Computer Science SUNY at Stony Brook.

Luqun, L., Jian, L., & Yu, T. (2002). The Study on Web GIS Architecture Based on

JNLP. Proceedings of the The ISPRS Technical Commission IV Symposium,

Ottawa, Canada

Luqun, L., & Minglu, L. (2004). A Research on Development of mobile GIS

architecture Environmental Informatics Archives, 2(2004), 920-926.

MaCGDI. (2011). The MyGDI Explorer. Retrieved 21 September, 2011, from

http://mygdix.mygeoportal.gov.my/mygdiexplorer/catalog/main/home.page

Mahmoudi, S. E., Akhondi-Asl, A., Rahmani, R., Faghih-Roohi, S., Taimouri, V.,

Sabouri, A., & Soltanian-Zadeh, H. (2010). Web-based interactive 2D/3D

medical image processing and visualization software. Computer Methods and

Programs in Biomedicine, 98(2), 172-182.

Page 47: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

209

Man, M., Saman, M. Y. M., Noor, N. M. M., Bakar, W. A. W. A., & Samo, K.

(2006). An architecture for web-based GIS System for Artificial Reefs.

Proceedings of the Third Real-Time Technology And Applications

Symposium (RENTAS 2006), UPM, Serdang, Selangor

Martínez, E., Jiménez, E., Sanz, F., Pérez, M., Blanco, J., & Santamaría, J. (2010).

Virtual representation of terrain through the web with VRML-Web3D and

graphic libraries. International Journal on Interactive Design and

Manufacturing, 4(2), 125-136.

Microsoft Library. (2011). Application Architecture for .NET: Designing

Applications and Services. MSDN Library Retrieved 1 February 2011, from

http://msdn.microsoft.com/en-us/library/Ee817664%28pandp.10%29.aspx

MSDN Library. (2011). Tiered Distribution. Retrieved 1 February 2011, from

http://msdn.microsoft.com/en-us/library/ms978701.aspx

Mulcahy, K. A. (1995). Cartographic Terrain Depiction Methods, History of

Cartographic Depiction of Terrain. Retrieved 1 September, 2001, from

http://www.geo.hunter.cuny.edu/terrain/ter_hist.html

Nations, D. (2010). What is a Web Application? Retrieved 20 November, 2010,

from http://webtrends.about.com/od/webapplications/a/web_application.htm

Nebiker, S. (2003). Support for visualization and animation in a scalable 3D GIS

environment. Motivation, concepts and implementation. Proceedings of the

International Workshop on "Visualization and Animation of Reality-based

3D Models", Engadin, Switzerland

Nichols, S. (2006a). Building the 3D internet. Retrieved from http://www-

.itnews.com.au/News/42704,building-the-3d-internet.aspx

Page 48: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

210

Nichols, S. (2006b). IBM to fund "3D internet" project. Retrieved from http://www-

.itnews.com.au/News/42140,ibm-to-fund-3d-internet-project.aspx

Noraina, M. M. t., . (2005). Development of Virtual Robot Assisted Learning (VRAL)

in Robotic Course Using Virtual Environment Technique. Unpublished

Master Thesis, Universiti Utara Malaysia, Sintok.

Nunamaker, J., Chen, M., & Purdin, T. (1991). System Development in Information

Systems Research. Journal of Management of Information Systems, 7(3), 89 -

106.

Office of the Governor. (1998). Three-tier Client-server Architecture: A Targeted

Applications Environment. Retrieved from http://www.governor.state.ut.us-

/CIO/Docs/ClientServerSF.pdf

Ohtani, H., Tamura, Y., Kageyama, A., & Ishiguro, S. (2011). Scientific

Visualization of Plasma Simulation Results and Device Data in Virtual-

Reality Space. IEEE Transactions on Plasma Science, 39(11), 2472-2473.

Pagounis, V., Tsakiri, M., Palaskas, S., Biza, B., & Zaloumi, E. (2006). 3D laser

scanning for road safety and accident reconstruction. Proceedings of the

XXIIIth international FIG Congress, Munich, Germany

Patterson, T. (1999). Designing 3D Landscapes. In W. Cartwright, M. Peterson & G.

Gartner (Eds.), Multimedia Cartography (Berlin: Springer-Verlag. 217 - 229

Patterson, T. (2003). DEM Manipulation and 3D Terrain Visualization: Techniques

used by the U.S. National Park Service. Journal of the Canadian

Cartographic Association., 38(special ICA Commission on Mountain

Cartography issue of Cartographica).

Pedro Maroun, E., & Sudhir, M. (2009). Use of semantic web technology for adding

3D detail to GIS landscape data. Proceedings of the Proceedings of the 2nd

Page 49: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

211

Canadian Conference on Computer Science and Software Engineering,

Montreal, Quebec, Canada

Praphamontripong, U., Gokhale, S., Gokhale, A., & Gray, J. (2006). Performance

Analysis of an Asynchronous Web Server. Proceedings of the 30th Annual

International Computer Software and Applications Conference (COMPSAC

'06) Chicago, IL 22-28

Punia, M., & Pandey, D. (2006). 3d landscape modelling using java 3d/vrml. Journal

of the Indian Society of Remote Sensing, 34(4), 397-403.

Raskar, R., & Cohen, M. (1999). Image Precision Silhouette Edges. Proceedings of

the Symposium on Interactive 3D graphics, Atlanta, GA USA, 135 - 140

Rees, W. G. (2000). The accuracy of Digital Elevation Models interpolated to higher

resolutions. [doi: 10.1080/014311600210957]. International Journal of

Remote Sensing, 21(1), 7-20.

Ribarsky, W., Bolter, J., Op den Bosch, A., & van Teylingen, R. (1994).

Visualization and analysis using virtual reality. Computer Graphics and

Applications, IEEE, 14(1), 10-12.

Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimerling, A. J., & Guptill, S. C.

(1984). Elements of Cartography (6th ed.): John Wiley and Sons.

Roland, G. (2004). Web WMS-client: 2-tier vs 3-tier architecture. Retrieved 21

July, 2011, from http://freegis.org/pipermail/freegis-list/2004November/00-

1988.html

Ruzinoor, C. M. (2001). Evaluation of Silhouette Rendering Algorithms in Terrain

Visualisation. Unpublished Master Thesis, Department of Computer Science,

University of Hull, Hull.

Page 50: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

212

Ruzinoor, C. M., & Nordin, N. (2004). Silhouette Rendering Algorithms using

Vectorisation Technique from Kedah Topography Maps. Proceedings of the

2nd National Conference on Computer Graphics and Multimedia 2004

(CoGRAMM04), Kuala Lumpur, Malaysia, 336 - 342

Ruzinoor, C. M., Shariff, A. R. M., & Mahmud, A. R. (2010). Malaysia Patent No.

Pending: PI 2010700076. Universiti Putra Malaysia.

Ruzinoor, C. M., & Visvalingam, M. (2002). Effectiveness of Silhouette Rendering

Algorithms in Terrain Visualisation. Proceedings of the National Conference

on Computer Graphics and Multimedia (CoGRAMM02), Melaka, 523 - 528

Schroeder, W., Martin, K., & Lorensen, B. (1998). The Visualization Toolkit 2nd

edition. New Jersey: Prentice Hall.

Schussel, G. (1997). Client/Server: Past, Present and Future. Retrieved 21 July,

2011, from http://www.dciexpo.com/geos/dbsejava.htm

Settapat, S., Archirapatkave, V., Achalakul, T., & Ohkura, M. (2010). A framework

of web3D-based medical data reconstruction and visualization. Proceedings

of the 12th IEEE International Conference on e-Health Networking

Applications and Services (Healthcom) Lyon, 43-47

Sherif, M., & Abdul-Kader, H. (2011). Novel Robust Multilevel 3D Visualization

Technique for Web Based GIS. The International Arab Journal of

Information Technology, 8(1), 59-65.

Shiau, Y. H., Shiau, Y. H., & Liang, S. J. (2007). Real-Time Network Virtual

Military Simulation System. Proceedings of the 11th International Conference

Information Visualization, 2007 (IV '07) Zurich, 807-812

Simmons, D. (2009). Anti-Patterns To Avoid In N-Tier Applications. MSDN

Magazine.

Page 51: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

213

Sipes, J. L. (2007, 1 May 2007). 3D Photorealistic Modeling Using Geobrowsers

(Spatial Tech column). Retrieved 10 October, 2011, from

http://gis.cadalyst.com/gis/GIS/3D-Photorealistic-Modeling-Using-Geobrow-

sers-Spati/ArticleStandard/Article/detail/424087

Smullen, S., Smullen, C. W., & Santa, C. M. (2005). Interactive 3D terrain

exploration and visualization. Proceedings of the ACM Southeast Regional

Conference, Kennesaw, GA, USA, 393-396

Spaceyes. (2011). Spaceyes Beyond the Sight. Retrieved 29 September, 2011, from

http://www.spaceyes.com

Stoter, J. E. (2004). 3D Cadastre. Unpublished PhD Thesis, Royal Netherlands

Academy of Arts and Sciences, The Netherlands.

Sulaiman, K. (2009). Capaian Internet Termurah. Utusan Malaysia.

Sun Developer Network. (2007). The Swing Connection - JCanyon - Grand Canyon

Demo. Retrieved 27 january, 2008, from http://java.sun.com/products/jfc/-

tsc/articles/jcanyon/index.html

Sun, H. (2005). Web Client-Server Architetcure to Support Advanced Text Search.

Unpublished Master Thesis, Department of Computer Science, University of

Sheffield, Sheffield.

Sutcliffe, A., Gault, B., Fernando, T., & Tan, K. (2006). Investigating interaction in

CAVE virtual environments. ACM Trans. Comput.-Hum. Interact., 13(2),

235-267.

Sutherland, I. E. (1965). The Ultimate Display. Proceedings of the Information

Processing 1965, 506-508

Page 52: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

214

Swanson, J. (1996). Three dimensional visualization and Analysis of Geographic

Data. Retrieved 21 November, 2009, from http://maps.unomaha.edu/Peter-

son/gis/Final_Projects/1996/Swanson/GIS_Paper.html

Szenberg, F., Gattass, M., & Carvalho, P. C. P. (1997). An algorithm for the

visualisation of a terrain with objects. Proceedings of the X Brazilian

Symposium on Computer Graphics and Image Processing 1997, Campos do

Jordao, Brazil

Tang, J.-l., Liu, Y.-j., & Wu, F.-s. (2010). Virtual experiment system for metal creep

performance testing based on VRML. Proceedings of the 2nd International

Conference on Advanced Computer Control (ICACC 2010 ), Shenyang, 140-

143

Tarhini, A. (2011). Concepts of Three-Tier Architecture. Retrieved 1 February,

2011, from http://alitarhini.wordpress.com/2011/01/22/concepts-of-three-tier-

architecture/

Ulrich, T. (2002). Rendering Massive Terrains using Chunked Level of Detail

Control In Course Notes of ACM SIGGRAPH 2002 (Vol. Course 35)

Varun, S., Tarun, S., Langan, D., & Praveen, K. (2004). A framework for Internet

GIS based computerized visitor information system for theme parks.

Proceedings of the The 7th International IEEE Conference on Intelligent

Transportation Systems, Washington DC, 679-683

Visvalingam, M. (1999). Art in Scientific Visualisation of Terrain Data. Retrieved 6

March, 2001, from http://www2.dcs.hull.ac.uk/CISG/

Volker, C., & Sascha, F. (1998). Integrating levels of detail in a Web-based 3D-GIS.

Proceedings of the 6th ACM international symposium on Advances in

geographic information systems, Washington, D.C., United States

Page 53: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

215

Web3d.org. (2011). Geoscience Australia (GA) releases first X3D application on the

web. Retrieved 22 November, 2011, from http://www.web3d.org/news/-

archives/P90/

Xu, Z., & Lee, Y. C. (2002). Network-enabling GIS: Issues, models and a review.

Proceedings of the ISPRS Commission IV, Symposium 2002 in Geospatial

Theory, Processing and Applications, Ottawa, Canada

Yahoo Inc. (2011). Yahoo! YSlow. Retrieved 29 April, 2011, from

http://developer.yahoo.com/yslow/

Yu, R., Kun, Z., & Xiuguo, L. (2010). Research and implementation of three-

dimensional visualization based on Internet. Proceedings of the 18th

International Conference on Geoinformatics, Beijing, China, 1-4

Yusoff, M. F., Zulkifli, A. N., & Mohamed, N. F. F. (2011). Virtual Hajj (V-Hajj) -

Adaptation of persuasive design in virtual environment (VE) and multimedia

integrated approach learning courseware methodology. Proceedings of the

IEEE Conference on Open Systems (ICOS), 2011, 250-255

Zaikin, M. (2007). Explain the advantages and disadvantages of three tier

architectures when examined under the following topics: scalability,

maintainability, reliability, availability, extensibility, performance,

manageability, and security. Retrieved 7 March, 2011, from

http://java.boot.by/scea5-guide/ch02s02.html

Zhang, J., Gong, J., Lin, H., Wang, G., Huang, J., Zhu, J., Xu, B., & Teng, J. (2007).

Design and development of Distributed Virtual Geographic Environment

system based on web services. Information Sciences, 177, 3968–3980.

Zhang, L., Chen, Z., & Zhao, C. (2010). Research and modeling the ancient

architecture system in VRML. Proceedings of the International Conference

Page 54: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/51595/1/FK 2012 155RR.pdf · dibahagikan kepada dua lagi „tahap‟ yang mengendalikan proses visualisasi

© COPYRIG

HT UPM

216

On Computer and Communication Technologies in Agriculture Engineering

(CCTAE 2010), Chengdu , China, 587-590

Zhou, Y.-x., Liu, G.-j., Fu, E.-j., & Zhang, K.-f. (2009). An object-relational

prototype of GIS-based disaster database. Procedia Earth and Planetary

Science, 1(1), 1060-1066.

Zhu, C., Tan, E. C., & Chan, K. Y. (2003). 3D Terrain visualization for Web GIS.

Proceedings of the Map Asia 2003, Kuala Lumpur, Malaysia

Zlanatova, S., & Stoter, J. (2003). 3D GIS, where are we standing? Proceedings of

the ISPRS workshop on spatial, temporal and multi-dimensional data

modelling and analysis, Quebec, Canada

Zlatanova, S., Abdul-Rahman, A., & Pilouk, M. (2002). 3D GIS: Current Status and

Perspective. Proceedings of the ISPRS Commission IV, Symposium 2002 in

Geospatial Theory, Processing and Applications, Ottawa, Canada

Zlatanova, S., Rahman, A. A., & Shi, W. (2004). Topological models and

frameworks for 3D spatial objects. Computers & Geosciences, 30(4), 419-

428.