universiti putra malaysiapsasir.upm.edu.my/id/eprint/51582/1/fk 2012 149rr.pdf · panjang adalah...

37
UNIVERSITI PUTRA MALAYSIA MANAL M. ABOOD FK 2012 149 MODELING RIVER SEDIMENT DEPOSITION INTO THE KENYIR RESERVOIR, MALAYSIA

Upload: nguyenthuan

Post on 30-Apr-2019

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

UNIVERSITI PUTRA MALAYSIA

MANAL M. ABOOD

FK 2012 149

MODELING RIVER SEDIMENT DEPOSITION INTO THE KENYIR RESERVOIR, MALAYSIA

Page 2: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

MODELING RIVER SEDIMENT DEPOSITION INTO THE KENYIR

RESERVOIR, MALAYSIA

By

MANAL M. ABOOD

November 2012

Page 3: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

ii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in Fulfillment of the Requirement for the degree of Doctor of Philosophy

MODELING RIVER SEDIMENT DEPOSITION INTO THE KENYIR RESERVOIR, MALAYSIA

By

MANAL M. ABOOD

November 2012

Chair: Professor Thamer Ahmed Mohammed, PhD

Faculty: Engineering

Assessment of the amount of sediment inflow from the Berang river and the Kenyie river

and the total quantity deposited to the Kenyir reservoir was made. Kenyir reservoir is the

biggest man-made lake in Southeast Asia. Kenyir dam and reservoir are mainly designed

for hydroelectric power generation and flood mitigation purposes.

This study was made to find an alternative solution to monitor the elevation changes with

less cost and less efforts by using a computer program that can simulate the elevation

accurately. For this purpose, the GSTARS3 program has been chosen. Due to limitation

on data available, the prediction was undertaken using the hydrological modeling (HEC-

HMS program) to fill the missing data in historical record and obtain a full set of data

that is used in sediment transport modeling (GSTARS3 program). GSTARS3 was

Page 4: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

iii

integrated with GIS to display the output as sequences of grids. ArcView was used to

convert the GSTARS3 output to Arc View GIS grid format.

GSTARS3 program was validated using two terms of validation, short term validation

(ST validation ) for the period from 1995 to 1998, and long term validation (LT

validation) for the period from 1995 to 2006 for both Berang river and Kenyir river

thalweg profiles and their selected cross sections. The results show a good agreement

between the simulated and measured data with an error ranges from 5.5 % to 13.1 % for

short term validation and ranges from 6.3 % to 14.7 for long term validation for both

Berang and Kenyir rivers. Although, LT validation errors have higher values than that in

ST validation, they have not increased more than 15 % in all cases

Statistical analysis was applied to check the accuracy of HEC-HMS output. The results

show a reasonable agreement with an errors equal to 0.41 m3/sec for Berang basin and

equal to 0.67 m3/sec for Kenyir basin. It was found that the combination of two programs

(HEC-HMS and GSTARS3) helps to simulate the sediment when the hydrological data is

limited and the results show that the computed values agreed well with the historical

recorded data for the thalweg profiles and selected cross sections.

Page 5: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

iv

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan unuk ijazah Doktor Falsafah

PEMODELAN SEDIMEN SUNGAI PEMENDAPAN KE RESERBOR KENYIR, MALAYSIA

Oleh

Manal M. Abood

November 2012

Pengerusi: Professor Thamer Ahmed Mohammed, PhD

Fakulti: Kejuruteraan

Kajian mengenai jumlah aliran kemasukkan sedimen dari Sungai Berang dan Sungai

Kenyir dan jumlak kuantiti takungan yang disimpan di Tasik Kenyir. Tasik Kenyir

merupakan takungan buatan manusia yang terbesar di Asia Tenggara. Empangan Kenyir

direkan untuk Penjanaan kuasa hidroelektrik dan bagi mengelakkan banjir.

Kajian ini adalah untuk mencari alternatif lain untuk mengurangkan kos dan tenaga

dengan menggunakan sistem computer untuk menjana pengalirannya. Untuk tujuan ini,

program GSTARS3 dipilih. Disebabkan kekurangan data, ramalan telah dijalankan

menggunakan model hidrologi (HEC-HMS program) untuk mengisi data yang hilang dan

mendapatkan data penuh untuk digunakan dalam pemodelan pengangkutan sedimen

(GSTARS3 program). GSTARS3 program telah disepadukan dengan GIS program untuk

Page 6: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

v

memaparkan output yang selari. ARCVIEW digunakan untuk menukar GSTARS3 output

kepada ARCVIEW GIS format.

Program GSTARS3 telah disahkan menggunakan dua kaedah pengesahan, pengesahan

jangka pendek (ST pengesahan) bagi tempoh 1995-1998, dan pengesahan jangka panjang

(LT pengesahan) bagi kedua-dua sungai berang dan sungai kenyir. hasil menunjukkan

pengabungan yang baik antara data simulasi dan data yang diukur dengan julat ralat

daripada 5.5% to 13.1% untuk pengesahan jangka pendek dan bagi pengesahan jangka

panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir.

Walaupun nilai LT pengesahan yang silap adalah tinggi daripada ST pengesahan tetapi

nilai tersebut tidak lebih dari 15% dalam semua kes.

Analisis statistik digunakan untuk mengesan ketepatan output HEC-HMC. Hasil

menunjukan ketepatan adalah sama diantara 0.40m³/sec untuk kawasan tadahan Berang

dan 0.67 m³/sec bagi tdahan kenyir. Ini menunjukkan bahawa gabungan diantara dua

program (HEC-HMS dan GSTARS3) membantu untuk mensimulasikan enapan

walaupun data hidrologi yang diterima adalah terhad dan hasil menunjukkan nilai yang

dikira adalah sama dengan data lama yang telah direkod bagi thalweg profil dan keratan

rentas yang dipilih.

Page 7: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

vi

ACKNOWLEDGEMENTS

It gives me great pleasure to acknowledge the assistance of the following people for their

advice, guidance and help. First of all, I would like to express my gratitude to Dr. Thamer

Ahmed Mohammed, my supervisor, for his support, advice and encouragement

throughout the development of this thesis.

I also wish to express my appreciation to Dr Abdul Halim Ghazali , Dr. Ahmed Rodzi

Mahmud and Dr. Lariyah Mohd Sidek, my co-supervisors, for their contributions,

comments and suggestions.

Financial support from the School of Graduate Studied, and the Department of Civil

Engineering, University Putra Malaysia is highly appreciated to complete this research.

My deepest gratitude goes to my husband, Mohamad Hussain, my daughter, Marwa and

my son, Mustafa, for their endless love and support during my study.

To all these cited people, my sincere acknowledgement. God bless you.

Page 8: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

vii

APPROVAL

I certify that a thesis Examination Committee has met on 19th November 2012 to conduct the final examination of Manal Mohsen Abood on her thesis entiteled “Modeling River Sediment Deposition Into The Kenyir Reservoir, Malaysia” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the UniversitiPutra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the degree of Doctor of Philosophy.

Members of Thesis Examination Committee were as follows:

Chairperson, PhDDr. Zainuddin bin Md YusoffFaculty: EngineeringUniversity Putra Malaysia(Chairman)

Examiner 1, PhDProfessor Dr. Lee Teang ShuiFaculty: EngineeringUniversity Putra Malaysia(Internal Examiner)

Examiner 2, PhDAssociated Professor Dr. Wan Nor Azmin b SulaimanFaculty: Environmental study.University Putra Malaysia(Internal Examiner)

External Examiner, PhDProfessor Dr. Chih Ted YangFaculty: Engineering University Colorado state universityCountry: United State.(External Examiner)

SEOW HENG FONG, PhD Professor and Deputy Dean School of Graduate Studies University Putra Malaysia

Date:

Page 9: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

viii

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

-----------------------------------

MANAL M. ABOOD

Date: 19 November 2012

Page 10: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

ix

TABLE OF CONTENTS

PageABSRACT ii

ABSTRAK iv

ACKNOWLEDGEMENT Vi

APPROVAL Vii

DECLARATION viii

LIST OF TABLES xii

LIST OF FIGURES xiv

LIST OF APPENDICES xix

CHAPTER

1 INTRODUCTION 1

1.1 Reservoir Sedimentation 1

1.2 Problem Statement 5

1.3 Objective 7

1.4 Scope and limitation 7

2 LITERATURE REVIEW 11

2.1 Introduction 11

2.2 Mechanism of Sedimentation in Reservoir 16

2.3 Sediment Transport Models 18

2.3.1 One Dimensional Models 20

2.3.1.1 HEC 6: Scour and Deposition in Rivers and Reservoirs

22

2.3.1.2 GSTARS3 (Generalized Sediment Transport Model for Alluvial River Simulation)

24

2.3.1.3 FLUVIAL (Mathematical Model for Erodible Channel)

27

2.3.2 Two Dimensional Models 29

2.3.3 Three Dimensional Models 33

2.4 (HEC-HMS program) Hydrologic Engineering 37

Page 11: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

x

Center-Hydrologic Modeling System

2.5 Geographic Information System (GIS) 42

2.6 Summary 50

3 METHODOLOGY 55

3.1 Introduction 55

3.2 Study area 57

3.3 Hydrological Modeling using HEC-HMS program 61

3.4 HEC HMS theory 62

3.5 HEC-HMS and Model Set-ups 63

3.5.1 Loss Model using SCS Curve Number 64

3.5.2 Snyder’s Unit Hydrograph (Direct Runoff model)

66

3.5.3 Recession Method to model the Baseflow 69

3.5.4 Muskingum Routing Method 70

3.6 HEC HMS Project Configuration 7

3.6.1 Basin Model 72

3.6.2 Metrological Method 74

3.6.3 Control specification 76

3.7 Sediment Transport Modeling using GSTARS3 program

77

3.7.1 GSTARS3 Theoretical Background 77

3.7.1.1 Streamlines and Stream Tubes 78

3.7.1.2 The Backwater Model 80

3.7.1.3 Sediment Routing Model and Channel Geometry Adjustment

82

3.8 GSTARS3 Program Set Up 89

3.8.1 Channel geometry 90

3.8.2 Flow Resistance 93

3.8.3 Hydrological Data 95

3.8.4 Sediment Data and Laboratory Work 96

3.8.5 Sediment Transport Formula 99

3.8.6 Temperature 101

3.8.7 GSTARS3 program Testing 102

3.9 Integrating GSTARS3 with ArcView 102

Page 12: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

xi

4 RESULTS AND DISCUSSION 108

4.1 Introduction 108

4.2 Rainfall Runoff Hydrological Modeling (HEC-HMS program)

108

4.2.1 Calibration of HEC HMS 109

4.2.2 Validation of HEC HMS 112

4.3 Sediment Transport Modeling (GSTARS3 program) 119

4.3.1 GSTARS3 Setup 119

4.3.1.1 Discharge Rating Curve 119

4.3.1.2 Sediment Rating Curve 121

4.3.1.3 Manning’s Roughness coefficient 123

4.3.2 Calibration 123

4.3.3 Validation 130

4.3.4 Statistical Analysis 139

4.4 Integrating GSTARS with ArcView GIS 152

5 CONCLUSIONS AND RECOMMENDATIONS 157

5.1 Summary 157

5.2 Conclusions 159

5.3 Recommendations 164

REFERENCES 166

BIODATA OF THE STUDENT 178

LIST OF PUBLICATIONS 179

Page 13: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

xii

LIST OF TABLES

Table Page

1.1 World wide dams and Annual loss due to sedimentation (Source: Oguz Kagan C., 2006)

3

1.2 Hydropower dams in Malaysia 4

2.1 Applications for Selected 1D Models 28

2.2 Applications for Selected 2D Models 32

2.3 Applications for Selected 3D Models 36

3.1 Rainfall and streamflow gages and their locations in the study area

61

3.2 Table 3.2: Sediment transport formula implemented in GSTARS3 and its type (B= bed load; BM= bed material (bed load + suspended load), (Source: Yang and Simŏes, 2002)

83

3.3 Selected Manning’s n for both Berang river and Kenyir river

94

3.4 Sediment Grain Size Rang and their Percentage in Berang river and Kenyir river

97

3.5 Mean monthly temperature at Kenyir dam site 101

4.1 HEC-HMS Parameter Values for Calibration Run 109

4.2 Rainfall Events Used for Calibration (event 1) and Validation (event 2) for Berang and Kenyir catchments

112

4.3 Statistical analyses for the study area 114

4.4 Suspended sediment concentration from laboratory work

122

4.5 Discharge rating curve parameter values for the calibration run

126

4.6 Sediment rating curve parameter of the calibration run

126

Page 14: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

xiii

4.7 Manning’s roughness coefficient of the calibration run

126

4.8 Performance statistics of the comparison of the elevations (Measured Vs. Simulated)

127

4.9 Statistical Analysis for the GSTARS3 simulation 141

4.10 Sediment accumulation exit the reach by size fraction

151

Page 15: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

xiv

LIST OF FIGURES

Figure Page

1.1 Regional distribution of dams at the end of 20th centaury (Source: WCD, 2000)

2

2.1 Cross section of a conventional hydroelectric dam 12

2.2 A typical turbine and generator 13

2.3 Schematic presentation of principle sedimentation processes in storage reservoirs. (Adopted from Sloff, 1997

17

2.4 a, b Past and predicted cross-sectional changes within Six-Mile Pool of the Kankakee River at a) RM 33.14, and b) RM 34.01 (Source: Bhowmik et al. 2004)

24

2.5 Comparison of measurements and GSTARS3 computation for two cross sections in the Tarbela reservoir region. (Adopted from GSTARS3 Users Manual)

26

2.6 Integrating GIS with hydrological modeling (Adopted from: Sui and Maggio, 1999)

46

3.1 Study flowchart 57

3.2 Locations of Berang and Kenyir rivers 59

3.3 Available hydrological stations at Berang and Kenyir catchments (study area)

60

3.4 Selected methods to run the HEC-HMS 65

3.5 Curve number and initial abstraction values for Berang basin

65

3.6 Curve number and initial abstraction values for Kenyir basin

66

3.7 values for direct runoff model for berang basin 68

3.8 values for direct runoff model for kenyir basin 69

3.9 Recession model for Berang and Kenyir basin 70

Page 16: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

xv

3.10 Muskingum routing method calibrated values for Berang basin

71

3.11 Muskingum routing method calibrated values for Kenyir basin

72

3.12 Berang basin , Kenyir basin and methods used to run the HEC-HMS

74

3.13 Metrological model and precipitation gages for Berang basin

75

3.14 Metrological model and precipitation gages for Kenyir basin

75

3.15 Control specification for calibration 76

3.16 Control specification for Validation 77

3.17 Top view of hypothetical river reach illustrating the use of equal conveyance stream tubes in GSTARS3, (Source: Yang and Simŏes, 2002)

79

3.18 Definition of variables in the sediment routing equation applied to one stream tube (Source: Yang and Simŏes, 2002)

87

3.19 Flow chart of GSTARS3 program (Source: Yang and Simŏes, 2002)

88

3.20 Flow chart for GSTARS sediment transport model 89

3.21 a, b Representation of a river reaches by discrete cross sections in GSTARS3, (Source: Yang and Simŏes, 2002)

91

3.22 (a) Survey 1990 for Berang river cross-section, and (b): Representation of a cross section by a discrete set of points

92

3.23 Grain size Distribution Curve for Berang river 97

3.24 Grain size Distribution Curve for Kenyir river 98

3.25 GSTARS 3 and ArcView integration 104

3.26 Part of Attribute for Berang Cross section in ArcView 105

3.27 Part of Attribute for Kenyir Cross section in ArcView 106

Page 17: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

xvi

3.28 Auto Cad format for the study area 107

4.1 Calibrated discharges of Berang catchment 111

4.2 Calibrated discharges of Kenyir catchment 111

4.3 Validation result of measured and simulated discharges for Berang catchment

113

4.4 Validation result of measured and simulated discharges for Kenyir catchment

113

4.5 Scattering for HEC-HMS simulation in Berang catchment 115

4.6 Scattering for HEC-HMS simulation in Kenyir catchment 115

4.7 discharge for sixteen years for Berang catchment 117

4.8 discharge for sixteen years for Kenyir catchment 118

4.9 Rating curve for Berang River (2000) 120

4.10 Rating curve for Kenyir River (2000) 121

4.11 Top view shows the Manning’s roughness coefficient values and their distribution between the cross section along the reach

124

4.12 Calibration for Berang river at cross section (1) 127

4.13 Calibration for Berang river at cross section (6) 128

4.14 Calibration for Berang river at cross section (14) 129

4.15 Calibration for Kenyir river at cross section (1) 129

4.16 Calibration for Kenyir river at cross section (8) 129

4.17 Calibration for Kenyir river at cross section (12) 130

4.18 Comparison between measurement and computed thalweg profile for GSTARS3 simulation of Berang river 1998

131

4.19 Comparison between measurement and computed thalweg profile for GSTARS3 simulation of Kenyir river 1998

131

Page 18: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

xvii

4.20 Comparison between measured and simulated elevation at cross section (1) for GSTARS3 simulation of Berang river1998

132

4.21 Comparison between measured and simulated elevation at cross section (6) for GSTARS3 simulation of Berang river1998

132

4.22 Comparison between measured and simulated elevation at cross section (14) for GSTARS3 simulation of Berangriver 1998

133

4.23 Comparison between measured and simulated elevation at cross section (1) for GSTARS3 simulation of Kenyir river

133

4.24 Comparison between measured and simulated elevation at cross section (8) for GSTARS3 simulation of Kenyir river1998

134

4.25 Comparison between measured and simulated elevation at cross section (12) for GSTARS3 simulation of Kenyir river 1998

134

4.26 Comparison between measurement and computed thalweg profile for GSTARS3 simulation of Berang river 2006

135

4.27 Comparison between measurement and computed thalweg profile for GSTARS3 simulation of Kenyir river 2006

136

4.28 Comparison between measured and computed elevation for GSTARS3 simulation at cross section 1, Berang river2006

136

4.29 Comparison between measured and computed elevation GSTARS3 simulation at cross section 6, Berang river 2006

137

4.30 Comparison between measured and computed elevation for GSTARS3 simulation at cross section 14, Berang river2006

137

4.31 Comparison between measured and computed elevation for a twelve-year GSTARS3 simulation at cross section 1, Kenyir river

138

Page 19: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

xviii

4.32 Comparison between measured and computed elevation for a twelve-year GSTARS3 simulation at cross section 8, Kenyir river

138

4.33 Comparison between measured and computed elevation for a twelve-year GSTARS3 simulation at cross section 12, Kenyir river

139

4.34 Scattering for GSTARS3 thalweg profile simulation for Berang river, a- ST validation, b- LT validation

142

4.35 Scattering for GSTARS3 thalweg profile simulation for Kenyir river, a- ST validation, b- LT validation

143

4.36 Scattering for GSTARS3 simulation for Berang river cross section (1) a- ST validation, b- LT validation

144

4.37 Scattering for GSTARS3 simulation for Berang river cross section (6) a- ST validation, b- LT validation

145

4.38 Scattering for GSTARS3 simulation for Berang river cross section (14) a- ST validation, b- LT validation

146

4.39 Scattering for GSTARS3 simulation for Kenyir river cross section (1) a- ST validation, b- LT validation

147

4.40 Scattering for GSTARS3 simulation for Kenyir river cross section (8) a- ST validation, b- LT validation

148

4.41 Scattering for GSTARS3 simulation for Kenyir river cross section (12) a- ST validation, b- LT validation

149

4.42 Sediment amount enter the reservoir from two rivers (Ton) 150

4.44 Elevation for Berang River at intersection point with Kenyir reservoir

155

4.45 Elevation for Kenyir River at intersection point with Kenyir reservoir

156

Page 20: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

1

CHAPTER 1

INTRODUCTION

1.1 Reservoir Sedimentation

Reservoir sedimentation is the process of sediment deposition into a lake formed

after a dam construction. Reservoir sedimentation involves entrainment, transport

and deposition. They originate from the catchments area, rivers system and settle

in reservoir. As a river enters the reservoir its cross section of inflow is enlarged.

Thus it causes a decrease in the water flow velocity. Subsequently the sediment

carrying capacity of water is reduced. The major part, or all, of the sediment

transport will deposit in the upstream part of the reservoir influenced by the

backwater curve.

The sediment deposition within the reservoir depletes live storage and develops

deltaic- shaped deposit in the upper reach of the reservoir. Such deposits may or

may not be transported towards the dam at a faster rate when reservoir storage is

small and flood flow enters the reservoir. As sediment accumulate in the reservoir,

the reservoir gradually losses its capacity to store water for the purpose of which it

is built.

There are more than 45,000 large dams (height more than 15 m) built all around

the world for several purpose such as power generation, flood control, domestic or

Page 21: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

2

industrial water supply. The top five dam-building countries account for nearly

80% of the dam world wide. China alone has built around 22,000 dam or closer to

half the world’s total number. Other countries among to top five dams building

nation include United States with over 6390 dam, India with 4000, and Spain and

Japan with between 1000 and 1200 dams each. Figure 1.1 shows distribution of

dams world wide at the end of 20th

century. Today, 19% of world energy is from

hydropower. Nearly half the world dams were built exclusively or primarily for

irrigation (WCD, 2000). Every year 0.5-1 % of the world reservoir capacity is lost

due to sedimentation. Table 1.1 shows world wide number of dams and their

annual loss due to sedimentation.

Figure 1.1: Regional distribution of dams at the end of 20th

century (Source:

WCD, 2000)

Page 22: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

3

Table 1.1: World wide dams and Annual loss due to sedimentation (Source:

Oguz. 2006)

Region Number of dams Annual loss due to

sedimentation

(% of residual storage)

Europe 5,497 0.17-0.2

North America 7,206 0.2

South and Central America 1,498 0.1

Africa 1,246 0.23-1.5

Middle East 895 1.5

Asia( excluding china) 7,230 0.3-1.0

China 22,000 2.3

Malaysia had a total of 56 dams, of which 32 were more than 15 m high (large

dams). The total dam capacity is estimated as 23.72 km3 (FAO, 2010).

In 2009, the Department of Irrigation and Drainage, at the Ministry of Natural

Resources and Environmental, manage 16 dams having a total capacity of 450

million m3, located in various states. These dams fulfill the department’s role in

providing adequate irrigation water, flood mitigation and silt retention (FAO,

2010).

In 1995, the gross theoretical hydropower potential of peninsular Malaysia was

123,000 GWh/year, and that of Sabah and Sarawak together 107,000 GWh/ year.

In 1995, total hydropower generation was about 5,800 GWh or 30 percent of all

Page 23: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

4

power production in Malaysia. Some of dams in Malaysia, their capacity, purpose

and construction date are shown in Table 1.2.

Table 1.2: Major Dams in Malaysia (Source: FAO, 2010)

Dams Capacity(million

m3)

Purpose Construction

date

Bakun 4,380 Electric power 1980

Batang Ai 750 Electric power 1985

Chenderoh 95 Electric power 1920

Kenyir 13,600 Electric power 1986

Temenggor 6,050 Electric power 1972

Pergau 6,060 Electric power 2000

Beris 122 Irrigation and

flood mitigation

2004

Bukit Merah 75 Irrigation and

flood mitigation

1985

Timah Tasoh 40 Irrigation and

flood mitigation

1992

Pontain 40 Irrigation and

flood mitigation

1985

Enak Endau 38 Irrigation and

flood mitigation

1985

Batu 37 Irrigation and

flood mitigation

1985

Klang Gate 25 Water supply 1958

Sg. Kinta 29.9 Water supply 2006

Page 24: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

5

Some of reservoirs in Malaysia have been subjected to increasing losses of their

storage. According to Department of Irrigation and Drainage (DID), it is estimated

that Bukit Merah reservoir which is constructed for the purpose of irrigation in

Perak, loss 0.4 % of its volume every year due o sedimentation and the capacity of

reservoir only remain about 60-65 % ( IEA, 2006). Tenaga National Berhad (TNB)

reported that Ringlet reservoir in Cameron Highlands which is man made lake

created upstream of the concrete dam (Sultan Abu Bakar dam) on Bertam River

has lost nearly 53% of its gross storage due to sedimentation since its operation in

1963, which is presently estimated as reaching a volume of about 3.5-4.0 million

m3. The currently estimated sediment deposition rate in the Ringlet reservoir is in

the range between 350,000 to 400,000 m3 per year (IEA, 2006).

1.2 Problem Statement

All rivers carries sediments. A river can be considered a body of flowing sediment

as much as flowing water. When the flowing water is stilled behind a dam, the

carrying sediment sinks to the bottom of reservoir. As the sediments accumulate in

a reservoir, it gradually loses its capacity to store water for the purpose for which it

was built. Sediments accumulation in a reservoir also causes problems to dam

operators due to the abrasion of turbine and other dam components.

Page 25: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

6

Sediment affects water quality and suitability for human consumption or use in

various enterprises. Numerous industries cannot tolerate even the smallest amount

of sediment in the water that is necessary for certain manufacturing processes and

public pays a large amount price for the removal of sediment from the water it

consumes every day. Sediment not only considers as a major water pollutant, but

also serves as a carrier and storage agent of other forms of pollution. Sediment also

degrades water quality for aquatic life.

In Malaysia and due to extensive development and deforestation, the sediment

load in rivers is high, this cause extensive sedimentation of dam reservoirs. And

reduction of reservoir design age. Continuous dredging of reservoir is costly and

needs surveying for reservoir sections. Modeling of the sediment deposition area

in the reservoir will help in reducing the cost of reservoir dredging.

This study will help to reduce the cost of dredging by predicting the sediment

deposition using appropriate models. Kenyir reservoir has been selected to

demonstrate the proposed methodology.

Kenyir dam is one of the most important hydroelectric power generation and flood

mitigation dams in Malaysia. One operational problem is the increase of sediment

accumulation in front of the intake structure and murky water has been discharged

from the turbine during the rainy seasons. This area should be monitored and extra

survey works should be done, therefore using a computer program to predict the

Page 26: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

7

sediment deposition to Kenyir reservoir as alternative solution than the survey

works will save a lot of time and costs. The study area is located in a tropical

region and it has a limited hydrological data, thus the chosen program should have

an ability to run with a small amount of data for calibration and testing.

1.3 Objectives

The main objective of the present study is the prediction and visualization of the

sediment inflow into Kenyir reservoir and its deposition. This will be achieved

through the following specific objectives:

1- To predict the rainfall-runoff for Kenyir and Berang rivers using HEC-HMS to

obtain a complete set of discharge data that is necessary to run the GSTARS3.

2- To predict the quantity and location of sediment deposition by using GSTARS3

Sediment Transport Program.

3- To produce visualization maps of the sediment deposition by integrating the

output from GSTARS3 program with ArcView GIS.

1.4 Scope and Limitation

Generally the scope of this study includes the following:

Page 27: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

8

1- Selection of study area, data collection and field survey

Kenyir reservoir, Terengganu, Malaysia is selected as a case study. The daily

data from four rainfall gage stations within the study area for the period from

1st September 1990 to 31

st December 1990 and daily data from two streamflow

gage stations within the study area for the same period of time were collected

from Department of Irrigation and Drainage, Malaysia (DID) and Tenaga

National Berhad research center (TNB) are used to calibrate and validate the

hydrological program (HEC-HMS), in addition to the topographic and

bathymetric data (contour line, landuse, soil map and vegetation cover). A

field survey was done to collect and analyze the particle size distribution of

different soil types of the catchment area. All these data are used together to

run the GSTARS3 sediment transport program.

2- Sedimentation Modeling (GSTARS3)

The sediment transport program GSTARS3 is selected to predict sedimentation

deposition. The input data are the hydrological data (discharge and rating

curve), channel reach geometry, and sediment data (sediment inflow, sediment

rating curve and particle size distribution). GSTARS3 was selected in this

study because it has never been applied to simulate the sediment movement in

a reservoir located in a tropical region, in addition to its ability to simulate the

sediment deposition and sediment movement with a minimum amount of field

data required for calibration and testing. Two limitations were faced in

Page 28: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

9

applying GSTARS3, first limitation is the lack of available cross section along

the reach. This is needed in GSTARS3 process for defining the channel reach

geometry. This was overcome by using interpolation between available cross

sections. Second limitation is the shortage in the available discharge data; this

was overcome by applying the HEC-HMS program to fill all the missing data

in historical records. Sediment load, sediment rating curve and particle size

graduation were obtained from field data and experimental work respectively.

3- Hydrological modeling (HEC-HMS)

The rainfall data for the Kenyir and Berang rivers since the operation of Kenyir

dam is available, but unfortunately, there is inadequate data for streamflow. To

overcome this limitation the hydrological program HEC-HMS is used to

determine the surface runoff for the two rivers (Kenyir and Berang) and fill the

missing data in historical record for the period from 1991 until 2006. The

computed runoff data are used as input to the sedimentation program

(GSTARS3).

4- GIS database

Organize the sediment output from GSTARS3 in a raster-based database that

includes the topographic information, channel geometry as well as bathymetric

information to visualize the sediment deposition and to identify the amount and

Page 29: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

10

location of sediment accumulation in the Kenyir reservoir. GSTARS3

integrated with ArcView were used for this purpose.

Page 30: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

166

REFERENCES

Adam, K. (1993). Application of GIS Methods in Soil Erosion Modeling.

Computer Environmental and Urban System. 17: 233-238.

Ali Liaghat, Seyed, A., Saeem, S. & Amirpouya, S. (2001). Prediction of the

Weekly Mean Discharge into Reservoir Doroudzan Dam Using HEC HMS

Model and its Comparison with Observed Data (1992-2001). International

Conference on Environmental and Industrial Innovation. IPCBEE.

LACSIT Press. Singapore.

Andres, G., Angle, S., Jose, A., & Cesar, A. (2008). Surface Water Resources

Assessment in Scarcely Gauged Basin in the North of Spain. Journal of

Hydrology. 356: 312-326.

Athanasios N., Mohamed E., George K., Shwet P., & John E. (2008).Sediment

Transport Modeling Review;Current and Future Developments, Journal of

Hydraulic Engineering, 134(1): 1-14.

Bedient, P.H. & Huber, W.C. (1992). Hydrology and Floodplain Analysis. New

York: Addison-Wesley.

Bhowmik, N.G., Christina, T., Paminder, P., & Misganaw, D.(2004). HEC-6

Modeling of the Main Stem of the Kankakee River in Illinois from the

Stateline Bridge to the Kankakee Dam, Prepared for the Illinois

Department of Natural Resources, Office of Resource Conservation..

Blumberg, A F. & Mellor, G.L.(1987) is cited by Athanasios N., Mohamed E.,

George K., Shwet P., and John E. (2008).Sediment Transport Modeling

Review;Current and Future Developments, Journal of Hydraulic

Engineering, 134(1): 1-14.

Bo Xiao, Oing, H.W., Jun, F.,Feng, P.H., & Quan, H.D.(2008). Application of

SCS CN Model to Runoff Estimation in a small watershed with high

spatial heterogeneity. Agriculture Water Management. 98(6): 1020-1026.

Chang, H.H.(1984). Generalized Computer Program, Fluvial-12, Mathematical

Model for Erodible Channels,

http: // redac.eng.usm.my/EAD/EAD513/fl12_users_manual.pdf.

Chen Y., Xu Y. & Yin Y., (2009). Impact of Land Change Scenarios on Storm-

Runoff Generation in Xitiaoxi Basin, China. Quaternary International,

186(1): 32-42.

Page 31: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

167

Chen,C.N., Tsai, C.H. & Tsai, T.C.(2005). Simulation of Sediment Yield from

Watershed Physiographic Soil Erosion Deposition Model. Journal of

Hydrology. 327(3-4): 293-303.

Childs, E. C. & Bybordi, M.(1969). The Vertical Movement Water in Stratified

Porous Material: 1. Infiltration. Water Resource Research. 5(2): 446–459.

Chow, V.T. (1959). Open channel flow. McGraw-Hill, New York, NY.

Chris, M. & Graeme, A. (2006). Land-Use Forecasting and Hydrologic Model

Integration for Improved Land-use Decision Support. Journal of

Environmental Management. 84: 494-512.

Curtis, J.A., Flint, L.E., Alpers, C.N. & Yarnell, S.M. (2004). Conceptual Model

of Sediment Processes in the Upper Yuba River Watershed, Sierra

Nevada,CA. Geomorphology. 68: 149-166.

Danish Hydraulic Institute (1993). Prediction of the spreading of dredged spoils in

the Øresund Link. Denmark & Sweden.

Fan, J. & G.L. Morris, G.L. (1992). Reservoir Sedimentation II: Reservoir

desiltation and long-term storage capacity. Journal of Hydraulic

Engineering, 118(3): 370-384.

Fang, H. & Wang, G.(2000). Three Dimensional Mathematical Model Of

Suspended Sediment Transport. Journal of Hydraulic Engineering. 126(8):

578-592.

FAO, (2010). International System on Water and Agriculture.

http//

www.fao.org/nr/water/aquastat/countries_regions/malaysia/print1.stm

Frenette, M.& Julien, P.Y.(1996).Physical Processes Governing Reservoir

Sedimentation Proceeding of the International Conference on Reservoir

Sedimentation. Colorado.

Fu, G., Chen, S., McCool, D. (2004). Modeling the Impacts of no till practice on

soil erosion and sediment yield with RUSLE, SEDD, and Arc View GIS.

Soil and Tillage Research. 85: 38-49.

Gesesse, A. & Yonas, M. (2008). Prediction of Sediment Inflow to legedadi

Reservoir Using SWAT Watershed and CCHE1D Sediment Transport

Models. Nile Basin Water Engineering Scientific Magazine,1: 65-74.

Page 32: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

168

Gholami V., Joker E., Azodi M., Zabardast H.A., and M. Bashrigonbad

(2009).The Influence of Anthropogenic Activities on Identifying Runoff

Generation and Flood Hazard in Kasillian Watershed. Journal of Applied

Science, 9(20): 3723-3730.

Guillermo, A.B., & Consuelo, C.R. (2006). Assessment of Erosion Hotspot in a

watershed: integrating the WEPP Model and GIS in A Case Study in the

Peruvian Andes. Enviromental Modeling and Software. 22: 1175-1183.

Goodchild, M.F., Park O.P., & Steyaert L.T. (1993). Environmental Modeling

with GIS. New York: Oxford University Press.

Hamrick, J.M. (1992). EFDC1D: A One Dimensional Hydrodynamic and

Sediment Transport Model for River and Stream Networks, Model

Theory, and Users Guide.

HEC, 2000, Hydrologic Engineering Center. Hydrologic modeling system HEC-

HMS: Technical references manual, US Army Crops of Engineers,

hydrologic Engineering Center, 2000.

http// www.hec.usace.army.mil/software/hec-hms/download.html

Howard, D. (2005). Rainfall Runoff Changes Due to Urbanization: A comparison

of Different Spatial Resolutions for Lumped Surface Water Hydrology

Models Using HEC HMS. Master Thesis. University of North Texas

Huang, B. and Jiang, B. (2002). AVTOP: A Full Integration of TOPMODEL into

GIS. Environmental Modeling and Software. 17(3): 261-265.

Julien, Y. (1999). Erosion and Sedimentation. UK: Cambridge University Press.

Kale,R.Y.& Sahoo, B.(2011). Green-Ampt Infiltration Models for Varied Field

Conditions: A Revisit. Water Resources Management. 25(14): 3505-3536.

Kalita, D.N., (2009). A Study of Basin Response Using HEC-HMS and Sub-zone

Reports of Cwc

http// www.scribd.com/doc/19489415/A-Study-of-Basin-Response-using-

HECHMS

Knebl M.R., Yang Z.L., Hutchison K. & Maidment D.R. (2004). Regional

Scale Flood Modeling Using NEXRAD Rainfall, GIS, and HEC-

HMS/RAS. Journal of Environmental Management 75 (20): 325–336.

Page 33: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

169

Lee, H.Y., Hsieh, H.M., Yang, J.C., & Yang, C.T. (1997). Quasi-Two

Dimensional Simulation of Scour and Deposition in Alluvial Channel.

Journal of Hydraulic Engineering , 123(7): 600-609.

Linsley, R.K., Kohler, M.A., & Paulhus, J.L.H. (1982). Hydrology for engineers.

McGraw-Hill, New York, NY.

Lim, K. J., Sagong, M., Engel, B.A., Tang, Z., Cai, J. & Kim, K.S. (2005). GIS

Based Sediment Assessment Tool. Cantina. 64:61-80.

Loi, N.K. (2010). Assessing the Impact of Land-Use Cover Changes and Practice

on Water Discharge and Sediment Using SWAT: Case Study in DongNai

Watershed, Vietnam. International Symposium on Geoinformation for

Spatial infrastructure Development.

Luettich, R.A. & Westerink, J.J.(2004). Formulation and Numerical

Implementation of the 2D/3D ADCIRC Finite Element Model Version

44.XX,

http// www.adcirc.org/adcirc_theory_2004_12_08.pdf

www.nd.edu/~adcirc/manual.htm

Maidment, D.R. (2002). Arc Hydro: GIS for Water Resources. New York: ESRI.

Mashriqui, H.S. (2003). Hydrodynamic and Sediment Transport Modeling of

Deltaic Sediment Processes. PhD Thesis. Louisiana State University.

Martin, J.J. & McCutcheon, S.C. (1999). Hydrodynamic and Transport for Water

Quality Modeling. Lewis Publication. Boca Raton, Florida.

Mahmood, K. (1987). Reservoir Sedimentation, Extent, Mitigation. Technical

Paper.Washington:USA:International Bank of Reconstruction and

Development.

Millward, A.A. & Mersey,J.E. (1999). Adapting the RUSLE to Model Soil

Erosion potential in a Mountainous Tropical Watershed. Catena. 38: 109-

129.

Morris, G.M. & Fan, J. (1999). Reservoir Sedimentation handbook, design and

Management of Dams, Reservoir, and Watershed for Sustainable Use, New

York: Mc Graw Hill.

Molinas, J. & Yang, J.C.1(986). Computer Program User Manual for GSTAR,

generalized stream tube model for alluvial river simulation, U.S. Bureau of

Reclamation, Technical Service Center, Denver, Colorado.

Page 34: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

170

Mohamad Taghi D., Robabeh K., Ali Talibi, Mahdi Vafakhah and Jamal D.(2011).

Determination of the Ability of HEC-HMS Model Components in Rainfall

Runoff Simulation. Research Journal of Environmental Sciences. 5(10):

790-799.

Mohamad Ali, Khan, S.J., Aslam, I.,& Khan,Z. (2011). Simulation of the impacts

of land-use change on surface runoff of Lai Nullah Basin in Islamabad,

Pakistan. Landscape and Urban Planning. 102 (30): 271-279.

Mohd Latif, R. & Sobri, H. (2007). Hydrologic Modeling Using HEC HMS for

Sungai Padang Terap, Jitra Kedah. Mater Thesis. University Technology

Malaysia.

Molnar, D.K. & Julien, P.Y. (1997). Estimation of Upland erosion Using GIS.

Computer and Geosciences. 24(2): 183-192.

Momcilo, M., James, R., Lin, Y., & Mohamad, I. (2007). Changing Estimate of

Design Precipitation in Northeastern Illinois: Comparison between

Different Sources and Sensitivity Analysis. Journal of Hydrology. 347:

211-222.

Mood, A., Graybill, F. & Boes, D. (1974). Introduction to the Theory of Statistic.

Third Addition, McGraw Hill.

Munthali, K., Irvine, B.J., & Murayama, Y. (2011). Reservoir Sedimentation and

Flood Control: Using a Geographic Information System to Estimate

Sediment Yield of the Songwe River Watershed in Malawi.

Sustainability.(3)254-269

Neteler, M. & Mistasova, H. (2002). Open Source GIS: A GRASS GIS Approach.

Boston: Kluwer Academic Press.

Noredin, R. & Ghobad, R. (2011).Comparison Methods Green & Ampt and Initial

and Constant Rate Loss for Estimate Precipitation Loss to Simulation

Runoff. International Journal of Agricultural Research and Review. 1 (1):

33-37.

O′ Connor, B.A. & Nicholson, J. (1988). A Three Dimensional Modeling of

Suspended Particular Sediment Transport. Coastal Engineering. 12(2):109-

189.

Oguz, k.C. (2006). Management of Reservoir Sedimentation: Case Study from

Turkey. Master Thesis. Middle East Technical University.

Page 35: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

171

Olsen, N.R.(1994), is cited by Athanasios N., Mohamed E., George K., Shwet P.,

& John E. (2008).Sediment Transport Modeling Review;Current and

Future Developments, Journal of Hydraulic Engineering, 134(1): 1-14.

Ortt, R.A., Van Ryswick, S. & Well, D. (2008). Bathymetry and Sediment

Accomulation of Triadelphia and Rocky Gorge Reservoir. Coastal and

estuarine Geology Technical Report.

Osten, A.T.(1979). Sediment Transport in Stream: Sampling, Analysis and

Computaion. Cited by Kusmi, J.M.(2008). Analysis of Sedimentation

Rates in the Densu River Channel. West African Journal of Applied

Ecology. 14 : 1-14.

Patrick, M. C. (1996). Sedimentation Problem with Dams,

http:// www.ing.org/basic/ard/index

Rogerio, C. (2001). Three Dimensional Reservoir sedimentation Model. Doctorial

Research, University of Newcastle, UK.

Rosenthal, W.D., Srinivasan, R. & Arnold, J.G. (1995). Alternative River

Management Using A Linked GIS-Hydrology Model. Transaction of

ASAE. American Society of Agricultural Engineering. 38(3): 783-790.

Salas, J.D.& Shin, H.S. (1999). Uncertainty Analysis of Reservoir

Sedimentation.Journal of Hydraulic Engineering. 125(4): 339-350.

Simon & Sentük (1992). Sediment Transport Technology, Water and Sediment

Dynamic. USA: Water Resources Publication.

Sina A., Rozi bin Abdullah and Ismail A., (2011) .Selecting the Best Value in

Calibration Process for Validation of Hydrological Modeling: A case Study

in Kayu Ara River Basin, Malaysia. Research Journal of Environmental

Sciences, 5(4): 354-365.

Sloff, C.J, Modeling reservoir Sedimentation for Sediment Management Studies,

Proc. Conf., Hydropower into Next Century, Portoroz, Solvinea, Sept. 15-

17, 1997.

Spasojevic, M. & Holly, F.M. (1990), is cited by Hong, Y. L. & Hui, M.H.(2003).

Numerical Simulations of Scour and Deposition in a Channel Network.

International Journal of Sediment Research, 18(1): 32-49.

Page 36: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

172

Sui, D.Z. & Maggio, R.C. (1999). Integrating GIS with Hydrological Modeling:

Practices, Problems, and Prospects. Computer, Environment and Urban

Systems. 23(1999) 33-5.

Thomas, W. A., & Prashum, A. I. (1977), is cited by Hong, Y. L. and Hui, M.

H.(2003). Numerical Simulations of Scour and Deposition in a Channel

Network. International Journal of Sediment Research, 18(1): 32-49.

Toniolo, H. & Parker, G. 1D Numerical Modeling of Reservoir Sedimentation,

Proceedings, IAHR Symposium on River, Coastal and Estuarine

Morphodynamics, Barcelona, Spain, 2003, 457-468.

Thomas, W.A.,& McAnally, W.H.(1985), is cited by Morris G.M. & Fan J.(1999),

Reservoir Sedimentation Handbook, Design and Management of Dams,

Reservoir, and Watersheds for Sustainable Use, New York: McGraw Hill.

TNB research: Ulu Terengganu Hydroelectric Project. Final report, Vol: 3 1997.

USACE, (2000). HEC Geo-HMS User Manual,

http:// www.hec.usace.army.mil/software/hec-geohms/documentations.

USACE, (2002). HEC Geo-RAS User Manual,

http:// www.hec.usace.army.mil/software/hec-georas/documents.

US Army Corps of Engineering (1993), HEC-6, Scour and Deposition in Rivers

and Reservoirs, Hydrology Center Engineering, User's Manual.

USACE, (2000). HEC-HMS hydrologic modeling system user’s manual.

Hydrologic Engineering Center .CA: Davis.

Van Rigin, L.C.(1986). Mathematical modeling of Suspended Sediment in

Nonuniform Flows. Journal of Hydraulic Engineering. 112(6): 433-455.

Van Rigin, L.C., Van Ro Soum, H. & Termes, P.P. (1990). Field Varification of

2D and 3D Suspended Sediment Model. Journal of Hydrology ASCE.

116(10): 1270-1288.

Warren, V. & Gary, L. L. (2003). Introduction to Hydrology. Fifth Edition. Harper

Collins College Publishers.

WCD, (2000). The Report of the World Commission on Dams: Earthscan

Publication.

Wu, W., Rodi, W., & Wenka, T. (2000). 3D Numerical Modeling of Flow and

Sediment Transport in Open Channels. Journal of Hydraulic.

Engineering.126(1): 4–15.

Page 37: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/51582/1/FK 2012 149RR.pdf · panjang adalah dari 6.3% ke 14.7% bagi kedua-dua sungai berang dan sungai kenyir. ... University

© COPYRIG

HT UPM

173

Yang, C.R. & Jiang, C.T. (2000). Development of A GIS-Based Flood Information

System for Floodplain Modeling and Damage Calculation. Journal of the

American Water Resources Association. 36 (3): 567-677.

Yang, C.T., Trevino, M.A., & Simões, (2000). F.J.M., User Manual for GSTARS

2.1, U.S. Bureau of Reclamation Technical Service Center, Denver,

Colorado.

Yang, C. T, & Simões F. J.M., (2002), Generalized Sediment Transport Models

for Alluvial Rivers and Reservoirs, US-China Workshop on Advanced

Computational Modeling in Hydroscience & Engineering, September 19-

21, USA: Oxford, Mississippi.

Yener, M., Sorman, A., Sensong, A. & Gezgin, T. (2006). Modeling Studies with

HEC HMS and Runoff Scenario in Yuvacik Basin, Turkey. International

Congress on River Basin Management.

Yosup, Z., Chan, C.H., & Katimon, A. (2007). Runoff Characteristic and

Application of HEC HMS Modeling Storm Flow Hydrograph on Oil palm

Catchment. Water Science & Technology. 56(8): 41-48.

Zhi, H.S.(2008). Research on the SCS-CN Initial Abstraction Ratio Using Rainfall

Runoff Event Analysis in the Three Gorges Area China. Catena.77 (1): 1-

7.