physical and thermal properties of …eprints.utm.my/id/eprint/39758/5/nazuhatugimanmfkk2013.pdf ·...

34
PHYSICAL AND THERMAL PROPERTIES OF POLYPROPYLENE/RICE STRAW BIOCOMPOSITE FOAM NAZUHA BINTI TUGIMAN UNIVERSITI TEKNOLOGI MALAYSIA

Upload: hanhi

Post on 08-May-2019

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

ii

PHYSICAL AND THERMAL PROPERTIES OF POLYPROPYLENE/RICE

STRAW BIOCOMPOSITE FOAM

NAZUHA BINTI TUGIMAN

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

i

PHYSICAL AND THERMAL PROPERTIES OF POLYPROPYLENE/RICE

STRAW BIOCOMPOSITE FOAM

NAZUHA BINTI TUGIMAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Engineering (Polymer)

Faculty of Chemical Engineering

Universiti Teknologi Malaysia

JULY 2013

Page 3: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

iii

Especially dedicated to my beloved husband, Mohd Zuhairi Bin

Jaafar, my son, Muhammad Izz Marzuqi bin Mohd Zuhairi and my parents.

Thanks for the encourage, love and support.

Page 4: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

iv

ACKNOWLEDGEMENT

“In the name of Allah SWT, the most gracious and the most merciful”

I would like to take this opportunity to express my deepest appreciation to my

precious supervisors, Dr. Zurina Mohamad and Assoc. Prof. Dr. Wan Aizan Wan

Abdul Rahman for their supports, patience and guidance in completing this research.

My credit also goes to the other lecturers from Faculty of Chemical Engineering for

their advices and critics. Without their continuing support and interest, this thesis

would have not been done today.

My special thanks also go to all staff, lab assistants and technicians from

Polymer Engineering Department who have given their support in finishing my

project. Thanks to them for their useful knowledge and information that can be added

into this study.

Finally, I also like to dedicate my appreciation and grateful to my beloved

husband, my son, parents and friends who directly or indirectly involved in the

success of this research. Above all, once again I thank to Allah the Almighty for His

grace, mercy and guidance. Thank you.

Page 5: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

v

ABSTRACT

Polymer foam biocomposites based on polypropylene/rice straw (PP/RS)

were successfully prepared by using an extrusion foaming process. The

compounding of PP and RS was performed in a twin-screw extruder which was

blended with crosslinker; dicumyl peroxide (DCP), blowing agent;

azodicarbonamide (AZ) and different compatibilizers; polypropylene maleic

anhydride (PPMAH) and ULTRAPLASTTM

TP10. Compatibilizers were utilised to

improve poor interfacial interaction between hydrophilic rice straw and hydrophobic

matrix polypropylene. The foam biocomposite was extruded at temperatures of 180,

190, 190 and 200 °C respectively, which set from the feeder until the die zone. Each

sample has five different series of formulations. The density test, water absorption

test and gel content test were conducted to study the physical properties of PP/RS

biocomposite foam. The thermal properties were also investigated by using

differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA).

Meanwhile, the morphologies of the biocomposite foams were observed through

scanning electron microscopy (SEM). The incorporation of PPMAH or TP10

improved the compatibility and processability of PP/RS biocomposite foam. This

formulation has produced a good cell structure, lower density of biocomposite,

improved the water uptake resistance and exhibited the best crosslinking density.

Page 6: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

vi

ABSTRAK

Polimer busa biokomposit berasaskan polipropilena / batang padi (PP / RS)

telah berjaya dihasilkan melalui proses penyemperitan berbusa. Pencampuran

polipropilena batang padi telah dijalankan dengan menggunakan penyemperit skru

berkembar dan digabungkan dengan bahan-bahan penyambung silang; dikumil

peroksida (DCP), ejen pembusa; azodikarbonamida, (AZ) dan penyerasi yang

berbeza; polipropilena maleik anhidrida (PPMAH ) dan ULTRAPLASTTM

TP10.

Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

batang padi yang bersifat hidrofilik dan polipropilena matriks yang bersifat

hidrofobik. Busa biokomposit ini disemperit pada suhu 180, 190, 190 dan 200 °C

yang ditetapkan dari zon penyuap sehingga zon dai. Setiap sampel berbeza-beza dari

segi muatan atau kepekatan yang melibatkan lima siri formulasi. Ciri-ciri fizikal

biokomposit polipropilena / batang padi berbusa dikaji melalui ujian ketumpatan,

ujian penyerapan air dan ujian kandungan gel. Sifat-sifat haba juga dikaji dengan

menggunakan kalorimeter pengimbasan pembezaan (DSC) dan analisis gravimetrik

terma (TGA). Pencirian morfologi bagi biokomposit berbuih PP/RS diperhatikan

dengan menggunakan mikroskop imbasan elektron (SEM). Penambahan PPMAH

atau TP10 telah meningkatkan keserasian dalam pemprosesan biokomposit berbusa

PP/RS. Formula ini telah menghasilkan satu struktur sel yang baik, ketumpatan

biokomposit yang lebih rendah, meningkatkan rintangan serapan air dan ketumpatan

sambungsilang yang terbaik.

Page 7: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

TITLE PAGE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF EQUATIONS xvi

LIST OF ABBREVIATIONS xvii

LIST OF APPENDICES xviii

1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statement 3

1.3 Objectives of Study 4

1.4 Scope of Study 5

1.5 Significance of Study 6

2 LITERATURE REVIEW 7

2.1 Biocomposite 7

2.1.1 Wood Polymer Composite 9

2.1.2 Foam Polymer Composites 12

Page 8: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

viii

2.2 Natural Fiber 15

2.2.1 Rice Straw Fiber 18

2.3 Foam 19

2.3.1 Polymeric Foam 20

2.3.2 Foam Polymer Processing 22

2.3.3 Foam Extrusion 24

2.3.4 Blowing/Foaming Agents 25

2.3.4.1 Chemical Blowing Agent 26

3 RESEARCH METHODOLOGY 28

3.1 Materials 28

3.1.1 Polypropylene Resin 28

3.1.2 Rice Straw (Fillers) 29

3.1.3 Azodicarbonamide (Blowing Agent) 29

3.1.4 Dicumyl Peroxide (Crosslinking

Agent)

30

3.1.5 Maleic Anhydride Modified

Propylene (PPMAH) and Ultra-plast

TP10

30

3.2 Formulation of PP/RS Biocomposite Foam 31

3.3 Foam Extrusion Process 33

3.4 Characterization Technique 35

3.4.1 Gel Content Test 35

3.4.2 Density Determination 35

3.4.3 Foam Morphology 36

3.4.4 Water Absorption 36

3.4.5 Thermal Gravimetry Analysis 38

3.4.6 Differential Scanning Calorimetry 38

4 RESULTS AND DISCUSSION 40

4.1 PP/RS Biocomposite Foam 40

4.1.1 Gel Content 40

4.1.1.1 Effect of Dicumyl Peroxide 40

Page 9: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

ix

(DCP)

4.1.1.2 Effect of Azodicarbonamide 42

4.1.2 Density 44

4.1.2.1Effect of Rice Straw Loading 44

4.1.2.2Effect of Azodicarbonamide 48

4.1.2.3 Effect of Dicumyl Peroxide 49

4.1.3 Water Absorption 52

4.1.3.1 Effect of Rice Straw Loading 52

4.1.3.2 Effect of Azodicarbonamide 53

4.1.3.3 Effect of Dicumyl Peroxide 55

4.1.4 Thermal stability 56

4.1.4.1 Effect of Rice Straw Loading 56

4.1.4.2 Effect of Azodicarbonamide 59

4.1.4.3 Effect of Dicumyl Peroxide 61

4.1.5 Melting Behaviour and Prediction

Crystallinity in PP/RS Biocomposite

Foam

62

4.1.5.1 Effect of Rice Straw Loading 62

4.1.5.2 Effect of Azodicarbonamide 64

4.1.5.3 Effect of Dicumyl Peroxide 65

4.2 Influence of Compatibilizers on PP/RS

Biocomposite Foam

67

4.2.1 Gel Content of Compatibilized

80PP/20RS Biocomposite Foam

67

4.2.1.1 Effect of PPMAH 67

4.2.1.2 Effect of TP10 68

4.2.2 Density of Compatibilized

80PP/20RS Biocomposite Foam

70

4.2.2.1 Effect of PPMAH 70

4.2.2.2Effect of TP10 72

4.2.3 Water Absorption of

Compatibilized 80PP/20RS

Biocomposite Foam

77

Page 10: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

x

4.2.3.1Effect of PPMAH 77

4.2.3.2 Effect of TP10 78

4.2.4 Thermal stability of

Compatibilized 80PP/20RS

Biocomposite Foam

80

4.2.4.1 Effect of PPMAH 80

4.2.4.2 Effect of TP10 82

4.2.5 Melting Behaviour and Prediction

Crystallinity in Compatibilized

80PP/20RS Biocomposite Foam

84

4.2.5.1 Effect of PPMAH 84

4.2.5.2 Effect of TP10 86

5 CONCLUSION AND RECOMMENDATION 88

5.1 Conclusion 88

5.2 Recommendation 90

LIST OF PUBLICATIONS 92

REFERENCES 93

Appendix A 104

Appendix B 107

Page 11: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Chemical composition of rice straw as determined by

fibre analysis method

18

3.1 Typical physical properties of PP resin 29

3.2 Physical properties of azodicarbonamide (AZ)

chemical blowing agent/nucleating agent

30

3.3 Raw materials formulation and composition in

different series

31

4.1 Degradation temperature of PP/RS biocomposite foam

at different rice straw loading

58

4.2 Degradation temperature of 80PP/20RS biocomposite

foam at different concentration of azodicarbonamide

60

4.3 Degradation temperature of 80PP/20RS biocomposite

foam at different concentration of dicumyl peroxide

62

4.4 Thermal behavior and prediction crystallinity of

PP/RS biocomposite foam with varies of rice straw

loading

63

4.5 Thermal behavior and prediction crystallinity of

80PP/20RS biocomposite foam with varies of

azodicarbonamide concentration

65

4.6 Thermal behavior and prediction crystallinity of

80PP/20RS biocomposite foam with varies in

concentration of dicumyl peroxide

66

4.7 Degradation temperature of 80PP/20RS biocomposite

foam at different PPMAH loading

81

Page 12: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

xii

4.8 Degradation temperature of 80PP/20RS biocomposite

foam at different TP10 loading

83

4.9 Thermal behavior and prediction crystallinity of

80PP/20RS biocomposite foam with various loading

of PPMAH

85

4.10 Thermal behavior and prediction crystallinity of

80PP/20RS biocomposite foam with various loading

of TP10

87

Page 13: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Chart of polymer used in WPCs production as

presented at Wood-Plastic Conference Baltimore MD

(2000)

11

2.2 Morphology of isotactic polypropylene (iPP) foam

under SEM

19

2.3 Mechanism of foam preparation in the polymer

biocomposite foam

25

3.1 Diagram of extrusion process of PP/RS biocomposite

foam in the twin screw extruder

33

3.2 Summary of PP/RS biocomposite foam preparation 34

3.3 Diagram of sample and reference material in

differential scanning calorimetry

39

4.1 Gel content of 80PP/20RS biocomposite foam at

different concentration of crosslinker

41

4.2 Gel content of 80PP/20RS biocomposite foam at

different concentration of azodicarbonamide

42

4.3 Scematic diagram of cells size formation 43

4.4 Cell structures of 80PP/20RS biocomposite with

different concentration of azodicarbonamide at 150X

magnification

44

4.5 The density of PP/RS biocomposite foam at different

rice straw (RS) loading

46

4.6 Cell structures of PP/RS biocomposite foam with

different rice straw loading at 50X magnification.

47

Page 14: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

xiv

4.7 The density of 80PP/20RS biocomposite foam at

different concentration of azodicarbonamide

49

4.8 The density of 80PP/20RS biocomposite foam at

different concentration of dicumyl peroxide (DCP)

50

4.9 Cell structure of 80PP/20RS biocomposite foam with

different concentration of dicumyl peroxide (DCP) at

150X magnification

51

4.10 Percentage of water absorption of PP/RS

biocomposite foam at different loading of rice straw

53

4.11 Percentage of water absorption of 80PP/20RS

biocomposite foam at different concentration of

azodicarbonamide

54

4.12 Percentage of water absorption of 80PP/20RS

biocomposite foam at different concentration of

dicumyl peroxide

56

4.13 Weight loss versus temperature of PP/RS

biocomposite foam at various filler loading measured

by TGA

58

4.14 Weight loss versus temperature of 80PP/20RS

biocomposite foam at various concentration of

azodicarbonamide measured by TGA

60

4.15 Weight loss versus temperature of 80PP/20RS

biocomposite various concentration of dicumyl

peroxide measures by TGA

61

4.16 DSC Thermogram of PP/RS biocomposite foam with

various rice straw loading

63

4.17 DSC thermogram of 80PP/20RS biocomposite foam

with various concentration of azodicarbonamide

64

4.18 DSC thermogram of 80PP/20RS biocomposite foam

with various concentration of dicumyl peroxide

66

4.19 Gel content of 80PP/20RS biocomposite foam at

different loading of PPMAH

68

4.20 Gel content of 80PP/20RS biocomposite foam at 69

Page 15: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

xv

different loading of TP10

4.21 Gel content of 80PP/20RS biocomposite foam with

various PPMAH and TP10 loading

69

4.22 Density of 80PP/20RS biocomposite foam at different

PPMAH loading

70

4.23 Cell structure of 80PP/20RS biocomposite foam with

different PPMAH loading at 150X magnification

72

4.24 Density of 80PP/20RS biocomposite foam at different

TP10 loading

73

4.25 Cell structure of 80PP/20RS biocomposite foam with

different TP10 loading at 150X magnification

75

4.26 Density of 80PP/20RS biocomposite foam with

various PPMAH and TP10 loading

76

4.27 Water absorption of PP/RS biocomposite foam at

different PPMAH loading

78

4.28 Water absorption of PP/RS biocomposite foam at

different TP10 loading

79

4.29 Water absorption of 80PP/20RS biocomposite foam

with various PPMAH and TP10 loading

80

4.30 Weight loss versus temperature of 80PP/20RS

biocomposite foam at different PPMAH loading

measures by TGA

81

4.31 Weight loss versus temperature of 80PP/20RS

biocomposite foam at different TP10 loading

measures by TGA

83

4.32 DSC thermogram of 80PP/20RS biocomposite foam

at different loading of PPMAH

84

4.33 DSC thermogram of 80PP/20RS biocomposite foam

at different loading of TP10

86

Page 16: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

xvi

LIST OF EQUATIONS

EQUATION NO. TITLE PAGE

3.1 Gel Content 35

3.2 Density Determination 36

3.3 Percentage of Water Uptake 37

3.4 Percentage of Crystallinity 39

Page 17: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

xvii

LIST OF ABBREVIATIONS

AZ - Azodicarbonamide

CFC - ChloroFluoroCarbon

DCP - Dicumyl Peroxide

DSC - Differential Scanning Calorimetry

EPS - Expanded Polystyrene

PE - Polyethylene

PP - Polypropylene

RS - Rice Straw

PVC - Poly(vinylchloride)

SEM - Scanning Electron Microscope

TGA - Thermal Gravimetric Analysis

WPC - Wood Polymer Composites

Page 18: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

xviii

LIST OF APPENDICES

APPENDICES TITLE PAGE

A Product Data TITANPRO 6331 112

B ULTRA-PLASTTM

TP 10 Processing Additive for

WPCs

115

Page 19: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

1

CHAPTER 1

INTRODUCTION

1.1 Research Background

The combination of various synthetic reinforcing fillers with many polymer

composites has been initiated during the past decades. The improvement of

mechanical properties and obtained the demand characteristics in actual applications

has become the main purposes in modification of composites. The Greenpeace

groups and NGOs have addressed the bad impact of those synthetic reinforcing

fillers on the environment which has become the global issue (Nourbakhsh et al.,

2011). As a result of growing awareness of global environment, the green products

which have criteria such as the sustainability, eco-efficiency, industrial ecology,

green chemistry and engineering is integrated into the development of new products.

Hence, studies are proceeded to find ways in utilizing the natural fillers as the

replacement of synthetic fibers as reinforcing fillers. The polymers are obviously

involved into this tendency and numerous bio-polymer involving natural fibers such

as jute, kenaf, sisal, wheat straw, rice husk and rice straw have been elaborated

(Alemdar and Sain, 2008).

Natural fiber as reinforcement in plastics is very different than the other

reinforcement due to its better properties itself such as flexibility, lightness, easier

and safer in handling and working condition, easy to fabricate on intricate required

shape with economic savings. They are broadly known and utilized in many areas

Page 20: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

2

such as building industry, transportation and consumer goods (Satyanarayana et al.,

1990).

The utilization of natural fibers in biocomposites grows rapidly as its abilities

and latent qualities for various applications which was required nowadays. The

biodegradable and renewable properties are really needed as reinforcing fillers in

polypropylene composite (Nourbakhsh et al., 2011). Polypropylene added with rice

straw fiber systems had comparable physico-mechanical properties and

characteristics with those of wood composites. Chemically, lignocellulosic rice

straw fiber has similar compositions as other natural fibers used in thermoplastics

(Yao et al., 2008). From Wu et al. (2012), the crystallinity of untreated and treated

rice straw cellulose fibers recorded closed differences which are 71.3% and 72.9%

separately and enhanced the elastic modulus of rice straw fibrils (RSF)/PP

nanocomposites.

Recently, some progress has been made in the study regarding the foaming of

the polymer biocomposites which has contributed to the synergism properties. The

combination of the enhanced mechanical and physical elements has improved the

specialty of properties on biocomposite foam products (Kiliaris and Papaspyride,

2010; Satyanarayana et al., 2009).

Polymer foams can be generally classified as macro-cellular, micro-cellular

and ultra-micro-cellular ones. Many advantages exhibit on foaming polymers over

unfoamed polymers such as higher impact strength, higher toughness, and higher

stiffness to- weight ratio, higher fatigue life, higher thermal stability, lower dielectric

constant, and lower thermal conductivity (Xu et al., 2007). Environmental concern

of waste reduction helps to transfer the previous tradition of burning for disposal of

natural fibers by utilizing them as fillers. Increasing the utilization of fibers, may

solve the pollution problems. The improvement of foaming the polymer

biocomposites really works because it will reduce the consumption of polymer’s

resins which can directly reduce the material costs and enhanced the physical

properties such as lightness. Previously, many foaming researches have been done

on the polymer biocomposite. It has result the improvement in mechanical and

Page 21: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

3

physical properties of the biocomposites as mentioned by the many researchers.

Those researches normally focused on the effect of the formation or the existence of

the bubbles nucleation and growth in the biocomposite. Lee et al. (2005) reported

that the good dispersion of small amount of foaming agent which is called as denser

matrix in thermoplastic tend to initiate the nucleation sites to ease the foam

nucleation process thus encourage the macroscopic mechanical enhancement.

Foaming polyethylene was widely accepted and done by researchers instead of

polypropylene as reported by Abe and Yamaguchi (2000), where in their study of

foaming crosslinked polyethylene, the degree of shrinkage reduced with the

increasing of crystallization temperature Tc, due to the immediate crystallization.

Thus, an effort need to be taken in realizing this study by compounding the

rice straw (RS) and polypropylene (PP) matrix followed by foaming process, in order

to investigate the performance of the PP/RS biocomposite foam.

1.2 Problem Statement

The utilization of natural filler as reinforcement in thermoplastics is widely

known among researchers in order to enhance or improve the mechanical and

physical properties of biocomposites. Rice straw is one of the most arising natural

fiber utilized as the filler in thermoplastics due to its good thermal stability than the

others natural fiber (Nallis, 2009). The utilization of rice straw also giving the

additional advantages where it is easily crushed into chips or particles and had the

similarity to wood fibers (Buzarovska et. al., 2008). Previously, the abundance of

rice straw after the paddy field harvested has worried or giving many potential

difficulties to environmental problems all over the world (Nallis, 2009). Thus, many

efforts have been done from researcher to reduce the waste of this rice straw.

Nowadays, the foamed plastics are stronger than their non-foamed plastics

because of the lightness in weight, clearly noticeable cost-to-performance and

favorable strength-to-weight ratios (Thorne, 1996). Due to these special and unique

Page 22: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

4

properties, microcellular or foamed plastics can be used in many applications either

in automotive and aerospace industries, containers, sporting goods and thermal and

electrical insulators. If the biocomposites can be foamed effectively with intended

results, the utility of materials can be enhanced by having the good foam cell-

structures in the composite (Rizvi et al., 2000). The modification on mechanical

properties and density especially, has encouraged the utilization of foaming agent in

the production of biocomposites foam. In certain case, it would be very difficult to

obtain the demanded properties in the biocomposite, thus the foaming technology has

been contributed in realizing it. The techniques become more economically

attractive as the lower density can be achieved (Han et al., 1976). In this research,

the investigation more focused on the loading of rice straw as filler,

azodicarbonamide as foaming agent and dicumyl peroxide as crosslinker on the

PP/RS biocomposite foam.

1.3 Objectives of Study

The overall objective of this study was to investigate the properties of foamed

PP/RS crosslinked with dicumyl peroxide via in-situ process whereby foaming agent,

crosslinker and compatibilizer were added simultaneously together during extrusion

to foam products. These objectives were subdivided into:

1) To investigate the effect of rice straw filler loading on the properties of

PP/RS biocomposite foam such as morphology, thermal stability, density,

thermal properties and water absorption.

2) To study the effect of foaming agent loading on the properties of PP/RS

biocomposite.

3) To determine the effect of dicumyl peroxide crosslinker on the properties of

PP/RS biocomposite foam.

4) To analyze the effect of compatibilizers on the properties of PP/RS

biocomposite foam.

Page 23: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

5

1.4 Scope of Study

This study focused on the in-situ compounding and foaming processes in the

extruder. The investigation involved the gas bubbles formation in the polymer melt

biocomposite. Materials used in this study were polypropylene (PP), rice straw (RS),

azodicarbonamide (AZ), dicumyl peroxide (DCP) and two types of compatibilizers;

maleic anhydride polypropylene (PPMAH) and Ultra-plust TP10. Every series was

compounded together and extruded through the twin screw extruder with the fixed

temperature for every zone at the extruder.

Compositions of materials used are as follow:

(a) Rice straw in a powder form was used at different loading; 0 wt% to 50

wt%.

(b) Azodicarbonamide in a granule form was used at different phr; 1.5 phr to

3.0 phr.

(c ) Dicumyl peroxide in a powder form was used at different phr loading; 0.5

phr to 2.5 phr.

(d) Compatibilizers (PPMAH and TP10) in a granule form were used at

different phr; 0 phr to 10 phr.

The compositions of materials were taken variously in order to study the

effects, the degree of foaming, types of cells formed and distribution of the gas

bubbles in the polymer melt. SEM micrographs were used to characterize the pattern

and types of foam cell structures produced in composites. The thermal properties

and crystallinity of biocomposite foam were studied by using the differential

scanning calorimetry (DSC) while thermogravimetric analysis (TGA) was used to

measure thermal stability in a material as a function of temperature (or time) under a

controlled atmosphere.

The testings and analyses involved in this study are density measurement for

various formulations which were recorded by density Mettler Toledo. ASTM D2842

were used to determine water absorption of rigid cellular plastics and ASTM D2765

Page 24: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

6

were used to determine the gel content or crosslinked density of crosslink foam

plastics by extracting the samples with solvents such as decahydronaphthalene or

xylenes.

1.5 Significance of Study

Polypropylene/rice straw foam based on chemical foaming agent give a quite

similar function as synthetic wood which will replace the usage of the wood in

construction and manufacturing based on wood (furniture) industries around the

world. In enhancing the properties of products with remain original properties, the

same products with new properties can be realized. In addition, the foaming agent

enhanced the light weight of the material to suit the order of consumer needs.

Page 25: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

93

REFERENCES

Abe, S. and Yamaguchi, M. (2001). Study on the Foaming of Crosslinked

Polyethylene. Journal of Applied Polymer Science. 79: 2146–2155.

Ahmad, M. (2004). Thermoplastic Microsphere as Foaming Agents for Wood

Plastics. Expancel Inc. Composite. Presented at WPC 2004 Conference,

Vienna, Austria. 1-13.

Alemdar, A. and Sain, M. (2008). Biocomposites from Wheat Straw Nanofibers:

Morphology, Thermal and Mechanical properties. Composites Science and

Technology. 68: 557–565.

Almanza, O., Rodriguez-Perez, M.A. and De Saja, J.A. (2001). The Microstructure

of Polyethylene Foam Produced by a Nitrogen Solution Process. Polymer.

42: 7117-7126.

Ave´rous, L. and Le Digabel, F. (2006). Properties of Biocomposites Based on

Lignocellulosic Fillers. Carbohydrate Polymers. 66: 480–493.

Balasuriya, P. W., Ye, L. and Mai, Y. W. (2001). Mechanical Properties of Wood

Flake – Polyethylene Composites. Composites: Part A. 32: 619-629.

Basfar, A. A. and Ali, Z. I. (2011). Physico-Chemical Properties of Low Density

Polyethylene and Ethylene Vinyl Acetate Composites Cross-linked by

Ionizing Radiation. Radiation Physics and Chemistry. 80: 257–263.

Bledzki, A. K. and Faruk, O. (2004). Creep and Impact Properties of Wood Fibre–

Polypropylene Composites: Influence of Temperature and Moisture Content.

Composites Science and Technology. 64: 693–700.

Page 26: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

94

Bledzki, A.K. and Faruk, O. (2006). Injection Moulded Microcellular Wood Fibre–

Polypropylene Composites. Composites: Part A. 37: 1358–1367.

Bledzki, A. K., Zhang, W. and Faruk, O. (2005). Microfoaming of Flax and Wood

Fibre Reinforced Polypropylene Composites. HolzalsRoh- und Werkstoff.

63: 30–37.

Bledzki, A. K., Faruk, O. and Huque, M. (2002). Physico-Mechanical Studies of

Wood Fiber Reinforced Composite. Polymer-Plastics Technology and

Engineering. 41.3: 435-45.

Brahmakumar, M., Pavithran.C. and Pillai, R. M. (2005). Coconut Fibre Reinforced

Polyethylene Composites: Effect of Natural Waxy Surface Layer of the Fibre

on Fibre/Matrix Interfacial Bonding and Strength of Composites. Composites

Science and Technology. 65: 563–569

Buzarovska, A., Bogoeva-Gaceva, G., Grozdanov, A., Avella, M., Gentile, G., and

Errico, M. (2008). Potential Use of Rice Straw as Filler in Eco-composite

Materials. Australian Journal of Crop Science. 1(2): 37 – 42.

Chang, S. Y., Ismail, H. and Ahsan, Q. (2012). Effect of Maleic Anhydride on

Kenaf Dust Filled Polycaprolactone / Thermoplastic Sago Starch Composites.

BioResources. 7(2): 1594 – 1616.

Chivrac, F., Pollet, E. and Ave’rous, Luc. (2009). Progress in Nano-Biocomposites

Based on Polysaccharides and Nanoclays. Materials Science and

Engineering. 117.

Chodak, I. and Matisovfi-Rychlfi, L. (1986). Thermooxidative Stability of

Crosslinked Polypropylene. Polymer Degradation and Stability. 16: 213–

220.

Crookston, K. A., Young, T. M., Harper, D. and Guess, F. M. (2011). Statistical

Reliability Analyses of Two Wood Plastic Composite Extrusion Processes.

Reliability Engineering and System Safety. 96: 172–177.

Page 27: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

95

de la Fuente, J. L., Ruiz-Bermejo, M., Menor-Salván, C. and Osuna-Esteban, S.

(2011). Thermal Characterization of HCN Polymers by TG-MS, TG, DTA

and DSC Methods. Polymer Degradation and Stability. 96: 943-948.

Di Landro, L., Sala, G. and Olivieri, D. (2002). Deformation Mechanisms and

Energy Absorption of Polystyrene Foams for Protective Helmets. Polymer

Testing. 21: 217-228.

Eaves, D. (2004). Handbook of Polymer Foams. UK: Rapra Technology Limited.

El-Dessouky, H. M., Mahmoudi, M. R., Lawrence, C. A., Yassien, K. M., Sokkar, T.

Z. N. and Hamza, A. A. (2009). On the Physical Behavior of Isotactic

Polypropylene Fibers Extruded at Different Draw-Down Ratios. I. Optical

Properties and Cold-Drawing. Polymer Engineering and Science. 49:2116–

2124.

Energy Research Group UCD (2002). A Detailed Guide to Insulating Your Home.

Sustainable Energy Ireland. 1 – 24.

English, B., Youngquist, J.A. and Krzysik, A.M. (1994). Lignocellulosic Composite.

Cellulosic Polymers, Blends and Composites. 6: 115-130.

Farsheh, A. T., Talaeipour, M., Hemmasi, A. H., Khademieslam, H., Ghasemi, I. and

Masoomi, Z. (2011). Development of Fine-Celled Wood Fiber – PVC

Composite Foams Using Multi-Walled Carbon Nanotubes. World Applied

Sciences Journal. 13(2): 269 – 276.

Frisch, K.C., Reegen, S.L. and Robertson, E.J. (1967). The Effect of Chemical

Structure on Environmental Properties of Polyurethanes. Cellular Plastics.

75-95.

Gendron, R. and Vachon, C. (2003). Effect of Viscosity on Low Density Foaming of

Poly(Ethylene-Co-Octene) Resins. Journal of Cellular Plastics. 39: 71-85.

Page 28: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

96

Grozdanov, A., Buzarovska, A., Bogoeva-Gaceva, G., Avella, M., Errico, M. E. and

Gentille, G. (2006). Rice Straw as an Alternative Reinforcement in

Polypropylene Composites. Agronomy for Sustainable Development. 26:

251-255.

Han, C. D., Kim, Y. W. and Malhotra, K. D. (1976). A Study of Foam Extrusion

Using a Chemical Blowing. Journal of Applied Polymer Science. 20: 1583 –

1595.

Haq, M., Burgueno, R., Mohanty, A.K. and Misra, M. (2009). Bio-based

Unsaturated Polyester/layered Silicate Nanocomposites : Characterization

and Thermo-Physical Properties. Composites: Part A. 40: 540-547.

Hohne, G. W. H., Hemminger, W. F. and Flammersheim, H. –J. (2003). Differential

Scanning Calorimetry (Second Edition): An Introduction of Practitioners.

Springer-Verlag Berlin Heidelberg New York.

Iswanto, A. H. and Febrianto, F. (2005). The Role of Dicumyl Peroxide (DCP) in

the Strengthening of Polymer Composites. Peronema Forestry Science

Journal. 1: 46-49.

Jackson, M. G. (1977). Review article: The alkali treatment of straws. Animal Feed

Science and Technology. 2: 105 – 130.

Jayaraman, K. (2003). Manufacturing Sisal-Polypropylene Composites with

Minimum Fibre Degradation. Composites Science and Technology. 63: 367-

374.

John, M.J. and Thomas, S. (2008). Biofibers and Biocomposites. Carbohydrate

Polymer. 71: 343-364.

Kamel, S. (2004). Preparation and Properties of Composites Made From Rice Straw

and Poly(Vinyl Chloride) (PVC). Polymers for Advanced Technologies. 15:

612–616.

Kholodovych, V. and Welsh, W. J (2007). Densities of Amorphous and Crystalline

Polymers. Physical Properties of Polymers Handbook. 611 – 617.

Page 29: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

97

Kiliaris, P and Papaspyrides, C. D. (2010). Polymer/layered silicate (clay)

nanocomposites: An overview of flame retardancy. Progress in Polymer

Science. 35: 902–958.

Kim, D. H and Kim, S. C. (1984). Dicumyl Peroxide-Initiated Croslinking Reaction

of Low Density Polyethylene. Polymer (Korea). 8: 44 - 52.

Kong, Y and Hay, J. N ( 2002). The Measurement of the Crystallinity of Polymer by

DSC. Polymer. 43: 3873-3878.

Kunert, K. A., Ranachowski, J., Chodak, I., Soszyfiska, H. andPi~lewski, N. (1981).

Physico-Mechanical Investigation of Crosslinked Polypropylene. Polymer.

22: 1677-1682.

Lee, C.H., Jun, K., Jeong, L.G. and Kim, S.W. (1999). Growth of Gas Bubbles in

the Foam Extrusion Process. Advances in Polymer Technology. 19: 97-112.

Lee, L.J., Zeng, C., Cao, X., Han, X., Shen, J. and Xu, G. (2005). Polymer

Nanocomposite Foam. Composites Science and Technology. 65: 2344–2363.

Lee, S. T., (2004). Introduction: Polymeric Foams, Mechanism, and Materials.

New York: CRC Press.

Li, D. C., Liu, T., Zhao, L., Yuan, W. K. (2011). Foaming of linear isotactic

polypropylene based on its non-isothermal crystallization behaviors under

compressed CO2. Journal. of Supercritical Fluids. 60: 89– 97.

Longo, C.,Savaris, M., Zeni, M.,NicheleBrandalise, R, Maria CoulonGrisa, A.

(2011). Degradation Study of Polypropylene (PP) and Bioriented

Polypropylene (BOPP) in the Environment. Materials Research. 14(4): 442-

448.

Maffei, M. (2006). Characterization of Foaming Phenomena of Polypropylene Filled

With Azodicarbonamide and Silica. Msc Polymer Thesis. University of

Akron.

Page 30: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

98

Mahendrakar, S. (2010). Maleic Anhydride Grafted Polypropylene Coatings on

Steel: Adhesion and Wear. Master of Science. University of North Texas.

Maier, C. and Calafut, T. (1998). Polypropylene: The Definitive User’s Guide and

Databook. 8:69-73.

Matuana, L. M., Park, C. B. and Balatinecz, J. J. (1997). Processing and Cell

Morphology Relationships for Microcellular Foamed PVC/Wood - Fiber

Composites. Polymer Engineering and Science. 37: 1137-1147.

Mills, N.J. (2007). Polymer Foam Handbook. Elsevier Limited. 1-18.

Najib, N. N., Ariff, Z. M., Manan, N. A., Bakar, A. A. and Sipaut, C. S. (2009).

Effect of Blowing Agent Concentration on Cell Morphology and Impact

properties of Natural Rubber Foam. Journal of Physical Science. 20 (1):13-

25.

Nallis, K. (2009). Comparative Study on the Properties of Rice Straw/Polypropylene

and Micaceous Clay/Polypropylene Composites. Master of Science.

Universiti Sains Malaysia.

Nourbakhsh, A., Baghlani, F. F. and Ashori, A.(2011). Nano-SiO2 Filled Rice

Husk/Polypropylene Composites: Physico-Mechanical Properties. Industrial

Crops and Products. 33: 183–187.

Okroafor, M.O. and Frisch, K.C. (1995). Introduction to Foams and Foam

Formation. Handbook of Plastic Foams. William Andrew Inc. 1-10.

Othman, N., Ismail, H. and Mariatti, M. (2006). Effect of Compatibilisers on

Mechanical and Thermal Properties of Bentonite Filled Polypropylene

Composites. Polymer Degradation and Stability. 91: 1761-1774.

Park, C.B. Lee, J.W.S. Wang, J. (2007). Advances in Structural Foam Molding

Technology. UKC, Korean-American Scientists and Engineers' Conference.

Washington DC. August 9-12. Paper #982.

Page 31: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

99

Petchwattana, N. and Covavisaruch, S. (2011). Influences of particle sizes and

contents of chemical blowing agents on foaming wood plastic composites

prepared from poly(vinyl chloride) and rice hull. Materials and Design. 32:

2844–2850.

Quinn, S. (2001). Chemical Blowing Agents: Providing Production, Economic and

Physical Improvements to a Wide Range of Polymers. Plastics Additives &

Compounding. 3: 16 – 21.

Ramakrishna, S., Huang, Z. M., Kumar, G. V., Batchelor, A. W. and Mayer, J.

(2004). An Introduction to Biocomposites. Biomaterials and

Bioengineering. 1: 9-13.

Rizvi, G., Matuana, L. M. and Park, C. B. (2000). Foaming of PS/Wood Fiber

Composites Using Moisture as a Blowing Agent. Polymer Engineering and

Science. 40: 10.

Sanip, S. M. and Katun, M. D. N. (1996). Interpenetrating Polymer Network

Between Natural Rubber and Polymethyl Methacrylate: Effect of Crosslink

Densities on Their Mechanical and Physical Properties. Jurnal Teknologi:

Science and Engineering, UTM. 25: 1-10.

Satyanarayana, K.G., Arigaza, G.G.C. and Wypych, F. (2009). Biodegradable

Composites Based on Lignocellulosic Fibres – An Overview. Progress in

Polymer Science. 34: 982-1021.

Satyanarayana, K.G., Sukumaran, K., Mukherjee, R.S., Pavithran, C. and Piuai,

S.G.K. (1990). Natural Fibre-Polymer Composites. Cement & Concrete

Composite. 12: 117-136.

Sauceau, M., Fages, J., Common, A., Nikitine, C., and Rodier, E. (2011). New

Challenges in Polymer Foaming: A Review of Extrusion Processes Assisted

by Supercritical Carbon Dioxide. Progress in Polymer Science. 36: 749–

766.

Page 32: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

100

Sauceau, M., Nikitine, C., Rodier, E. and fages, J. (2007). Effect of Supercritical

Carbon Dioxide on Polystyrene Extrusion. Journal of Supercritical Fluids.

43: 367-373.

Sirisinha, K. and Kamphunthong, W. (2009). Rheological Analysis as a Means for

Determining the Silane Crosslink Network Structure and Content in

Crosslinked Polymer Composites. Polymer Testing. 28: 636–641

Soest, P. J. V. (2006). Rice Straw, the Role of Silica and Treatments to Improve

Quality. Animal Feed Science and Technology. 130: 137–171.

Stark, N. M. and Rowlands, R. E. (2002). Effects of Wood Fiber Characteristics on

Mechanical Properties of Wood/Polypropylene Composites. Wood and Fiber

Science. 35(2): 167-174.

Struktol (2000). The Effects of Various Additives on the Processing and Physical

Properties of Wood-Filled PVC. Wood-Plastic Conference Baltimore, MD.

December 5.

Summers, D. M. (2000). Fundamental Properties of Rice Straw in Comparison

with Softwoods. ESPM 286: Physical Properties of Wood.

Tang, H., Liu, Z. Y., Piao, I. H., Chen, X. F., Lou, Y. X. and Liz, S. H. (2003).

Electrical Behavior of Carbon Black-Filled Polymer Composites: Effect of

Interaction Between Filler and Matrix. Journal of Applied Polymer Science.

51: 1159 – 1164.

Thorne, J. L. (1996). Thermoplastic Foams. Sherwood Publishers, Hinckley, Ohio.

579 – 583.

Torres, F.G. and Cubillas, M. L. (2005). Study of the Interfacial Properties of

Natural Fibre Reinforced Polyethylene. Polymer Testing. 24: 694–698.

Xu, X. Park, C.B. Lee, J.W.S. and Zhu, X. (2008). Advanced Structural Foam

Molding Using a Continuous Polymer/Gas Melt Flow Stream. Journal of

Applied Polymer Science. 109: 2855-2861.

Page 33: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

101

Xu, Z-M., Jiang, X-L., Liu, T., Hu, G-H., Zhao, L., Zhu, Z-N.and Yuan, W-K.

(2007). Foaming of Polypropylene with Supercritical Carbon Dioxide.

Journal of Supercritical Fluids. 41: 299-310.

Yao, F., Wu, Q., Lei, Y. and Xu, Y. (2008). Rice Straw Fiber-Reinforced High-

Density Polyethylene Composite: Effect of Fiber Type and Loading.

Industrial Crops and Products. 28: 63–72.

Willett, J.L. and Shogren, R.L. (2002). Processing and Properties of Extruded

Starch/Polymer Foams. Polymer. 43: 5935–5947.

Wu, Y., Zhou, D., Wang, S., Zhang, Y., and Wu, Z. (2012). Polypropylene

Nanocomposite Reinforced with Rice Straw Fibril and Fibril Aggregates.

Polypropylene. 329 – 345.

Yamsaengsung, W. and Sombatsompop, N. (2009). Effect of Chemical Blowing

Agent On Cell Structure and Mechanical Properties of EPDM Foam, and Peel

Strength and Thermal Conductivity of Wood/NR Composite–EPDM Foam

Laminates. Composites: Part B. 40: 594–600.

Yao, F., Wu, Q., Lei, Y. and Xu, Y. (2008). Rice Straw Fiber-Reinforced High-

Density Polyethylene Composite: Effect of Fiber Type and Loading.

Industrial Crops and Products. 28: 63–72.

Yazdani, H., Morshedian, J. and Khonakdar, H. A. (2006). Effects of Silane

Coupling Agent and Maleic Anhydride-Grafted Polypropylene on the

Morphology andViscoelastic Properties of Polypropylene–Mica Composites.

Polymer Composite. 27: 491-496.

Zakaria, Z. (2007). Characterization of Polyethylene Foam and its Structure

PropertiesRelationship in Shock Absorbing Application. M. Sc. Dissertation,

Universiti Sains Malaysia, Pulau Pinang, Malaysia.

Zhang, Z. X., Lu, B. X., Xin, Z. X., Kang, C. K., and Kim, J. K. (2011). Effect of

Flame Retardants on Mechanical Properties, Flammability and Foamability of

PP/Wood-Fiber Composites. Composites Part B: Engineering. 43:150-158.

Page 34: PHYSICAL AND THERMAL PROPERTIES OF …eprints.utm.my/id/eprint/39758/5/NazuhaTugimanMFKK2013.pdf · Penyerasi digunakan untuk meningkatkan kelemahan interaksi antara muka di antara

102

Zhao, R., Huang, J., Sun, B. and Dai, G. (2001). Study of the Mechanical Properties

of Mica-Filled Polypropylene-Based GMT Composite. Journal Applied

Polymer Science. 82:2719-2728.

Zou, Y., Huda, S. and Yang, Y. (2010). Lightweight Composites from Long Wheat

Straw and Polypropylene Web. Bioresource Technology. 101: 2026–2033.