perancangan tangki penyimpan dan menara distilasi

Upload: nanda-dianto-a

Post on 11-Feb-2018

255 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    1/33

    Process Equipment Design: 3 CR

    Codes such as: ASTM=American Society of Mechanical Engineers; API=American

    Petroleum Institute

    Brownell, L.E., and Young, E. H., 1959, Process Equipment

    Design: Vessel Design, Wiley Eastern Limited, New Delhi1. Vessel/Shell

    Factors influencing the design of vessels

    a. Selection of the type of Vessel

    Type of vessel that is suited for particular service

    b. The most common types of vessels based on their geometry

    are:

    i. Open tanksii. Flat bottomed, vertical cylinder tanks

    iii. Vertical cylindrical and horizontal vessels with formed

    heads

    iv. Spherical or modified spherical vessels

    Vessels in each these classifications are widely used as

    storage vessels and as processing vessels for fluids

    c. Primary factors that must be considered as follows

    i. Function and location of vessel

    ii. The nature of the fluidiii. Operating pressure and temperature

    iv. Volume of storage or capacity for processing

    Coulson, J.M., and Richardson, J.F., 1983, Chemical Engineering

    Volume 6 (SI Units) Design, Pergamon Press, Oxford

    p. 622, Chapter 13; Mechanical Design of Process Equipment

    The basic data needed by the specialist designer will be:

    a. Vessel functionb. Process materials and services

    c. Operating and design temperature and pressure

    d. Materials of construction

    e. Vessel dimensions and orientationf. Type of vessel heads to be usedg. Openings and connections required

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    2/33

    h. Specification of heating and cooling jackets or coils

    i. Type of agitatorj. Specification of internal fittings

    Classification ofpressure vessels are divided into two classes: thin walled vessels with a

    thickness ratio of less than 1:10; and thick walled above this ratio

    General design considerations: pressure vesselsa. Design pressure

    Pdesign = (1.5-1.1) Poperating ;

    If hydrostatic pressure in the base of the column should be

    added to the operating pressure, if significant

    b. Design temperature

    The strength of metals decreases with increasing temperature,

    so the maximum allowable design will depend on the material

    temperature

    c. MaterialsCarbon and alloy steels for pressure vessel construction are

    covered by the following British Standards: BS 1501, plate etc.

    d. Design stress (nominal design strength)

    For design purposes it is necessary to decide a value of the

    maximum allowable stress that can be accepted in the

    material construction. For materials not subject to high

    temperature the design stress is based on the yield stress or

    the tensile strength of the material at design temperature

    e. Welded joint efficiency, and construction categories

    The strength of a welded joint will depend on the type of

    joints and the quality of the welding. The soundness of welds

    is checked by visual inspection and non-destructive testing

    (radiography)

    f. Corrosion allowance

    Most design codes and standards specify a minimum

    allowance of 1.0 mm. For carbon and low-alloy where severe

    corrosion is not expected, a minimum allowance of 2.0 mm

    should be used; where more severe conditions are anticipated

    this should be increased to 4.0 mm.

    g. Design loads

    A structure must be designed to resist gross plasticdeformation and collapse under all conditions of loading.

    Major loads

    1. Design pressure including any significant static

    head of liquid;

    2. Maximum weight of the vessel and contents, under

    operating conditions;

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    3/33

    3. Maximum weight of the vessel and contents under

    hydraulic test conditions

    4. Wind loads

    5. Earthquake loads

    6. Load supported by, or reacting on, the vessel

    Subsidiary loads1. Local stresses caused by supports, internal

    structures and connecting pipes;

    2. Shock loads caused by water hammer, or by

    surging of the vessel contents;

    3. Bending moments caused by eccentricity of centre

    of the working pressure relative to the neutral axis

    of the vessel;

    4. Stresses due to temperature differences and

    differences in the coefficient expansion of

    materials;

    5. Loads caused by fluctuations in temperature and

    pressure

    h. Minimum practical wall thickness

    (Including the corrosion allowance, 2 mm)

    Vessel diameter (m) Minimum thickness (mm)

    1 5

    1 to 2 7

    2 to 2.5 9

    2.5 to 3.0 10

    3.0 to 3.5 12

    The design of thin-walled vessels under internal

    pressurea. Cylinder Shells

    ( ); BS 5500

    2

    i i

    i

    P Dt

    Jf P=

    , , dani if P J Ddengan are design

    stress, internal pressure, joint factor and internal diameter,respectively.

    b. Spherical shells

    ( ); BS 5500

    4 1.2

    i i

    i

    P Dt

    Jf P=

    c. Heads and closures

    i. Flat plates and formed heads

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    4/33

    ii. Hemispherical heads

    iii. Ellipsoidal headsiv. Torispherical heads

    d. Typical shell shapes

    Hemispherical

    Cylinder

    Cylinder

    Cone

    Ellipse

    Typical vessel shapes

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    5/33

    Stresses in Thin Shells Based on Membrane Theory

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    6/33

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    7/33

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    8/33

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    9/33

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    10/33

    Rase and Barrow

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    11/33

    5656

    RaseRase and Barrow_3and Barrow_3PadaPada leeward side vessel,leeward side vessel, bebanbeban anginangin dan dead weightdan dead weight

    mengakibatkanmengakibatkan terjadinyaterjadinya compression internal pressure (longitudinalcompression internal pressure (longitudinal

    stress)stress) mengakibatkanmengakibatkan terjadinyaterjadinya tension,tension, sehinggasehingga berlawananberlawanan

    dengandengan compressioncompression

    (R_14)(R_14)

    0w pS S S S= +

    Allowable stress untuk buckling sama dengan stress

    karena beban angin dan dead weight

    0B wS S S= + (R_16)

    5757

    RaseRase and Barrow_4and Barrow_4

    Donell memberikan persamaan empiris sebagai berikut:

    70 , 6 1 0

    1 0 , 0 0 4

    B

    y

    t R

    R tS E

    E

    S

    = +

    (R_17)

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    12/33

    5858

    RaseRase and Barrow_5and Barrow_5

    Jorgensen,Jorgensen, menyerderhanakanmenyerderhanakan rumusrumus (R_4)(R_4)

    untukuntuk bajabaja karbonkarbon (usual carbon steel)(usual carbon steel)

    (R_18)(R_18)62 1 0B

    tS x

    D

    =

    5959

    RaseRase and Barrow_6and Barrow_6

    CircumferentialCircumferential

    stressstress

    API_ASME CODE:API_ASME CODE:

    ASME CODEASME CODE

    Buckling stressBuckling stress

    Leeward allowableLeeward allowable

    stressstress

    WindwardWindward

    allowable stressallowable stress

    22

    ' 4

    w m

    m

    P h PDWt

    D S D S S = +

    22

    ' 4

    w m

    m

    P h PDWt

    D S D S S = +

    22

    '

    w

    B m B

    P h Wt

    D S D S = +

    1

    2

    PDt c

    SE P= +

    1

    2 0, 6

    P Dt c

    S E P= +

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    13/33

    Brownell, L.E., and Young, E. H., 1959, Process Equipment

    Design: Vessel Design, Wiley Eastern Limited, New Delhi

    Flat Bottomed Cylindrical Vessels

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    14/33

    Optimum tank proportions

    2/21/20132/21/2013 8383

    Vessel (Vessel (bejanabejana))

    PerbandinganPerbandingandiameter (Ddiameter (Dterhadapterhadaptinggitinggi(H)(H)

    terletakterletakdiantaradiantaraduaduanilainilai::

    BatasBatasbawahbawahuntukuntuk: (D/H) optimum: (D/H) optimum

    HalHaliniiniterjaditerjadibilabilatangkitangkivolumnyavolumnyakecilkecil,, hanyahanyaelasticelasticstability dan corrosion allowance yangstability dan corrosion allowance yangmengendalikanmengendalikan

    tebaltebalshellshell

    ( )cos , , ( , )t of shell bottom roofs per unit area f D H

    2/21/20132/21/2013 8484

    Vessel (Vessel (bejanabejana))

    BatasBatasatasatasuntuk:(Duntuk:(D/H) optimum/H) optimum

    BilaBilatebaltebalshellshellsebagaisebagaifungsifungsid, H ( ),d, H ( ),

    dan unit area costs of the bottom dan roofsdan unit area costs of the bottom dan roofstidaktidak

    tergantungtergantungpadapadaD dan HD dan H

    ( ),t f D H =

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    15/33

    2/21/20132/21/2013 8585

    Vessel (Vessel (bejanabejana))

    MisalkanMisalkan::

    D diameterD diameterdalamdalamtangkitangki, ft, ft

    HHtinggitinggitangkitangkidalamdalam, ft, ft

    VVvolumvolumtangkitangkidalamdalam, ft, ft33

    VolumVolumtangkitangki tertentutertentu,, sehinggasehinggaHHmerupakanmerupakanfungsifungsiDD

    atauatau2

    4

    D H

    V

    =

    2

    4V

    H D =

    2/21/20132/21/2013 8686

    Vessel (Vessel (bejanabejana))

    BilaBila::

    AA11==luasluasshell, ftshell, ft22, A, A22==luasluasbottom (projected area), ft2, Cbottom (projected area), ft2, C11==

    annual cost of fabricated shell, $/ftannual cost of fabricated shell, $/ft22

    CC22= annual cost of fabricated bottom, $/ft= annual cost of fabricated bottom, $/ft22

    CC33= annual cost of fabricated roof, $/ft= annual cost of fabricated roof, $/ft22

    CC44= annual cost of installed foundation under the vessel,= annual cost of installed foundation under the vessel,

    $/ft$/ft22bottombottom

    CC55= annual cost of land in the tank area chargeable to the tank= annual cost of land in the tank area chargeable to the tank

    area, $/ftarea, $/ft22bottombottom

    C= total annual cost of the vessel, $/yearC= total annual cost of the vessel, $/year

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    16/33

    2/21/20132/21/2013 8787

    Vessel (Vessel (bejanabejana))

    JikaJikatebaltebaltangkitangki

    ( )2

    1

    2 3 4 5

    4

    4

    VC DC C C C C

    D

    = + + + +

    ( , )t f D H

    ( )1 2 3 4 524

    20

    VCC DC C C C

    D

    d

    dD

    = + + + + =

    2/21/20132/21/2013 8888

    Vessel (Vessel (bejanabejana))

    TebalTebaltidaktidakmerupakanmerupakanfungsifungsiDDdandanHHKasusKasuskhususkhusus

    TangkiTangkikecilkecil(small tank)(small tank)terbukaterbuka,, hargahargatanahtanahdandanfondasifondasi diabaikandiabaikan..

    BiasanyaBiasanyatebaltebalshellshellsamasamadengandengantebaltebalbottom.bottom. JikaJika

    dandan,, didapatdidapat

    TangkiTangkikecilkecil(small tank)(small tank)tertutuptertutup hargahargatanahtanahdandanfondasifondasidiabaikandiabaikan,, berartiberarti

    nilainilai dandan,, didapatdidapat

    ( )2 3 4 5

    12 , persamaan untuk ( , )HC C C C

    CD t f D H=

    + + +

    3 4 50C C C= = =

    1 2C C=

    2HD =

    4 50C C= = 1 2 3C C C= =

    HD =

    ( ),Ht f D

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    17/33

    2/21/20132/21/2013 8989

    Vessel (Vessel (bejanabejana))

    JikaJikatebaltebaltangkitangki ( , )t f D H =

    ( )1 6 1C C H D=

    ( )( )

    2

    2 3 4 5

    64

    4

    1V DC C C C C

    D

    C H D = + + + +

    HHdigantidigantidengandengan2

    4VH

    D =

    2/21/20132/21/2013 9090

    Vessel (Vessel (bejanabejana))

    ( )2

    2 3 4 56 624

    44 4

    DC C C C C

    VVC VC

    D

    = + + + +

    ( )2 3 4 52

    6

    2

    32 2

    40 0

    C DC C C C

    C Vd

    dD D

    = + + + +

    =

    ( )2 3 4 5

    14HC C C C

    CD =

    + + +

    Didapat, hubungan diameter dengan tinggi tangki sebagai berikut

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    18/33

    2/21/20132/21/2013 9191

    Vessel (Vessel (bejanabejana))

    TangkiTangkibesarbesartertutuptertutup,, atapatapdan shelldan shellharganyaharganyaduadua

    kalikalihargahargabottom,bottom, dandan didapatdidapat

    ( )2 3

    242 0 0

    2 8

    3H

    C C

    CD H=

    + + +=

    1 2 32C C C= = 4 5 0C C= =

    2/21/20132/21/2013 9292

    Vessel (Vessel (bejanabejana))

    Shell design of small and medium sizedShell design of small and medium sizedvessels (production tanks) pp.43 B&Y.vessels (production tanks) pp.43 B&Y.

    Vertical flatVertical flatbottomsbottomsdisebutdisebutproduction tanks.production tanks.TebalTebalsamasama(single thickness).(single thickness).

    UkuranUkuranoptimum:doptimum:d(diameter=(diameter=H(tinggiH(tinggi))

    LihatLihatfig:3.7 danfig:3.7 dantabeltabel3.3 (B&Y, pp.433.3 (B&Y, pp.43--44)44)

    Tebal:3/16 or ,Tebal:3/16 or , lebarlebarflatflat6060

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    19/33

    2/21/20132/21/2013 9393

    Vessel (Vessel (bejanabejana))

    Shell design of large storage tanks (pp.34Shell design of large storage tanks (pp.34B&Y).B&Y).

    TanksTanksbentukbentuksilindersilinder, great structure strength, great structure strengthdandanmudahmudahdibuatdibuat

    Several types of stresses yangSeveral types of stresses yangmungkinmungkinterjaditerjadi

    padapadatangkitangkibentukbentuksilindersilinder::

    LongitudinalLongitudinalstressstressinternalinternalpressurepressure

    CircumferentialCircumferentialstressstressinternalinternalpressurepressure

    Residual weldResidual weldstressesstresseslocalizedlocalizedheatingheating

    2/21/20132/21/2013 9494

    Vessel (Vessel (bejanabejana))

    StressesStressessuperimposedsuperimposedloadsloadssepertiseperti::

    wind, snow, and ice, auxiliarywind, snow, and ice, auxiliary

    equipment, and impact loadsequipment, and impact loads

    StressesStresseskarenakarenathermal differencesthermal differences OthersOthersdijumpaidijumpaididalamdidalamparaktekparaktek

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    20/33

    Proportioning and head selection for cylindrical vessels with

    formed heads

    Chapter 5, p 76-

    With ellipsoidal head with dimension diameter of 2:1.

    bH

    a

    a=2b

    2/21/20132/21/2013 136136

    Vessel (Vessel (bejanabejana))

    DimensiDimensi VesselVessel

    8822sampaisampaidengandengan 66

    663/163/16sampaisampai22

    L/DL/DTebalTebal, inches, inches

    xy

    y

    D

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    21/33

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    22/33

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    23/33

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    24/33

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    25/33

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    26/33

    Coulson, J.M., and Richardson, J.F., 1983, Chemical Engineering

    Volume 6 (SI Units) Design, Pergamon Press, Oxford

    p. 622, Chapter 13; Mechanical Design of Process Equipment

    2. Separation Process/Separation ColumnsDistillation process

    Absorption

    Scrubber

    It will be emphasized on distillation processes due to basic features and

    many of the design methods also apply to other multistage processes such as

    stripping, absorption and extraction

    The choice between packed and plate columns

    Liquid-vapor transfer operation dapat dilakukan pada :Packed or plate columns

    o Packed column: continuous contact

    o Plate column: stage wise contact

    Both system works in different modes

    Pemilihan menara didasarkan pada empat(4) faktor (Barker &Hakkers):

    1. Factors that depend on the system, i.e. the component,

    2. Factors that depend on the fluid flow movement,3. Factors that depend upon the physical characteristics of the column and its

    internals,

    4. Factors that depend upon the of operation

    I. SYSTEM FACTORS1. Scale: Diameter

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    27/33

    6. Pressure drop. Lebih rendah pada packed column dibandingkan dengan

    plate column.

    7. Liquid hold-up. Lebih kecil pada packed column dibanding-kan dengan

    plate column. Pada plate colum selalu ada cairan sedangkan pada packed

    column ada lapisan tipis cairan pada permukaan packing.

    II. PHYSICAL CONSIDEARTIONS1. Maintenance. Manholes pada plate tower mudah dilengkapi, sedangkan

    pad packed tower harus mengeluarkan packing.

    2. Berat. Penggunaan keramik atau metal pada menara menyebabkan

    menara menjadi lebih berat dibandingkan jika dipakai plate tower,

    sehingga perlu memperhatikan fondasi dan penyangga packing. Hal ini

    dapat diatasi dengan penggunaan packing dari plastik, karena lebih

    ringan.

    3. Side streams. Pengambilan side streams dan pemasukan side streams

    lebih mudah pada plate tower, meskipun tray spacing pada tempat

    tersebut harus dimodifikasi. Pada packed tower hal ini tidak mungkin,

    karena akan mengganggu proses pemisahan.

    4. Size and cost. Jika diameter lebih rendah dari 1 m, packed tower yang

    dipilih, karena pembuatan plate lebih mahal untuk tujuan yang sama.

    Diatas diameter 1 meter, tidak dapat dilakukan generalisasi. Terhadap

    tinggi, packed column biasanya lebih lebih pendek dibandingkan dengan

    plate colum untuk tujuan yang sama, meskipun plate column dapat

    memberikan diameter yang lebih kecil untuk kecepatan gas yang sama.

    III. MODE OF OPERATION

    1. Batch distillation. Liquid recovery sangat tinggi untuk komponen yanglebih ringan (dua komponen)

    2. Intermittent distillation. Plate tower, karena memberikan positive seal for

    liquid.

    3. Continous distillation. Tidak ada salah satu faktor yang dominan, semua

    faktor harus dipertimbangkan.

    4. Turndown. Perbandingan antara loading maksimum dengan loading

    minimum pada kondisi flooding dan the lowest efficiency can be

    accepted. Untuk umpan dengan turndown ration > 2,5:1, dipilih a plate

    column

    5. Semua faktor tersebut diatas harus dipertimbangkan dan untukpemilihan akhir harus ada kompromi diantaranya.

    .

    IV. TIPE, UKURAN PACKING, DIAMETER MENARA DAN LIQUID DISTRIBUTOR

    1. RASCHIG RINGS: ukuran packing

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    28/33

    2. BERL OR INTALOX SADDLES:ukuran packing

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    29/33

    Lewis-Sorel method (equimolar overflow)

    Rectifying

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    30/33

    Stripping

    URUT - URUTAN PERANCANGAN KOLOM DISTILASI PENEKANAN PADA PROSES DISTILASI

    PROSES LAINNYA SEPERTI:STRIPPING, ABSORPTION DAN EXTRACTION MEMPUNYAI

    DESIGN METHOD DAN BASIC CONSTRUCTION FEATURES YANG SERUPA /MIRIP

    DISTILASI MERUPAKAN POROSES PEMISAHAN YANG BANYAK DIPAKAI

    PENGETAHUAN TENTANG KESETIMBANGAN SANGAT DIPERLUKAN UNTUKMERANCANG KOLUM DISTILASI ATAU PROSES - PROSES KESETIMBANGAN LAIN

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    31/33

    PERANCGAN KOLOM DISTLASI, ABSORPSI, STRIPPING TERUTAMA TERDIRI DARI TIGA

    LANGKAH (PROCESS PLANT DESIGN OLEH J.R. BACKHURST DAN J.H. HARKER, 1983 ):

    1. PEMILIHAN INTERNAL DEVICE : PLATE ATAU PACKING

    2. JUMLAH TRAYS ATAU TINGGI PACKING

    3. KALKULASI DIAMETER KOLUM

    CEHCK LIST OF DESIGN ITEMS FOR BUBBLE-CAP, PERPORATED, AND VALVE TRAY

    (DISTILLATION OLEH MATTHEW VAN WINKLE, 1967)

    COLUMN

    01. OPERATING TEMPERATURE AND PRESSURE

    02. REFLUX RATIO

    03. NUMBER OF TRAYS

    04. FEED AND DRAW OFF TRAYS AND LOCATION

    05. COLUMN DIAMETER

    06. TRAY SPACING

    TRAY

    07. LIQUID-FLOW ARRANGEMENT OR TRAY TYPE

    08. ACTIVE AREA

    09. DWONCOMER TYPE, AREA, AND CLEARANCE

    10. TRAY OUTLET WEIR TYPE, HEIGHT AND LENGTH

    11. TRAY INLET WEIR TYPE, HEIGHT AND LENGTH (IF ANY)

    12. TRAY OUTLET SPLASH BAFFLE, ANTI JUMP BAFFLES

    13. TRAY AND WEIR LEVEL TOLERANCES

    14. MATERIAL OF CONSTRUCTION

    BUBBLE CAP

    15. BUBBLE-CAP DIAMETER, NUMBER

    16. CAP LAYOUT, PITCH, AND SPACING

    17. SKIRT SEAL

    18. STATIC SEAL

    19. RISER DIMENSIONS

    20. TRAY BAFFFLES

    21. TRAY DRAIN HOLES

    22. LEAKAGE

    PERFORATED

    15. FREE HOLE AREA

    16. HOLE SIZE, PITCH PATTERN

    17. TRAY THICKNESS

    18. HOLE BLANKING

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    32/33

    VALVE

    15. SIZE HOLES AND VALVE TYPE

    16. NUMBER OF VALVES AND SPACING

    17. TRAY THICKNESS

    URUT - URUTAN PERANCANGAN KOLOM DISTILASI1. TENTUKAN SPESIFIKASI HASIL(KOM POSISI DISTILAT / BOTTOM)

    2. PILIH KONDISI OPERASI ( BATCH & KONTINUE ), TEKANAN OPERASI

    3. CONTACTING DEVICES ( PLATE / PACKING

    4. STAGE IDEAL& REFLUKS

    5. UKURAN KOLOM ( DIAMETER & JUMLAH REAL STAGE DESIGN THE COLUMN

    INTERNAL : PLATES, DISTRIBUTORS, PACKING SUPPORT

    6. MECHANICAL DESIGN: VESSEL & INTERNAL FITTING

    LANGKAH UTAMA:

    1. PERHITUNGAN JUMLAH STAGE2. REFLUX YANG DIPERLUKAN

    3. JIKA CAMPURAN BINER , RELATIF MUDAH4. JIKA MULTIKOMPONEN , KOMPLEKS & SULIT

    TEKANAN (P) pada puncak kolum

    PENDINGIN : AIR ( PEMILIHAN PERTAMA)

    SUHU AIR : 30 -36 DEG.C

    DELTA SUHU APPROACH :

    UMUM 20 DEG.C; AIR = 3 - 7 DEG.C

    SUHU DEW POINT SEKITAR 50-56 DEG.C

    TRIAL P; JIKA P TERLALU TINGGI PIKIRKAN PEMAKAIAN REFRIGERATION.

    BAHAN SENSITIF THD SUHU, P < 1 ATM

    P SEPANJANG KOLOM DIANGGAP SAMA ( AWAL PERHITUNGAN ), LALU

    DIKOREKSI SETELAH JUMLAH STAGE DIKETAHUI

    OPERASI VACUUM PRESSURE DROP PENTING

    MULTICOMPONENT SYSTEM

    SHORT CUT .......PRELIMANARY DESIGN

    SHORT CUT ...... DIBAGI DUA

    -PENYEDERHANAAN PLATE TO PLATE CAL.

    - MISALNYA : METODE HENGSTEBECK-METODE EMPIRIS

    - MISALNYA : KORELASI GILLILAND DAN ERBAR-MADDOX

    KEY COMPONENT

    LIGHT DAN HEAVY KEY COMPONENTS

    LIGHT KEY COMPONENT ( LK ) .....TOP

    HEAVY KEY COMPONENT (HK ) .... BOTTOM

  • 7/23/2019 Perancangan Tangki Penyimpan dan Menara Distilasi

    33/33

    SPESIFIKASI PRODUK

    JUMLAH LK DAN HK MENUJU TOP ATAU BOTTOM DIBATASI OLEH

    SPESIFIKASI PRODUK

    ADJACENT KEY COMPONENT.....

    BERURUTAN PADA LISTING BERDASARKAN ALPHASPLIT KEY COMPONENT....

    JIKA ADA KOMPONENT LAIN DIANTARANYA

    NON KEY COMPONENT YANG ADA PADA TOP DAN BOTTOM DISEBUT

    DISTRIBUTED COMPONENT. JIKA TIDAK ADA PADA SALAH SATU PRODUK

    DISEBUT NONDISTRIBUTED COMPONENT.

    REFLUX

    R OPTIMUM = ( 1,2-1,5 ) R MINIMUM ( COLUSON DAN RICHARDSON,

    1983)

    R OPTIMUM = ( 1,25-1,3) R MINIMUM( PERRY DAN CHILTON, 1973)

    PENGARUH REFLUX TERHADAP N = JUMLAH STAGE DAPAT DICARI

    DENGAN CARA SHORT CUT METHOD

    3. HEAT EXCHANGER, DESIGN OF HEAT EXCHANGERShell and Tube Exchanger

    Double pipe Exchanger

    4. REACTORBatchFlow reactor

    a. CSTR

    b. PFR

    c. FBR

    d. Semi batch reactor