baja ternakan-tamminga slides

6
1/11/2006 1 Envir onmental impac ts of (beef) cattle Seerp Tamminga Characteristics of cattle production in Europe North + West no heat stress grass based grazing dairy (+ beef) South + East heat stress maize silage zero grazing beef (+dairy) The Netherlands Wageningen 150 km 300 km sand above sea level clay below sea level Statistics about the Netherlands Size (ha) * 3.72 3.73 3.73 Agriculture (ha) * 2.08 2.02 1.96 People * 13.6 14.5 16.0 P/.sq. km 409 426 430 *: millions 1975 1985 1995 Men and animals in the Netherlands 1975 1985 1995 2005 People * 13.6 14.5 16.0 16.1 Cattle * 4.96 5.25 4.65 3.60 Sheep * 0.76 0.81 1.67 1.20 Pigs * 7.28 12.4 14.4 10.8 Poultry * 77.5 89.9 89.6 85.8 *: x million Animal Production (Systems) ANIMAL PLANT SOIL MANURE Carbon (C) Nitrogen (N) Phosphorus (P) Potassium (K)

Upload: sham

Post on 06-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Baja Ternakan-Tamminga Slides

8/2/2019 Baja Ternakan-Tamminga Slides

http://slidepdf.com/reader/full/baja-ternakan-tamminga-slides 1/6

1/11/2006

1

Environmental impacts of (beef)

cattle

Seerp Tamminga

Characteristics of cattle production in Europe

North + West

no heat stress

grass based grazing

dairy (+ beef)

South + East

heat stress

maize silage

zero grazing

beef (+dairy)

The Netherlands

Wageningen

150 km

300 km

sand

above sea level

clay

below sea levelStatistics about the Netherlands

Size (ha) * 3.72 3.73 3.73

Agriculture (ha) * 2.08 2.02 1.96

People* 13.6 14.5 16.0

P/.sq. km 409 426 430*: millions

1975 1985 1995

Men and animals in the Netherlands

1975 1985 1995 2005

People* 13.6 14.5 16.0 16.1

Cattle*

4.96 5.25 4.65 3.60Sheep* 0.76 0.81 1.67 1.20

Pigs* 7.28 12.4 14.4 10.8

Poultry* 77.5 89.9 89.6 85.8

*: x million

Animal Production (Systems)

ANIMAL

PLANT SOIL

MANURE

Carbon (C)

Nitrogen (N)Phosphorus (P)

Potassium (K)

Page 2: Baja Ternakan-Tamminga Slides

8/2/2019 Baja Ternakan-Tamminga Slides

http://slidepdf.com/reader/full/baja-ternakan-tamminga-slides 2/6

1/11/2006

2

Environmental concerns

Acid deposition

Water contamination

P accumulation (soil)

Greenhouse effect

Impairment ozone layer

Animal production and Environment

 Carbon

dioxide

CO2

Methane

CH4

Feces, urine

Ammonia, NH3

FeedMilk 

It’s shit

again

Interventions

soil plant animal manure

greenhouse gases

CO2 capture capture nutrition

(no) tillage

CH4 oxidation nutrition storage

N2O fertilizer fertilizer nutrition storage

legumes housing ? acidification

numbers

NH3 species housing storage

zero grazing injection

Nitrate fertilizer fertilizer acidification

Phosphorus fertilizer fertilizer replacement

“Nutrients” in plants and animals

Plants

C from photosynthesis

(C from CO2)

N from soil, fertiliser or

manure

P2O5 from fertiliser or

manure

Animals

C from DOM, TDN,

ME or NE

C lost in CH4

N from MP in feed

P from feed

Nutrients required by farm animals

Energy (C) is the driving force

Utilisation of energy is primarily determined by

digestibility

Within energy, N (and P) are “required” up to a levelwhere the marginal efficiency is almost zero

Efficiency of N utilisation depends on microbial protein

synthesis in the rumen

Efficiency of N utilisation depends AA ratio

C/N/P and N/P ratio’s in inputs

Product C N1 P1 N2 P2

=============================================== Inputs

grass 100 8.4 0.98 100 8.6

maize silage 100 3.0 0.56 100 5.4

grass silage 100 6.4 0.82 100 7.8

grains 100 4.4 0.90 100 4.9

oil seeds 100 7.0 1.33 100 5.3

legume seeds 100 9.8 1.04 100 9.4

oil seed meals 100 11.9 1.70 100 7.0

Page 3: Baja Ternakan-Tamminga Slides

8/2/2019 Baja Ternakan-Tamminga Slides

http://slidepdf.com/reader/full/baja-ternakan-tamminga-slides 3/6

1/11/2006

3

C/N/P and N/P ratio’s in outputs

Product C N1 P1 N2 P2

================================================ high value outputs

milk 100 7.3 1.24 100 5.9eggs 100 13.3 1.39 100 9.5pigs 100 8.0 1.66 100 4.8cattle 100 10.9 3.21 100 3.4poultry 100 17.9 3.29 100 5.4

low value outputs

cattle manure 100 28.5 4.32 100 15.2

swine manure 100 22.1 5.83 100 26.4

poultry manure 100 21.6 7.48 100 34.5

Energy partitioning

Fecal energy

Methane energy

Urinary energy

Fermentation heat

Oxidation heat

Gross Energy

Digestible energy (DOM, TDN)

Metabolizable Energy (ME)

Net Energy (NE)

Ketogenic Glycogenic Aminogenic

Protein partitioning

Rumen

degraded protein

Ammonia

Faecal proteinNucleic acids

Urea

Crude Protein (CP = Nx6.25)

Microbial Protein

Metabolizable Protein (MP)

Protein deposition (Milk, Body)

Undegraded

Feed Protein

Oxidation

Nutrients (g/kg DOM) in different processes

N P

g/ kg DOM

Maintenance 5.2 3.4

Growth mature (fat) 14.4 3.7

Rumen microbes 20.0 4.0

Milk 31.0 5.7

Growth young (protein) 40.0 8.6

NE, MP and P lost in maintenance

BW NE MP P

Stockers 300 0.76 0.71 0.74

Feedlot 450 0.52 0.44 0.60

Replacement 425 0.64 0.65 0.65

Beef cows 600 0.76 0.71 0.74

Bulls 650 0.55 0.66 0.66

Animal models for nutrient use

“Downstream” or “upstream”

Downstream: Divide farm or area level or balance

over number of animals

Nutrients not retained my cycle more oftenthrough the system

Upstream: Multiply animal balance with number of 

animals on farm or in area

When given free choice (grazing) animals may

select

Page 4: Baja Ternakan-Tamminga Slides

8/2/2019 Baja Ternakan-Tamminga Slides

http://slidepdf.com/reader/full/baja-ternakan-tamminga-slides 4/6

1/11/2006

4

“Upstream”: Integrated dynamic models

Controlled indoor feeding systems

Dairy cattle CNCPS: Fox et al, 2004

Methane: Mills et al, 2001

Nitrogen: Kebreab et al., 2001

Phosphorus: Kebreab et al, 2004

Beef cattle

CNCPS, Fox et al., 2004

“Downstream”: Animal model development

Nutrient (N, P) balance calculated Covering energy requirements determines DMI

An average diet is composed

The average diet determines N and P intake

N and P deposition is calculated

Correction for (unavoidable) gaseous N losses

Steps

1. Animal categories (52)

2. Feed and N (or P) intake per animal per year

3. N (or P) output in animal products (milk, eggs,

growth) per animal per year

4. Gross excretion by difference

5. Correction for gaseous N losses (%)

6. Net excretion in kg N (or P) per animal per year

Animal categories

Code category sub-categories

100 cattle 8

200 turkeys 3

300 poultry 5

400 pigs 10

500 sheep 2

600 goats 2

700 fur animals 6

800 ducks 2

900 rabbits 4

Animal categories cattle

Category Sub-categories

100 dairy cattle

101 young cattle < 1 year

102 young cattle > 1 year112 veal calves

120 suckler cows

123 beef cattle 0-16 months

124 beef cattle < 1 year

125 beef cattle > 1 year

In- and output per animal per year per

category kg (DM) N/kg (DM) kg N

Intake

Feed 1 ....... ....... .......

Feed 2 ....... ....... .......

Feed 3 ....... ....... .......

Feed 4 ....... ....... .......+

Deposition

Milk (egg) ....... ....... .......

Body ....... ....... .......

 _ 

 Excretion .......

Page 5: Baja Ternakan-Tamminga Slides

8/2/2019 Baja Ternakan-Tamminga Slides

http://slidepdf.com/reader/full/baja-ternakan-tamminga-slides 5/6

1/11/2006

5

Animal category: cattle

Premises

National availability of grass/maize silage and concentrates

Number of dairy cows and beef cattle

Milk (FPCM) per dairy cow/year

Heifers and calves/dairy cow/year

Energy (NEL or VEM) required per dairy cow (102% of 

requirements)

For maintenance, pregnancy, negative energy balance,

grazing and for milk (FPCM) production

Average dairy diet → amount of fresh grass

N deposition

Form kg times/yr g N/kg kg N

Calf 44 0,65 29,4 +0,8

Cow 600 0,65 22,5 +4,7

Heifer 525 0,35 23,1 - 4.2

Milk 7439 (7913) 5,5 +40,9

Total +42,2

Standard N excretion/cow/year in dairy cattle

  Intake kg ds N/ds kg N  Fresh grass 1445 34.6 50.0

Grass silage 2160 29.0 62.6

Maize silage 1200 12.5 15.0

Standard concentr. 1500 27.0 40.5

High CP conc. 250 35.0 8.8

Wet by-pr. 150 20.0 3.0

179.9

 Depositionin milk 42,2

in body (+ calf)

 Excretion 137.7

Standard N excretion/cow/year in beef cattle

  Intake kg ds N/ds kg N  

Milk (replacer) 25 34,0 0.85

Maize silage 1377 11,7 16.1

Standard concentr. 56 32,0 1.8

High CP conc. 318 32,0 10.2

Low CP conc. 440 26.0 11.4

Wet by-pr. 261 19.0 5.0

45.4

 Deposition

in body (+ calf) 11.4

 Excretion 34.0

Gaseous losses

Sources Ammonia volatilisation

Nitrification

Denitrification

Sources of variation Animal category (ratio urine/faeces)

Type of housing

Measuring techniques Direct

Indirect from N and P balance

N excretions in farm animals

Category gross gaseous net

excretion losses excretion(kg N/yr) (%) (kg N/yr

Dairy cattle 137.7 11 122.5

Veal calves 12.0 18 9.8

Beef cattle 34.0 19 27.5

Sheep 13.3 9 12.1

Goats 14.2 44 8.0

Fattening pigs 11.7 29 8.3

Laying hens 0.676 25 0.50

Broilers 0.543 28 0.39

Rabbits 0.703 32 0.48

Page 6: Baja Ternakan-Tamminga Slides

8/2/2019 Baja Ternakan-Tamminga Slides

http://slidepdf.com/reader/full/baja-ternakan-tamminga-slides 6/6

1/11/2006

6

Conclusions

Animal production inevitably causes nutrient losses

Costs (damage) and trade off values needed

between losses of N, P and greenhouse gases In beef cattle between 50 and 75% of nutrients is

lost in maintenance

Minimum dietary N levels are “dictated” by the

needs of the rumen microbial population

Most by-products are (too) high in N and P related

to energy

Recommendations

Minimize N and P losses in maintenance

Allow no weight loss

Minimize number of replacement animals

Reduce N (and P) intake to below requirements for

rumen microbes and make use of recycling

Shift N excretion from urine to feces

Reduce urinary N losses

Stimulate hind gut fermentation

Limit use of by-products in beef cattle

Thanks for your attention

 © Wageningen UR