kuliah kesepuluh statika

Post on 18-Jan-2016

82 Views

Category:

Documents

13 Downloads

Preview:

Click to see full reader

DESCRIPTION

Gaya dalam akibat beban merata dan beban segitiga

TRANSCRIPT

Materi Kuliah sepuluh

1. Gaya dalam akibat beban merata dan beban segitiga 2. Gaya dalam pada balok akibat beban terpusat, merata

dan segitiga 3. Bidang Gaya Dalam

Tujuan Kuliah

Memberikan pengenalan dasar-dasar perhitungan gaya dalam

Diharapkan pada kuliah kesepuluh mahasiswa mengenali konsep perhitungan gaya dalam akibat beban merata dan beban segitiga, pengenalan bidang gaya dalam

Materi kuliah : persamaan gaya dalam akibat beban merata dan beban segitiga, bidang gaya dalam pada balok di atas dua tumpuan sendi dan roll

Gaya Dalam Akibat Beban Merata dan Beban Segitiga

Balok dengan beban merata q

Momen lentur mencapai maksimum

pada saat gaya lintang = 0

X = 0.4 Q = Va – q * 0.4 X = 0.8 Q = Va – q * 0.8 X = 1.2 Q = Va – q * 1.2 X = 1.6 Q = Va – q * 1.6

Pada potongan sebarang dengan jarak X dari tumpuan A, maka persamaan gaya lintang =

Q = Va – q * X

X = 0.4 M = Va*0.4 – q*0.4*0.2 X = 0.8 M = Va *0.8– q*0.8*0.4 X = 1.2 M = Va*1.2 – q*1.2*0.6 X = 1.6 M = Va*1.6 – q*1.6*0.8

Pada potongan sebarang dengan jarak X dari tumpuan A, maka persamaan momen lentur= M = Va*X – q*X*X/2

M = Va*X – ½*q*X2

Q = Va – q * X Untuk harga Q = 0 terjadi pada X = Va/q = ½ qL/q = ½ L Untuk x = ½ L Q = 0

M = Va*X – ½*q*X2

LXqXVadX

dM

qXVadX

dM

2100

Momen maksimum terjadi pada X = ½ L Mmax = ½ qL * ½ L – ½ * q * (1/2 L)2

Mmax = 1/8 qL2

Balok dengan beban segitiga (beban maksimum = q)

X = 0.4 Q = Va – R = 2/3 – ½*0.4*0.4 = 0.5867 kN X = 0.8 Q = Va – R = 2/3 – ½*0.8*0.8 = 0.5067 kN X = 1.2 Q = Va – R = 2/3 – ½*1.2*1.2 = - 0.0533 kN X = 1.6 Q = Va – R = 2/3 – ½*1.6*1.6 = - 0.6133 kN

Ada perubahan gaya lintang dari positif menjadi negatif. Pada posisi antara 100 – 120 cm akan ada gaya lintang = 0 (Q = 0)

Q = 1/6 qLX – ½ qX2/L = 0 ½ X2 = 1/6 L X2 = 1/3 L X = 1/3 L √3 X = 0.5774 L Pada X = 1/3 L √3 atau X = 0.5774 L harga gaya lintang pada balok akibat beban segitiga

M

33

1

)3

1(

0/2

1*

6

1

/6

1

6

1

22

2

3

LX

LX

LqXqLdX

dM

LqXqLXM

Pada X = 1/3L√3 terjadi momen maksimum akibat beban segitiga. X = 0.5774 L terjadi momen maksimum. Momen maksimum = 0.0642 qL2 Mmax = 0.0642 * 2 * 22 = 0.5136 kNm

Pada posisi X = 1/3 L √3

X = 1.1547 m terdapat gaya lintang Q = 0 dan Momen maksimum M = 0.5136 kNm

Balok gerber dengan beban merata, beban terpusat dan beban miring.

0 ≤ X ≤2 Qx = - P1 sin 30 – q1*X 0 ≤ X ≤2 Mx = - P1 sin 30 * X – ½ * q1 * X2

0 ≤ X ≤2 Nx = - P1 cos 30

2 ≤ X ≤6 Qx = - P1 sin 30 – q1*X + Va 2 ≤ X ≤6 Mx = - P1 sin 30 * X – ½ * q1 * X2 + Va *(X-2)

2 ≤ X ≤6 Nx = - P1 cos 30

6 ≤ X ≤8 Qx = - P1 sin 30 – q1*6 + Va 6 ≤ X ≤8 Mx = - P1 sin 30 * X – q1*6*(X-3)+ Va *(X-2)

6 ≤ X ≤8 Nx = - P1 cos 30

8 ≤ X ≤10 Qx = - P1 sin 30 – q1*6 + Va – P2 – q2 *(X-8) 8 ≤ X ≤10 Mx = - P1 sin 30 * X – q1*6*(X-3)+ Va *(X-2) – P2*(X-8) – ½*q2*(X-8)2

8 ≤ X ≤10 Nx = - P1 cos 30

10 ≤ X ≤12 Qx = - P1 sin 30 – q1*6 + Va – P2 – q2 *(X-8) + Vb 10 ≤ X ≤12 Mx = - P1 sin 30 * X – q1*6*(X-3)+ Va *(X-2) – P2*(X-8) – ½*q2*(X-8)2 + Vb *(X-10)

10 ≤ X ≤12 Nx = 0

0 ≤ X ≤2 Qx = - P1 sin 30 – q1*X 2 ≤ X ≤6 Qx = - P1 sin 30 – q1*X + Va 6 ≤ X ≤8 Qx = - P1 sin 30 – q1*6 + Va 8 ≤ X ≤10 Qx = - P1 sin 30 – q1*6 + Va – P2 – q2 *(X-8) 10 ≤ X ≤12 Qx = - P1 sin 30 – q1*6 + Va – P2 – q2 *(X-8) + Vb

Persamaan Gaya Geser

0 ≤ X ≤2 Mx = - P1 sin 30 * X – ½ * q1*X2

2 ≤ X ≤6 Mx = - P1 sin 30 * X – ½ * q1*X2 + Va *(X-2) 6 ≤ X ≤8 Mx = - P1 sin 30 * X – q1*6*(X-3) + Va *(X-2) 8 ≤ X ≤10 Mx = - P1 sin 30 * X – q1*6*(X-3) + Va *(X-2) – P2 * (X-8) – ½ * q2 * (X-8)2 10 ≤ X ≤12 Mx = - P1 sin 30 * X – q1*6*(X-3) + Va *(X-2) – P2 * (X-8) – ½ * q2 * (X-8)2 + VB * (X-10)

Persamaan Momen

0 ≤ X ≤2 Nx = - 3.464 kN

2 ≤ X ≤6 Nx = - 3.464 kN 6 ≤ X ≤8 Nx = - 3.464 kN 8 ≤ X ≤10 Nx = - 3.464 kN 10 ≤ X ≤12 Nx = 0

Persamaan Gaya Normal

12 ≤ X ≤16 Qx = VS – 1/2*q*(X-12)2/L

12 ≤ X ≤16 Mx = VS*(X -12) – 1/6*q*(X-12)3/L

Bidang Gaya Dalam

Pada perhitungan gaya-gaya dalam pada struktur sering dilakukan dengan membuat banyak potongan pada keseluruhan

bagian struktur. Cara seperti ini sering menghasilkan suatu proses perhitungan yang cukup panjang dan salah satu sasaran

untuk mencari gaya-gaya dalam maksimum sering tidak terpenuhi. Makin banyak jumlah potongan, makin teliti

perhitungan gaya-gaya dalam pada struktur, tetapi masih ada kemungkinan bahwa gaya dalam maksimum juga belum dapat

ditemukan.

Pada bagian terakhir dari perhitungan gaya-gaya dalam pada beberapa potongan pada struktur balok, harga gaya-gaya dalam

dapat ditentukan dengan mudah dengan menggunakan Persamaan Gaya Dalam yaitu suatu persamaan yang memberikan

gambaran tentang hubungan antara besarnya gaya dalam dengan posisi potongan atau hubungan antara gaya dalam

dengan jarak potongan X.

Karena ada hubungan antara besarnya gaya dalam dengan besarnya X, maka kita dapat membuat suatu grafik yang

menyatakan hubungan antara gaya dalam dengan jarak X.

Sebagai contoh jika kita kembali pada kasus balok di atas dua tumpuan menderita gaya miring P = 5 kN dengan sudut

kemiringan a = 60o.

0 ≤ X ≤0.6 Qx = + Va

0.6 ≤ X ≤2 Qx = Va – P sin 60 = - Vb

0 ≤ X ≤0.6 Mx = Va * X

0.6 ≤ X ≤2 Mx = Va * X – P sin 60 *(X-0.6)

0 ≤ X ≤0.6 Nx = - Ha

0.6 ≤ X ≤2 Nx = 0

Bidang lintang yaitu bidang yang dibatasi oleh garis persamaan gaya lintang dan sumbu balok / batang

0 ≤ X ≤0.6 Qx = + Va

0.6 ≤ X ≤2 Qx = Va – P sin 60 = - Vb

Bidang momen yaitu bidang yang dibatasi oleh garis persamaan momen dan sumbu balok / batang

0 ≤ X ≤0.6 Mx = Va * X

0.6 ≤ X ≤2 Mx = Va * X – P sin 60 *(X-0.6)

Bidang momen digambar pada sisi / bagian serat tertarik. Karena serat tertarik akibat momen (+) ada di bawah, maka bidang momen digambar di sebelah bawah dari sumbu balok/ batang

0 ≤ X ≤0.6 Mx = Va * X

0.6 ≤ X ≤2 Mx = Va * X – P sin 60 *(X-0.6)

Contoh Kasus balok menderita beban merata

Q = Va – q * X = ½ qL - qX

Dari persamaan gaya lintang terlihat nilai gaya geser berbentuk persamaan dalam X pangkat satu. Dari bentuk persamaan ini jika fungsi dari gaya geser digambarkan akan membentuk garis lurus.

Dari persamaan tersebut juga tampak pada saat nilai X = ½ L maka besarnya gaya lintang = 0

M = Va*X – ½*q*X2

Dari persamaan Momen terlihat harga momen pada satu potongan dapat ditentukan dari persamaan dalam X pangkat duau. Dari

bentuk persamaan ini jika fungsi dari momen digambarkan akan membentuk lengkung parabolis. Dari persamaan tersebut juga

tampak pada saat nilai X = ½ L maka besarnya momen mencapai maksimum= 1/8 qL2

Contoh Kasus balok menderita beban segitiga

Q = Va – ½ q2/L = ⅙ qL – ½ q2/L

Dari persamaan gaya lintang terlihat nilai gaya geser berbentuk persamaan dalam X pangkat dua. Dari bentuk persamaan ini jika

fungsi dari gaya geser digambarkan akan membentuk garis lengkung. Dari persamaan tersebut juga tampak pada saat nilai X =

1/3 L√3 maka besarnya gaya lintang = 0

Q = VaX – ⅙ qX3/L = ⅙qLX – ⅙ qX3/L

Dari persamaan momen terlihat persamaan momen berbentuk persamaan dalam X pangkat 3. Dari bentuk persamaan ini jika

fungsi dari momen digambarkan akan membentuk garis lengkung. Dari persamaan tersebut juga tampak pada saat nilai X = 1/3 L√3

maka besarnya momen mencapai maksimum = 0.064 qL2

Contoh balok dengan variasi beban-beban terpusat

Untuk 0≤ X ≤ 0.2 Q = Va Untuk 0.2 ≤ X ≤ 0.8 Q = Va – P1sin60 Untuk 0.8 ≤ X ≤ 1.2 Q = Va – P1sin60 – P2 Untuk 1.2 ≤ X ≤ 1.6 Q = Va – P1sin60 – P2 – P3sin45 Untuk 1.6 ≤ X ≤ 2.0 Q = Va – P1sin60 – P2 – P3sin45 – P4

Persamaan Gaya Lintang

Untuk 0≤ X ≤ 0.2 Q = Va Untuk 0.2 ≤ X ≤ 0.8 Q = Va – P1sin60 Untuk 0.8 ≤ X ≤ 1.2 Q = Va – P1sin60 – P2 Untuk 1.2 ≤ X ≤ 1.6 Q = Va – P1sin60 – P2 – P3sin45 Untuk 1.6 ≤ X ≤ 2.0 Q = Va – P1sin60 – P2 – P3sin45 – P4

Persamaan Gaya Lintang

Karena nilai Va, P1sin60, P2, P3sin45 dan P4 adalah nilai-nilai yang sudah diketahui, maka

kelima persamaan tersebut di atas akan memberikan pola grafik yang nilainya konstan

(harga fungsi konstan).

Bid D (Bidang Geser)

Untuk 0≤ X ≤ 0.2 Q = Va *X Untuk 0.2 ≤ X ≤ 0.8 Q = Va*X – P1sin60*(X-0.3) Untuk 0.8 ≤ X ≤ 1.2 Q = Va*X – P1sin60*(X-0.3) – P2*(X-0.8) Untuk 1.2 ≤ X ≤ 1.6 Q = Va*X – P1sin60*(X-0.3) – P2*(X-0.8) – P3sin45*(X-1.2) Untuk 1.6 ≤ X ≤ 2.0 Q = Va*X – P1sin60*(X-0.3) – P2*(X-0.8) – P3sin45*(X-1.2) – P4*(X-1.6)

Persamaan Momen

Untuk 0≤ X ≤ 0.2 M = Va *X Untuk 0.2 ≤ X ≤ 0.8 M = Va*X – P1sin60*(X-0.3) Untuk 0.8 ≤ X ≤ 1.2 M = Va*X – P1sin60*(X-0.3) – P2*(X-0.8) Untuk 1.2 ≤ X ≤ 1.6 M = Va*X – P1sin60*(X-0.3) – P2*(X-0.8) – P3sin45*(X-1.2) Untuk 1.6 ≤ X ≤ 2.0 M = Va*X – P1sin60*(X-0.3) – P2*(X-0.8) – P3sin45*(X-1.2) – P4*(X-1.6)

Persamaan Momen

Kelima persamaan momen pada kasus ini menunjukkan hubungan linear (pangkat satu),

sehingga jika kelima persamaan tersebut digambarkan akan membentuk gambar garis patah-

patah (poligon).

Bid M (Bidang Momen)

Untuk 0≤ X ≤ 0.2 N = -Ha Untuk 0.2 ≤ X ≤ 0.8 N = -Ha+P1cos60 Untuk 0.8 ≤ X ≤ 1.2 N = -Ha+P1cos60 Untuk 1.2 ≤ X ≤ 1.6 Q = -Ha + P1cos60 – P3 cos45 Untuk 1.6 ≤ X ≤ 2.0 Q = -Ha + P1cos60 – P3 cos45

Persamaan Gaya Normal

Bid N (Bidang Normal)

Bid N

Bid M

Bid D

Gambaran umum bentuk bidang gaya

dalam pada kasus ini dapat dilihat pada gambar di sebelah. Pada gambar juga tampak pada posisi

gaya lintang berubah tanda dari (+)

menjadi (-) akan didapat nilai momen

maksimum

top related