universiti putra malaysia - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/fk 2012...

42
UNIVERSITI PUTRA MALAYSIA AHMAD SYAFIQ BIN AHMAD HAZMI FK 2012 134 SYNTHESIS AND CHARACTERIZATION OF JATROPHA OIL-BASED POLYURETHANE FROM JATROPHA OIL-BASED POLYOL

Upload: vanxuyen

Post on 20-Mar-2019

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

UNIVERSITI PUTRA MALAYSIA

AHMAD SYAFIQ BIN AHMAD HAZMI

FK 2012 134

SYNTHESIS AND CHARACTERIZATION OF JATROPHA OIL-BASED POLYURETHANE FROM JATROPHA OIL-BASED POLYOL

Page 2: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

SYNTHESIS AND CHARACTERIZATION OF JATROPHA OIL-BASED

POLYURETHANE FROM JATROPHA OIL-BASED POLYOL

By

AHMAD SYAFIQ BIN AHMAD HAZMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

August 2012

Page 3: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

ii

Dedications

This thesis has been written in the spirit to discover which long had energized other far

reaching and greater scientists. Some of what we have come across in the following

excerptions:

"He is Allah, the Creator, the Inventor of all things, the Bestower of forms. To Him

belong the Best Names. All that is in the heavens and the earth glorify Him. And He is

the All-Mighty, the All-Wise." - Al-Quran (59:24)

"This most beautiful system of the sun, planets, and comets could only proceed from the

counsel and dominion of an intelligent and powerful Being." - Isaac Newton

Page 4: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

iii

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

SYNTHESIS AND CHARACTERIZATION OF JATROPHA OIL-BASED

POLYURETHANE FROM JATROPHA OIL-BASED POLYOL

By

AHMAD SYAFIQ BIN AHMAD HAZMI

August 2012

Chair: Luqman Chuah Abdullah, PhD

Faculty: Engineering

A new vegetable oil-based polyol has been successfully functionalized for polyurethane

fabrication. Starting with the crude jatropha oil, the double bonds are functionalized by

introducing epoxy groups and followed by ring opening step to produce hydroxyl

groups. This method effectively produced solvent-free epodixidized jatropha oil at rapid

reaction kinetic with maximum oxirane oxygen content of 4.3%. This chemical synthesis

scheme provides low viscosity and moderate functionality polyol with easier route to

produce flexible film of vegetable-based polyurethane at reasonable material properties

with hydroxyl number of 171 - 180 mg KOH/g, viscosity of 0.92 - 0.98 Pa.s and

functionality of 5.

Page 5: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

iv

The jatropha oil-based polyol is then reacted with aromatic diisocyanate to produce

jatropha oil-based polyurethane in the present of catalyst dibutyltin dilaurate. Three

distinct regions have been observed in the reactivity test of polyurethane formation

corresponding to reaction of hydroxyl and isocyanate groups and branching processes.

The glass transition temperature of -55 to -45 oC suggested that existence of majority

flexible/soft segments and exhibited rubber-like behavior in stress-strain measurement

with tensile stress at break between 2 - 6 MPa and elongation at break of 110 - 193%.

Fractography evidence by SEM showed relatively flat surface with ridges and V-shaped

"chevron" marking. Jatropha oil-based polyurethane is thermally stable with the onset

for thermal degradation is in the range of 233 - 277 oC followed by char formation.

Pseudo-plastic flow behavior with index of 0.09 - 0.24 is observed in dynamic

mechanical analysis. However high amount of acid (> 0.1 mg KOH/g) in the polyol is

detrimental to the branching processes with evidence of relatively low glass transition

temperature (-50 oC) and mechanical strength (2 MPa).

Page 6: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

v

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SINTESIS DAN PENCIRIAN POLIURETENA BERASASKAN MINYAK

POKOK JARAK DARIPADA POLIOL BERASASKAN MINYAK POKOK

JARAK

Oleh

AHMAD SYAFIQ BIN AHMAD HAZMI

Ogos 2012

Pengerusi: Luqman Chuah Abdullah, PhD

Fakulti: Kejuruteraan

Sejenis poliol baru berasaskan tumbuh-tumbuhan telah berjaya difungsikan untuk

penghasilan poliuretena. Bermula dengan minyak pokok jarak mentah, ikatan alkena

telah difungsikan dengan memasukkan kumpulan berfungsi epoksi diikuti oleh

pembukaan cincin epoksi untuk menghasilkan kumpulan hidroksida. Cara ini telah

menghasilkan secara efektif minyak pokok jarak terepoksida tanpa menggunakan pelarut

dengan tindakbalas kinetik pantas pada nilai maksimum kandungan oksigen oksiran

4.3%. Cara sintesis baru ini juga menghasilkan poliol yang mempunyai kelikatan rendah

dan kefungsian sederhana di mana lebih mudah untuk menghasilkan filem boleh lentur

daripada poliuretena berasaskan tumbuh-tumbuhan pada sifat-sifat yang munasabah iaitu

nombor hidroksida 171 -180 mg KOH/g, kelikatan 0.92 - 0.98 Pa.s, dan kefungsian 5.

Page 7: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

vi

Kemudiannya poliol berasaskan minyak pokok jatropha bertindakbalas dengan dwi-

isosianida aromatik untuk menghasilkan poliuretena berasaskan minyak pokok jarak di

dalam kehadiran pemangkin dibutiltin dilaurat. Tiga zon berbeza telah kelihatan semasa

ujian kelikatan pembentukkan poliuretena yang berkaitan dengan tindak balas kumpulan

hidroksida dan diisosianida dan proses percabangan. Suhu peralihan kaca yang rendah

pada -55 hingga -45 oC menyarankan majoriti adalah segmen bahagian boleh lentur dan

memberikan sifat seakan getah berdasarkan penentukuran tegasan-terikan dengan

tegasan semasa putus pada 2 - 6 MPa dan pemanjangan semasa putus adalah 110 -

193%. Bukti fraktografi oleh SEM menunjukkan permukaan rata dengan tanda rabung

dan bentuk-V "chevron". Poliuretena berasaskan minyak pokok jarak mempunyai

kestabilan terma dengan permulaan penguraian terma pada 233 - 277 oC diikuti dengan

pembentukkan arang. Sifat mengalir pseudo-plastik dengan indeks 0.09 - 0.24

diperhatikan dalam analisis dinamik mekanikal. Walau bagaimanapun, kandungan asid

yang tinggi (> 0.1 mg KOH/g) dalam poliol telah menjejaskan proses percabangan yang

terbukti dengan suhu peralihan kaca (-50 oC) dan kekuatan mekanikal (2 MPa) yang

rendah.

Page 8: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

vii

ACKNOWLEDGEMENT

I praise God for the wisdom He bestowed on us, which lead to this exceptional

discovery. Deepest gratefulness goes to wife, Syahrina Elliyana and our wonderful child,

Imran, on board. Being a student, husband, and soon father inshaAllah are enormous

challenges.

I am being indebted to Professor Dr. Luqman Chuah Abdullah and Ms. Min Min

Aung for guidance. I wish to express deepest appreciation to Mr. Mohd. Hilmi

Mahmood, Ms. Mek Zah Salleh, Ms. Rida Tajau from Malaysian Nuclear Agency

(MINT) for their thoughtfulness and kindness in guiding the scientific works. Sincere

thanks to Mr. William Lee from Research Instrument and Mr. Amir from Faculty of

Engineering, UPM for being resourceful in thermal analysis.

Special thanks to other supervisor committee, Assoc. Prof. Dr. Mansor Ahmad

from Faculty of Science, UPM and Assoc. Prof. Dr. Azizan Ahmad from Faculty of

Science and Technology, UKM which had motivated me throughout the researches and

proofread this thesis.

Ahmad Syafiq

August 2012

Page 9: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

viii

I certify that an Examination Committee has met on December 19, 2012 to conduct the final examination of Ahmad Syafiq bin Ahmad Hazmi on his Master of Science thesis entitled "Synthesis and Characterization of Jatropha Oil-Based Polyurethane From Jatropha Oil-Based Polyol" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the (Name of relevant degree).

Members of the Examination Committee were as follows:

Assoc. Prof. Dr. Wan Azlina Wan Ab Karim Ghani (Chairman) Assoc. Prof. Dr. Tinia Idaty binti Mohd Ghazi Dr Shafreeza binti Sobri Assoc. Prof. Dr. Mat Uzir bin Wahit

SEOW HENG FONG, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Page 10: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

ix

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows: Prof. Dr. Luqman Chuah Abdullah Faculty of Engineering Universiti Putra Malaysia (Chairman) Assoc. Prof. Dr. Mansor Ahmad Faculty of Science Universiti Putra Malaysia (Member) Mek Zah Salleh Research Officer Radiation Processing Technology Division (BTS) Malaysian Nuclear Agency (MINT)

Assoc. Prof. Azizan Ahmad, PhD Faculty of Science and Technology Universiti Kebangsaan Malaysia (Member) BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Page 11: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

x

DECLARATION

I declare that the thesis is my original work except for quotations and citations which

have been duly acknowledged. I also declare that it has not been previously, and is not

concurrently, submitted for any other degree at Universiti Putra Malaysia (UPM) or at

any other institution.

AHMAD SYAFIQ BIN AHMAD HAZMI Date: 30 AUGUST 2012

Page 12: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xi

TABLE OF CONTENTS

Page

ABSTRACT

iii

ABSTRAK

v

ACKNOWLEDGEMENTS

vii

APPROVAL

viii

DECLARATION

x

LIST OF TABLES

xv

LIST OF FIGURES

xvi

LIST OF REACTIONS

xix

LIST OF ABBREVIATIONS

xx

CHAPTER 1: INTRODUCTION AND OVERVIEW 1.1. Introduction to vegetable-based polyurethane 1 1.2. Problem Statement 1 1.3. Objectives of the study 3 1.4. General overview of the thesis 4

CHAPTER 2: LITERATURE REVIEW 2.1. Polyurethane worldwide consumption 6 2.2. Commercialization value of jatropha oil-based polyol 6 2.3. Jatropha curcas 8

2.3.1. Jatropha oil 9

2.3.2. Oil extraction 9

2.3.3. Chemical composition of jatropha oil 10

2.4. Isocyanate compounds 11 2.5. Chemistry of polyurethane 12

2.5.1. Reaction with hydroxyl group 12

2.5.2. Reaction with amino groups 12

2.5.3. Reaction with water 13

2.5.4. Reaction with carboxylic groups 13

2.5.5. Reaction with urethane groups 14

2.5.6. Reaction with urea groups 14

2.6. Catalyst and kinetics of catalysis 15 2.7. Functionality, equivalent weight, critical gel conversion 15 2.8. Polyol production from vegetable oils 17

2.8.1. Epoxidation routes 18

2.8.2. Non-epoxidation routes 19

2.8.2.1. Hydroformylation 20

2.8.2.2. Ozonolysis 20

2.8.2.3. Transesterification 21

Page 13: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xii

2.9. Wet chemical analysis 22

2.9.1. Oxirane oxygen content, relative conversion to oxirane

22

2.9.2. Hydroxyl number 23

2.9.3. Acid value 24

2.9.4. Fourier transform infrared (FTIR) and attenuated total reflectance (ATR)

25

2.9.5. Brookfield viscosity 26

2.9.6. Degree of swelling 26

2.10. Thermal analysis 27

2.10.1. Thermogravimetric analysis (TGA/DTG) and kinetic of decomposition

28

2.10.2. Differential scanning calorimetry (DSC) 28

2.10.3. Dynamic mechanical analysis (DMA) 28

2.10.3.1. Network and rubber elasticity 28

2.10.3.2. Relationship between glass transition temperature and crosslink density

29

2.10. Mechanical analysis 29 2.11. Safety precautions 30

CHAPTER 3: EXPERIMENTAL METHODOLOGY 3.1. Materials 31 3.2 Research Design 31 3.3. Epoxidation of jatropha oil 32 3.4. Preparation of the hydroxylation mixture 33 3.5. Hydroxylation of epoxidized jatropha oil 33 3.6. Synthesis of jatropha oil-based polyurethane 34 3.7. Wet chemical analysis 43

3.7.1. Oxirane oxygen content and relative conversion to oxirane

43

3.7.2. Hydroxyl number and equivalent weight 43

3.7.3. Acid number 44

3.7.4. Swelling in solvent 44

3.7.5. Fourier transform infrared spectroscopy (FTIR/ATR) measurement

44

3.7.6. Molecular weight measurement 45

3.7.7. Brookfield viscosity measurement 45

3.8. TGA, DSC, DMA, tensile strength measurement 46

3.8.1. Sample conditioning 46

3.8.2. TGA/DTG measurement 46

3.8.3. DSC measurement 46

3.8.4. DMA measurement 47

3.8.5. Tensile properties measurement 47

Page 14: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xiii

3.9. Density and specific gravity measurement 48 3.10. Scanning electron microscopy (SEM) 48 3.11. Statistical Analysis 48

CHAPTER 4: RESULT AND DISCUSSION 4.1 Wet chemical analysis 49 4.1.1. FTIR of epoxidized jatropha oil and jatropha oil-

based polyol 49

4.1.2. Oxirane oxygen content and relative conversion to oxirane of epoxidized jatropha oil

52

4.1.3. Hydroxyl number, equivalent weight, acid number, viscosity

57

4.1.4. Molecular weight, functionality of jatropha oil-based polyol

58

4.1.5. Comparison between polyol from jatropha oil, palm oil, and soy bean oil

60

4.1.6. FTIR/ATR of jatropha oil-based polyurethane 61

4.1.7. Reactivity 65

4.1.8. Swelling in solvent 67

4.2 Thermal analysis 68

4.2.1. Glass transition by DSC and DMA 68

4.2.2. TGA/DTG curve and kinetic of decomposition 74

4.3 Mechanical analysis and tensile fracture mechanism 81

4.3.1. Tensile stress-strain behavior 81

4.3.2. Tensile fracture mechanism 85

4.4 Frequency analysis 87

4.4.1. Power law 87

4.4.2. Effect of molecular structure 91

4.4.2.1 Molecular weight and molecular weight distribution

91

4.4.2.2 Branching 92

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 5.1 Conclusion 94 5.2 Recommendations 97

REFERENCES xxiii

Page 15: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xiv

APPENDIXES A.1 Polyurethane formulation A-1

A.2 Verification curve of FTIR-ATR for high-density polyethylene (HDPE) A-2

A.3 Narrow and broad polystryene calibration standards used in GPC A-3

A.4 Brookfield viscometer verification A-4

A.5 Temperature and heat flow calibration with indium metal standards in DSC

A-5

A.6 DMA calibration report for tension A-6

BIOGRAPHY OF THE STUDENT xli LIST OF PUBLICATION xlii

Page 16: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xv

LIST OF TABLE

Table

Page

1.1 Brief comparison between polyol produced from petrochemical and vegetable oil

2

1.2 Table of comparison of fatty acid in commonly used vegetable oil 3

2.1 Comparison between polyol produced from palm oil, soy bean oil, castor oil, and linseed oil

7

2.2 Typical iodine value for vegetable oil 10

2.3 Comparison of polyols prepared from different synthesis routes 17

3.1 Formulation used in preparing jatropha oil-based polyurethane 42

4.1 Process yield for epoxidation and hydroxylation of jatropha oil 57

4.2 Epoxidized jatropha oil and jatropha oil-based polyol properties 58

4.3 Comparison of polyol characteristics between jatropha oil, palm oil, and soy bean oil

60

4.4 Interpretation of FTIR peaks for jatropha oil, epoxidized jatropha oil, and jatropha oil-based polyol

63

4.5 Swelling studies on jatropha oil-based polyurethane 67

4.6 Glass transition temperature recorded by DSC and DMA 72

4.7 Temperature at maximum decomposition rate at constant heating of 10 oC/min in nitrogen atmosphere

77

4.8 Activation energy of degradation in nitrogen atmosphere at isoconversional as calculated by Ozawa, Flynn-Wall, and Kissinger method

80

4.9 Physico-mechanical properties for jatropha oil-based polyurethane, 25 oC

82

4.10 Viscoelastic analysis on jatropha oil-based polyurethane as found by DMA

90

Page 17: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xvi

LIST OF FIGURE

Figure

Page

2.1 Jatropha curcas plants 8

2.2 Illustration of chemical structure of jatropha oil 10

2.3 Chemical structure of TDI and MDI 11

2.4 Conversion of double bond via epoxidation and ring opening 18

2.5 Conversion of vegetable oil to primary hydroxyl polyol via hydroformylation

20

2.6 Conversion of vegetable oil to primary hydroxyl polyol via

ozonolysis 21

2.7 Conversion of vegetable oil to primary hydroxyl polyol via

transesterification 21

3.1 The experimental apparatus for synthesis of jatropha oil-based

polyurethane 34

3.2 Process flow diagram for the production of jatropha oil-based

polyurethane 36

4.1 FTIR spectra of transforming double bonds of jatropha oil into epoxy group and hydroxyl group

50

4.2 Conversion of vegetable oil to epoxidized vegetable oil and

subsequent ring opening to produce jatropha oil-based polyol 50

4.3 Schematic diagram of partial transesterification of the jatropha

oil-based polyol 52

4.4 Oxirane oxygen content of four similar batch of epoxidized

jatropha oil as a function of epoxidation reaction time 55

4.5 Relative conversion to oxirane of four similar batch of epoxidized

jatropha oil as a function of epoxidation reaction time 55

Page 18: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xvii

4.6 Weight per epoxy equivalent of four similar batch of epoxidized jatropha oil as a function of epoxidation reaction time

56

4.7 The elution time GPC curve of hydroxylated-epoxidized jatropha

oil 59

4.8 The normalized chromatohram of hydroxylated-epoxidized

jatropha oil 59

4.9 FTIR spectra of jatropha oil-based polyurethane (TDI-based,

hydroxyl/isocyanate = 1) formation as a function of reaction time 62

4.10 FTIR-ATR spectra of jatropha oil-based polyurethane formation

as a function of isocyanate and ratio of hydroxyl to isocyanate 62

4.11 Samples preparation of jatropha oil-based polyurethane 64

4.12 Reactivity as a function of reaction time in logarithm scale 66

4.13 Reactivity at different catalyst loading as a function of reaction

time in logarithm scale for TDI-based jatropha oil-based polyurethane (r = 1/1.0)

66

4.14 DSC curves of the jatropha oil-based polyurethane at 10 oC/min

in nitrogen atmosphere 69

4.15 The storage modulus of jatropha oil-based polyurethane as a

function of temperature at 1 Hz 71

4.16 The loss modulus of jatropha oil-based polyurethane as a function

of temperature at 1 Hz 71

4.17 Change in the tan δ of jatropha oil-based polyurethane as a

function of temperature at 1 Hz 72

4.18 Illustration of the side chains in the jatropha oil-based

polyurethane with R correspond to the urethane groups 73

4.19 A linear dependence between glass transitions and crosslink

density as predicted by Fox-Loshaek equation 74

4.20 TGA curves of jatropha oil-based polyurethane decomposition at

constant heating rate of 10 oC/min under nitrogen atmosphere 75

Page 19: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xviii

4.21 DTG curves of jatropha oil-based polyurethane decomposition at constant heating rate of 10 oC/min under nitrogen atmosphere

76

4.22 The dependence of activation energy on conversion as calculated

by Ozawa method 79

4.23 The linear dependence of activation energy on conversion as

calculated by Flynn-Wall method at 5 % conversion 79

4.24 The linear dependence of activation energy on conversion as

calculated by Kissinger for step 1 degradation 80

4.25 Effect of crosslink densities on tensile stress-strain curves for

jatropha oil-based polyurethane at 25 oC 81

4.26 Schematic representation of polymeric chains of jatropha oil-

based polyurethane at the beginning of deformation in response to an applied tensile stress

82

4.27 The conversion at gel point based on Macosko-Miller equation 84

4.28 Effect of crosslink densities on the glass transition temperature,

tensile strength and elongation at break, and Young modulus of jatropha oil-based polyurethane

84

4.29 Scanning electron fractrograph showing brittle fracture resulting

from uniaxial tensile load of jatropha oil-based polyurethane (Magnification 300X, 5kV)

86

4.30 Scanning electron fractrograph showing brittle fracture resulting

from uniaxial tensile load of jatropha oil-based polyurethane (Magnification 2000X, 5kV)

87

4.31 Power law plot of stress-frequency obtained from frequency

sweep from 10-1 to 102 Hz, showing pseudoplastic behavior under dynamic mode at 27 oC (with inset)

89

4.32 Frequency response between 10-1 to 102 Hz of jatropha oil-based

polyurethane under dynamic mode at 27 oC. 93

Page 20: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xix

LIST OF EQUATION

Equation

Page

2.1 Isocyanate reaction with hydroxyl group 12

2.2 Isocyanate reaction with amino groups 13

2.3 Isocyanate reaction with water 13

2.4 Isocyanate reaction with carboxylic groups 13

2.5 Evolution of carbon dioxide 13

2.6 Branching with urethane groups 14

2.7 Branching with urea groups 14

2.8 Functionality 15

2.9 Equivalent weight of polyol 16

2.10 Equivalent weight of isocyanate 16

2.11 Polyfunctional polymerization 17

2.12 Theoretical oxirane oxygen content 22

2.13 Experimental oxirane oxygen content 22

2.14 Weight per epoxy equivalent 22

2.15 Hydroxyl number 23

2.16 Acidity correction 24

2.17 Alkalinity correction 24

2.18 Corrected hydroxyl number (acidity) 24

2.19 Corrected hydroxyl number (alkalinity) 24

2.20 Acid number 24

Page 21: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xx

2.21 Difference of energy state 25

2.22 Wavenumber determination 25

2.23 Polymer-solvent interaction parameter 26

2.24 Molecular weight between crosslink 27

2.25 Volume fraction of polymer 27

2.26 Molecular weight between entanglements 28

2.27 Fox-Loshaek relationship 29

3.1 Decomposition of hydrogen peroxide 32

3.2 Molar ratio of OH group to the isocyanate NCO 34

4.1 Formation of peroxoformic acid 54

4.2 Formation of epoxy group 54

4.3 Decomposition of urethane 77

4.4 Evolution of carbon dioxide at elevated temperature 77

4.5 Decomposition of isocyanurate rings and carbodiimide 78

4.6 Power law 88

4.7 Complex viscosity 88

Page 22: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxi

LIST OF ABBREVIATIONS

ASTM ASTM International

ATR Attenuated total reflectance

Brookfield viscosity Viscosity measured by using Brookfield viscometer

DMA Dynamic Mechanical Analysis

DSC Differential Scanning Calorimeter

DTG Degradation Temperature, First Derivative of TGA curve

E Modulus

E’ Storage Modulus

E” Loss Modulus

Ea Activation energy

EW Equivalent weight

FTIR Fourier Transform Infrared

G Shear modulus

GPC Gel permeation chromatography

gram/eq Gram per equivalent

Page 23: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxii

Mc Molecular weight between crosslink

MDI Diphenylmethane diisocyanate

Me Molecular weight between entanglement

Mn Number average molecular weight

Mv Viscosity average molecular weight

Mw Weight average molecular weight

n Flow index behavior

OH # Hydroxyl number

OOC Oxirane oxygen content

OOexpt Experimental oxirane oxygen content

OOth Theoretical oxirane oxygen content

q Heating rate

r The hydroxyl to isocyanate ratio

R Universal gas constant

RCO Relative conversion to oxirane

SEM Scanning Electron Microscope

Tan δ Damping, ratio of E"/E'

Page 24: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxiii

TDI Toluene diisocyanate, Tolylene diisocyanate

Tg Glass Transition Temperature

TGA Thermogravimetric Analysis

Tm Temperature at maximum decomposition rate

WPE Weight per epoxy equivalent

wt % Weight percent

α Extent of conversion

γ Strain

δ Phase angle/phase lag

η Viscosity

η* Complex viscosity

λ Relaxation time

ν Poisson's ratio

σ Stress

τ

Stress response

𝜔 Angular frequency

𝜀 Strain (extension)

Page 25: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1. Introduction to Vegetable-based Polyurethane

Polyurethane represent a group of versatile polymer and wide range of technical

applications. Generally polyurethanes are copolymers, composed of alternating soft and

hard segments (some prefer to use flexible and rigid segments), which come from polyol

and isocyanate groups. First polyurethane foam was discovered by Otto Bayer in year

1947 (Bayer, 1947). The discovery leads to various invention such as flexible, semi-

rigid, rigid, elastomer, and adhesive polyurethane. In Malaysia, most of produced

polyurethane is in the form of rigid and semi-rigid foam and flexible foam. Polyurethane

is widely used in apparel, furniture, automotive, construction, packaging, medical and

insulation area.

1.2. Problem Statement

Production of polyol from renewable resources has a strong root in the history of

polyurethane industry (Desroches et al., 2012; Ionescu, 2005). Conventionally the

polyurethane is produced industrially by reacting petrochemical-based polyol with

isocyanates. Vegetable oil-based polyurethane is gaining popularity due to attractive and

feasible routes of utilization as well as their environment and sustainability reasons. As

the price of petroleum increased and stirring many concerns over its stability and

sustainability, there is increasing demand to find viable alternative to produce plastics.

Page 26: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

2

In recent years, much attentions have been paid for utilizing renewable materials such as

vegetable oils and naturally fatty acid to substitute petroleum derived raw materials.

Besides the continuous price increases, the consumption of petroleum release carbon

dioxide gas which contributes to global warming. These problems could be partially

alleviated by using renewable resources such as vegetable oils. Renewable resource such

as vegetable oil is relatively inexpensive and make it an attractive candidates as polyol

(Lligadas et al., 2010). Castor oil, which naturally have the hydroxyl group in the

triglyceride, is directly used in to make polyurethane. As today, there are several reports

on the progress of vegetable-based polyurethanes (Petrovic, 2008; Petrovic et al.,

2008;2007;2005;2004; Zlatanic et al., 2004). In general, petroleum-based polyols have

terminal hydroxyl groups which very reactive (Table 1.1). On the other hand, vegetable-

based polyols have secondary hydroxyl groups and less reactive due to sterical

hindrance. High content of hydroxyl groups contributes to higher viscosity (> 10,000

Pa.s) in petroleum-based polyol.

Table 1.1: Brief comparison between polyol produced from petrochemical and vegetable oil (Ionescu, 2005).

Type of Polyol Petroleum-based Vegetable-based Reactivity High reactivity Low reactivity Viscosity High Low Environmental Non-renewable Renewable Price Depending on oil prices Relatively stable

The study of vegetable-based polyurethane has received growing attentions and

theoretical importance as it inherits heterogeneous structure due to variation in the

structure of vegetable oils as shown in Table 1.2 below (Petrović, 2008). The fact that

jatropha oil is non-edible and the price relatively unaffected by development in food

Page 27: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

3

industry make it an interesting candidate among vegetable oils for further

commercialization in polyurethane manufacturing.

Table 1.2: Table of comparison of fatty acid in commonly used vegetable oil (Petrović, 2008).

Myristic Palmitic Stearic Oleic Linoleic Linolenic Soybean 0.1 10.2 3.7 22.8 53.7 8.6 Cotton seed 0.7 20.1 2.6 19.2 55.2 0.6 Palm 1 42.8 4.5 40.5 10.1 0.2 Sunflower 0.2 4.8 5.7 20.6 66.2 0.8 Jatropha curcas 0.1 15.1 7.1 44.7 31.4 0.2

1.3. Objectives of the study

The fundamental objective of this study is to investigate feasible way to produce

jatropha oil-based polyol, jatropha oil-based polyurethane and characterize them. The

broad goal is to get deeper understanding on synthesizing polyurethane and analyze

material responses, as well as linking jatropha oil and polyurethane industries. The

specific objectives and concerns of this study are:

a. To functionalize and produce jatropha oil-based polyol via epoxidation and ring

opened synthesis route. The epoxidized jatropha oil and jatropha oil-based polyol

are monitored by a series of wet chemical analysis.

b. To prepare and produce jatropha oil-based polyurethane film by reacting the

jatropha oil-based polyol and diisocyanates. The extend of reaction was

monitored by changes in physico-mechanical and functional groups.

c. To study relationship between crosslink density and

thermal/mechanical/frequency responses in jatropha oil-based polyurethane. The

crosslink density are varied by regulating the ratio of hydroxyl to isocyanates as

well as different diisocyanates (dipheylmethane-4,4'-diisocyanate, toluene-2,4-

Page 28: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

4

diisocyanate). Both diisocyanates are the most produced isocyanate worldwide

(Ionescu, 2005).

1.4. General overview of the thesis

This thesis present the investigation on transforming crude jatropha oil to polyol and use

it in fabricating polyurethane. Chapter 1 addresses the concern in market trend towards

vegetable-based polyurethane and an overview of research scopes.

Chapter 2 describes overview on jatropha curcas oil and the chemistry of polyurethane

including isocyanate, main parameters for polyol such as hydroxyl number and

functionality, a brief account of various method to produce polyol from vegetable oil,

and a series of wet chemical analysis to characterize the epoxidized vegetable oil and the

polyol. Later in the chapter is to review on different techniques in thermal, mechanical,

and frequency analysis to characterize the polyurethane including a section on statistical

analysis. Determination of crosslink density is presented as the swelling in solvent and

molecular weight between crosslink or entanglement.

Chapter 3 outlines the laboratory works on synthesizing epoxidized and polyol from

jatropha, the standard procedures to carry out the wet chemical analysis, and sample

measurement procedures in the characterization instruments.

Chapter 4 elaborates the comprehensive study of the epoxidized and jatropha oil-based

polyol including FTIR spectroscopy, oxirane number, hydroxyl number, viscosity,

functionality, reactivity, and crosslink densities. Thermal analysis by DSC and

Page 29: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

5

temperature-varying DMA revealed the effect of crosslink density on the glass transition

temperature. Meanwhile thermal analysis by TGA/DTG curves indicate the thermal

stability and the associated kinetic of decomposition. Tensile stress-strain behavior

correlate the glass transition Later in the section is the analysis on frequency response

which introduce power law and effect of crosslink density on branching and molecular

weight distribution.

Chapter 5 delivers the conclusion of the works and finding with some recommendations

to enhance the processing jatropha oil-based polyurethane for future investigation.

Page 30: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

6

1.5. References

Bayer, O. (1947). Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angewandte Chemie, 59(9), 257-272.

Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polymer Reviews, 52(1), 38-79.

Ionescu, M. (2005). Chemistry and Technology of Polyols for Polyurethanes (pp. 13 - 50): Rapra Technology.

Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2010). Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art. Biomacromolecules, 11(11), 2825-2835.

Petrović, Z. S. (2008). Polyurethanes from Vegetable Oils. Polymer Reviews, 48(1), 109-155.

Page 31: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxiii

REFERENCES

Ahmed, W. A., & Salimon, J. (2009). Phorbol ester as toxic constituents of tropical Jatropha

curcas seed oil. European Journal of Scientific Research, 31(3), 429-436.

ASTM Standard D638-03, I. (2003). Standard Test Method for Tensile Properties of Plastics.

West Conshohocken, PA.

ASTM Standard D792-00, I. (2000). Standard Test Methods for Density and Specific Gravity

(Relative Density) of Plastics by Displacement. West Conshohocken, PA.

ASTM Standard D1652-97, I. (1997). Standard Test Methods for Epoxy Content of Epoxy

Resins. West Conshohocken, PA.

ASTM Standard D3418-03, I. (2003). Standard Test Method for Transition Temperatures and

Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry.

West Conshohocken, PA.

ASTM Standard D4274-99, I. (1999). Standard Test Methods for Testing Polyurethane Raw

Materials Determination of Hydroxyl Numbers of Polyols. West Conshohocken, PA.

ASTM Standard D4662-03, I. (2003). Standard Test Methods for Polyurethane Raw Materials:

Determination of Acid and Alkalinity Numbers of Polyols. West Conshohocken, PA.

Page 32: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxiv

ASTM Standard D4878-03, I. (2003). Standard Test Methods for Polyurethane Raw Materials:

Determination of Viscosity of Polyols. West Conshohocken, PA.

ASTM Standard D5026-01, I. (2001). Standard Test Method for Plastics: Dynamic Mechanical

Properties: In Tension. West Conshohocken, PA.

ASTM Standard E-1641-99, I. (1999). Standard Test Method for Decomposition Kinetics by

Thermogravimetry. West Conshohocken, PA.

Bayer, O. (1947). Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane). Angewandte

Chemie, 59(9), 257-272.

Becker, K., & Makkar, H. P. S. (2008). Jatropha curcas: A potential source for tomorrow' s oil

and biodiesel. Lipid Technology, 20(5), 104-107.

Borden, G. W., Smith, O. W., & Trecker, D. J. (1977). US Patent 4025477 Patent No. 4025477.

Cai, C., Dai, H., Chen, R., Su, C., Xu, X., Zhang, S., et al. (2008). Studies on the kinetics of in

situ epoxidation of vegetable oils. [10.1002/ejlt.200700104]. European Journal of Lipid

Science and Technology, 110(4), 341-346.

Colthup, N. B. (1950). Spectra-Structure Correlations in the Infra-Red Region. J. Opt. Soc. Am.,

40(6), 397-400.

Page 33: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxv

Cox, W. P., & Merz, E. H. (1958). Correlation of dynamic and steady flow viscosities.

[10.1002/pol.1958.1202811812]. Journal of Polymer Science, 28(118), 619-622.

Daniel, L., Ardiyanti, A. R., Schuur, B., Manurung, R., Broekhuis, A. A., & Heeres, H. J. (2011).

Synthesis and properties of highly branched Jatropha curcas L. oil derivatives. European

Journal of Lipid Science and Technology, 113(1), 18-30.

Debnath, M., & Bisen, P. S. (2008). Jatropha curcas L., a multipurpose stress resistant plant with

a potential for ethnomedicine and renewable energy. Current Pharmaceutical

Biotechnology, 9(4), 288-306.

DeBord, D. G., Cheever, K. L., Werren, D. M., Reid, T. M., Swearengin, T. F., & Savage, J. R.

E. (1996). Determination of 4,4′-Methylene-bis(2-chloroaniline)–DNA Adduct

Formation in Rat Liver and Human Uroepithelial Cells by the32P Postlabeling Assay.

Fundamental and Applied Toxicology, 30(1), 138-144.

Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From Vegetable

Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polymer

Reviews, 52(1), 38-79.

Page 34: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxvi

Doi, M., & Edwards, S. F. (1978a). Dynamics of concentrated polymer systems. Part 1.-

Brownian motion in the equilibrium state. Journal of the Chemical Society, Faraday

Transactions 2: Molecular and Chemical Physics, 74, 1789-1801.

Doi, M., & Edwards, S. F. (1978b). Dynamics of concentrated polymer systems. Part 2.-

Molecular motion under flow. Journal of the Chemical Society, Faraday Transactions 2:

Molecular and Chemical Physics, 74, 1802-1817.

Doi, M., & Edwards, S. F. (1978c). Dynamics of concentrated polymer systems. Part 3.-The

constitutive equation. Journal of the Chemical Society, Faraday Transactions 2:

Molecular and Chemical Physics, 74, 1818-1832.

Flory, P. J., & Rehner, J. (1943). Statistical Mechanics of Cross-Linked Polymer Networks I.

Rubberlike Elasticity Journal of Chemical Physics, 11(11), 512.

Fox, T. G., & Loshaek, S. (1955). Influence of molecular weight and degree of crosslinking on

the specific volume and glass temperature of polymers. [10.1002/pol.1955.120158006].

Journal of Polymer Science, 15(80), 371-390.

Gan, L., Goh, S., & Ooi, K. (1992). Kinetic studies of epoxidation and oxirane cleavage of palm

olein methyl esters. Journal of the American Oil Chemists' Society, 69(4), 347-351.

Page 35: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxvii

Ginwal, H. S., Rawat, P. S., & Srivastava, R. L. (2004). Seed source variation in growth

performance and oil yield of Jatropha curcas Linn. in central India. Silvae Genetica,

53(4), 186-192.

Gleissle, W. (1980). In G. Astarita, G. Marmcci & L. Nicolais (Eds.), Rheology (Vol. 2, pp. 457).

New York: Plenum Press.

Gosh, P. (2011). Polymer Science and Technology of Plastics, Rubber, Blends and Composites

3e (3 ed., pp. 257): Tata McGraw Hill Education Private Limited.

Goud, V. V., Patwardhan, A. V., Dinda, S., & Pradhan, N. C. (2007). Kinetics of epoxidation of

jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion exchange

resin. Chemical Engineering Science, 62(15), 4065-4076.

Gruber, B. (1991). US Patent 5026881 Patent No.

Gruetzmacher, R., Nagorny, U., Gress, W., Hoefer, R., Heidbreder, A., & Hirschberger, B.

(2002). US Patent 6433125 Patent No. 6433125.

Gübitz, G. M., Mittelbach, M., & Trabi, M. (1999). Exploitation of the tropical oil seed plant

Jatropha curcas L. Bioresource Technology, 67(1), 73-82.

Page 36: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxviii

Hablot, E., Zheng, D., Bouquey, M., & Avérous, L. (2008). Polyurethanes Based on Castor Oil:

Kinetics, Chemical, Mechanical and Thermal Properties. Macromolecular Materials and

Engineering, 293(11), 922-929.

Hiemenz, P. C., & Lodge, T. P. (2007). Polymer Chemistry, Second Edition (Second Edition ed.,

pp. 446). Boca Raton, Florida: CRC Press.

Hoefer, R., Stoll, G., Daute, P., & Gruetzmacher, R. (1994). US Patent 5302626 Patent No.

5302626.

Ionescu, M. (2005). Chemistry and Technology of Polyols for Polyurethanes (pp. 13 - 50): Rapra

Technology.

Javni, I., Petrović, Z. S., Guo, A., & Fuller, R. (2000). Thermal stability of polyurethanes based

on vegetable oils. Journal of Applied Polymer Science, 77(8), 1723-1734.

Javni, I., Zhang, W., & Petrović, Z. S. (2003). Effect of different isocyanates on the properties of

soy-based polyurethanes. Journal of Applied Polymer Science, 88(13), 2912-2916.

Jongschaap R.E.E., Corré W.J., P.S., B., & W.A., B. (2007). Claims and Facts on Jatropha

curcas L.: Global Jatropha curcas Evaluation, Breeding and Propagation programme.

Report 158. The Netherlands and Stichting Het Groene Woudt, Laren, The Netherlands.:

Plant Research International B.V., Wageningen.

Page 37: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxix

Kevin, M. (2003). Thermomechanical And Dynamic Mechanical Analysis Handbook of Plastics

Analysis (pp. 102 - 190): CRC Press.

Kluth, H., & Meffert, A. (1985). US Patent 4508853 Patent No. 4508853.

Krevelen, D. W. V., & Nijenhuis, K. T. (2009). Properties of Polymers: Their Correlation with

Chemical Structure; their Numerical Estimation and Prediction from Additive Group

Contributions (4 ed.): Elsevier Science.

Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2010). Plant Oils as Platform Chemicals for

Polyurethane Synthesis: Current State-of-the-Art. Biomacromolecules, 11(11), 2825-

2835.

Macosko, C. W. (1994). Rheology - Principles, Measurements and Applications (pp. 120-126):

John Wiley & Sons.

Macosko, C. W., & Miller, D. R. (1976). A New Derivation of Average Molecular Weights of

Nonlinear Polymers. Macromolecules, 9(2), 199-206.

Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test.

Mutation Research, 113, 173 - 215.

Page 38: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxx

Matheson, G. L., & Maass, O. (1929). The Properties of Pure Hydrogen Peroxide. VI. Journal of

the American Chemical Society, 51(3), 674-687.

Meffert, A., & Kluth, H. (1989). US Patent 4886893 Patent No. 4886893.

Meyer, P. P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan, W., & Tongurai, C.

(2008). Epoxidation of Soybean Oil and Jatropha Oil. Thammasat International Journal

of Science and Technology, 13(Special edition).

Modern Plastic International. (1990). Modern Plastic International, 20(1), 31.

Niederhauser, W. D., Koroly, Joseph E. (1949). US Patent 2485160 Patent No.

Nishikida, K., & Coates, J. (2003). Handbook of Plastics Analysis In H. Lobo & J. Bonilla

(Eds.), Plastics Engineering (pp. 650).

Pechar, T. W., Wilkes, G. L., Zhou, B., & Luo, N. (2007). Characterization of soy-based

polyurethane networks prepared with different diisocyanates and their blends with

petroleum-based polyols. [10.1002/app.26569]. Journal of Applied Polymer Science,

106(4), 2350-2362.

Perkin-Elmer. (2005). Technical Note: FT-IR Spectroscopy Attenuated Total Reflectance (ATR).

Page 39: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxxi

Petrović, Z. S. (2008). Polyurethanes from Vegetable Oils. Polymer Reviews, 48(1), 109-155.

Petrovic, Z. S., Guo, A., & Javni, I. (2000). US Patent 6107433 Patent No. 6107433.

Petrović, Z. S., Guo, A., Javni, I., Cvetković, I., & Hong, D. P. (2008). Polyurethane networks

from polyols obtained by hydroformylation of soybean oil. Polymer International, 57(2),

275-281.

Petrović, Z. S., Guo, A., & Zhang, W. (2000). Structure and properties of polyurethanes based on

halogenated and nonhalogenated soy–polyols. Journal of Polymer Science Part A:

Polymer Chemistry, 38(22), 4062-4069.

Petrovic, Z. S., Javni, I., Guo, A., & Zhang, W. (2004). US Patent 6686435 Patent No. 6686435.

Petrović, Z. S., Yang, L., Zlatanić, A., Zhang, W., & Javni, I. (2007). Network structure and

properties of polyurethanes from soybean oil. Journal of Applied Polymer Science,

105(5), 2717-2727.

Petrović, Z. S., Zhang, W., & Javni, I. (2005). Structure and Properties of Polyurethanes

Prepared from Triglyceride Polyols by Ozonolysis. Biomacromolecules, 6(2), 713-719.

Page 40: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxxii

Petrović, Z. S., Zlatanić, A., Lava, C. C., & Sinadinović-Fišer, S. (2002). Epoxidation of soybean

oil in toluene with peroxoacetic and peroxoformic acids — kinetics and side reactions.

European Journal of Lipid Science and Technology, 104(5), 293-299.

Posnansky, K. W. (1959). US Patent 2882249 Patent No. 2882249.

Pramanik, K. (2003). Properties and use of jatropha curcas oil and diesel fuel blends in

compression ignition engine. Renewable Energy, 28(2), 239-248.

Prasad, C. M. V. (2000). Performance evaluation of non-edible vegetable oils as substitute fuels

in low heat rejection diesel engines. Proceedings of the Institution of Mechanical

Engineers, Part D: Journal of Automobile Engineering, 214(2), 181-187.

Prime, R. B., Bair, H. E., Vyazovkin, S., Gallagher, P. K., & Riga, A. (2009).

Thermogravimetric Analysis (TGA) Thermal Analysis of Polymers (pp. 241-317): John

Wiley & Sons, Inc.

Ramírez-de-Arellano-Aburto, N., Cohen-Barki,Andrés, Cruz-Gómez,M. Javier. (2003). US

Patent 6548609 Patent No.

Rijssenbeek, W. (2007). Jatropha global position (Vol. 1, pp. 1 - 46): European Commisision on

Research & Innovation.

Page 41: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxxiii

Salmiah, A. (2002). Palm-Based Polyols and Polyurethanes. MPOB Technology, 24.

Sax, N. I. (1979). Dangerous Properties of Industrial Materials. In V. Nostrand-Reinhold (Ed.),

(Vol. 5). New York, London.

Shah, S., Sharma, A., & Gupta, M. N. (2004). Extraction of oil from Jatropha curcas L. seed

kernels by enzyme assisted three phase partitioning. Industrial Crops and Products,

20(3), 275-279.

Shanley, E. S., & Greenspan, F. P. (1947). Highly Concentrated Hydrogen Peroxide. Industrial

& Engineering Chemistry, 39(12), 1536-1543.

Sinadinović-Fišer, S., Janković, M., & Petrović, Z. S. (2001). Kinetics of in situ epoxidation of

soybean oil in bulk catalyzed by ion exchange resin. JAOCS, Journal of the American Oil

Chemists' Society, 78(7), 725-731.

Skoog, D. A., Holler, F. J., & Nieman, T. A. (1998). Principles of instrumental analysis.

Philadelphia [etc.]: Harcourt Brace & Company.

Tan, S. G., & Chow, W. S. (2010). Biobased Epoxidized Vegetable Oils and Its Greener Epoxy

Blends: A Review. Polymer-Plastics Technology and Engineering, 49(15), 1581-1590.

Page 42: UNIVERSITI PUTRA MALAYSIA - psasir.upm.edu.mypsasir.upm.edu.my/id/eprint/52035/1/FK 2012 134RR.pdf · Pseudo-plastic flow behavior ... telah difungsikan dengan memasukkan kumpulan

© COPYRIG

HT UPM

xxxiv

The Solvent Extractors Association of India. (1996). SEA News Circular., Vol. X.

Thomas, A. (2000). Fats and Fatty Oils Ullmann's Encyclopedia of Industrial Chemistry (pp. 50 -

73): Wiley-VCH Verlag GmbH & Co. KGaA.

Tongpoothorn, W., Chanthai, S., Sriuttha, M., Saosang, K., & Ruangviriyachai, C. (2012).

Bioactive properties and chemical constituents of methanolic extract and its fractions

from Jatropha curcas oil. Industrial Crops and Products, 36(1), 437-444.

Transparency Market Research. (2012). Global Industry Analysis, Size, Share & Forecast (2009

- 2016). Polyurethanes (PU) Market: Transparency Market Research, 3: 35-60.

Vlček, T., & Petrović, Z. S. (2006). Optimization of the chemoenzymatic epoxidation of soybean

oil. JAOCS, Journal of the American Oil Chemists' Society, 83(3), 247-252.

Wirpsza, Z. (1993). Polyurethanes, Chemistry, Technology and Applications (pp 32 - 155): Ellis

Horwood.

Zlatanić, A., Lava, C., Zhang, W., & Petrović, Z. S. (2004). Effect of structure on properties of

polyols and polyurethanes based on different vegetable oils. Journal of Polymer Science

Part B: Polymer Physics, 42(5), 809-819.