universiti putra malaysiapsasir.upm.edu.my/id/eprint/70243/1/fk 2017 121 - ir.pdfkeputusan ujian...

37
UNIVERSITI PUTRA MALAYSIA COMBINED AXIAL AND LATERAL ROTARY CUTTING MECHANISM FOR CHOPPING OIL PALM FROND WADHAH NOORI HUMADI ALNUAIMI FK 2017 121

Upload: others

Post on 24-Feb-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

UNIVERSITI PUTRA MALAYSIA

COMBINED AXIAL AND LATERAL ROTARY CUTTING MECHANISM

FOR CHOPPING OIL PALM FROND

WADHAH NOORI HUMADI ALNUAIMI

FK 2017 121

Page 2: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

i

COMBINED AXIAL AND LATERAL ROTARY CUTTING MECHANISM FOR CHOPPING OIL PALM FROND

By

WADHAH NOORI HUMADI ALNUAIMI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

April 2017

Page 3: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

ii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia

Page 4: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

iii

DEDICATION

I would like to dedicate my thesis to

My father soul

and

A special feeling of gratitude to

My loving mother

Page 5: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

COMBINED AXIAL AND LATERAL ROTARY CUTTING MECHANISM FOR CHOPPING OIL PALM FROND

By

WADHAH NOORI HUMADI ALNUAIMI

April 2017

Chairman : Associate Professor Rimfiel bin Janius, PhD Faculty : Engineering The oil palm frond (OPF) is one of the most abundant agricultural by-products in Malaysia and has great potential to be utilized as mulch, fuel, animal feed constituent and fertilizer constituent. Today, it is also an important resource in various modern industries such as pulp and paper, fiberboard and biodegradable film. However, these benefits could not be realized fully due to the absence of a suitable way of reducing the size of the fronds conveniently and economically. Moreover, the high cost of size reduction machines due to high-power requirement, large size and lack of mobility inside the field cause the farmer to bear the transportation costs of moving oil palm fronds outside the field to chop. This necessitated the need to design a new cutting mechanism which commensurate with the physical and mechanical properties of oil palm fronds in order to get the best performance with less energy consumption. Hence, this will reduce the cost of the machine and increase farmer’s income through the sale of the chopped materials. The aim of this research is to develop a cutting mechanism that can chop oil palm fronds completely and efficiently. The specific objectives are 1) to investigate the physical properties and mechanical strength of oil palm fronds 2) to formulate a slicing-chopping mechanism and to investigate the mechanics involved and 3) to evaluate the performance of a physical compound knife employing the formulated mechanism. The properties and strengths of OPF were investigated at two levels of moisture content (72% and 59%) and two levels of maturity (5 and 10 years). A slicing-chopping mechanism consisting of compound lateral and axial blades was then formulated to split the OPF lengthwise to many strips before cutting them one by one to make the cutting process sequentially rather than simultaneously in order to reduce the energy required. The mechanics involved was investigated in detail from which three different sets of compound knives consisting of 4, 5 and 7 axial blades were fabricated. Validation of the models was done by running the knives to

Page 6: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

ii

chop OPF at the various treatment levels stated above at speeds of 1500 and 1900 rpm and the operating torque, power requirement, throughput capacity and chopping rate measured. Results of strength tests revealed that the stalk is the strongest part of an oil palm frond irrespective of moisture content and maturity. While the lateral shear force is directly proportional to the moisture content, the axial (lengthwise) shear force and the penetration force are inversely proportional to moisture content. Moisture content has a very strong influence on the shear strength of oil palm fronds but not on compressive strength. Maturity consistently has the smallest effect on penetrative, compressive, lateral and axial shear forces. The force required to cut oil palm frond stalks by the lateral blade only (i.e. the conventional way) was about twice more than by the compound knives irrespective of the moisture content and maturity of the fronds. A compound knife with 5 axial blades powered by a petrol engine of 2.8 kW (3.7hp) rated power was able to chop fronds completely right up to the stalk at 1500 rpm. The highest power requirement was obtained when running the 7-axial-blade compound knife at 1900 rpm; being 4.7 kW (6.3 hp). A maximum chopping capacity of 1059 kg/h was obtained using a compound knife with 5 axial blades at 1900 rpm. In conclusion, the slicing-chopping mechanism developed was proven to be able to chop OPF completely up to the stalks and with about 50% less energy, both of which have never been achieved by any commercially available OPF choppers before. This work contributes knowledge on the development of a compound blade that can chop the whole OPF up to the stalk using engine power of less than 3 kW, both of which have never been possible before. Besides it also contributes to the literature in similar works on the development of chopping machine and forage harvesting related machines and expanding the new idea on using new technology and work successfully on the field.

Page 7: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

GABUNGAN MEKANISMA PEMOTONGAN SISI DAN BERPAKSI BAGI MENCINCANG PELEPAH KELAPA SAWIT

Oleh

WADHAH NOORI HUMADI ALNUAIMI

April 2017

Pengerusi : Profesor Madya Rimfiel bin Janius, PhD Fakulti : Kejuruteraan Pelepah kelapa sawit (OPF) adalah salah satu daripada bahan sampingan industri pertanian yang paling banyak di Malaysia yang mempunyai potensi yang besar untuk digunakan sebagai mulsa, bahan api, komponen makanan haiwan dan komponen baja. Kini, pelepah kelapa sawit (OPF) adalah salah satu sumber yang penting dalam pelbagai industri moden seperti pulpa dan kertas, papan serat dan filem biodegradable. Walau bagaimanapun, manfaat ini tidak dapat direalisasikan sepenuhnya kerana kos untuk mengurangkan saiz pelepah dengan mudah dan berekonomikal. Selain itu, kos menghasilkan mesin yang dapat mengurangkan saiz adalah tinggi kerana keperluan kuasa kuda yang tinggi, saiz ladang yang besar dan kekurangan mobiliti dalam ladang membuat petani menanggung kos pengangkutan yang tinggi untuk alih pelepah kelapa sawit ke luar ladang untuk dicincang. Ini membawa kepada keperluan untuk mereka cipta satu mekanisme baru untuk memotong pelepah kelapa sawit yang sesuai dengan sifat-sifat fizikal dan mekanikalnya untuk mendapatkan prestasi yang terbaik dengan penggunaan tenaga yang minima. Oleh itu, ini akan mengurangkan kos mesin dan meningkatkan pendapatan petani melalui penjualan bahan yang dicincang. Tujuan penyelidikan ini adalah untuk membangunkan mekanisme pemotongan yang boleh mencincang daun kelapa sawit dengan sempurna dan cekap. Objektif khusus penyelidikan ini adalah 1) untuk mengkaji sifat- sifat fizikal dan kekuatan mekanik pelepah kelapa sawit 2) untuk merumuskan mekanisme hiris-cincnag dan menyiasat mekanik yang terlibat dan 3) untuk menilai prestasi fizikal pisau yang menggunakan mekanisme yang dirumuskan.

Page 8: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

iv

Sifat dan kekuatan pelepah kelapa sawit dikaji pada dua tahap kandungan kelembapan (72% dan 59%) dan dua tahap kematangan (5 dan 10 tahun). Mekanisme pencincang terdiri daripada pisau sisi dan pisau berpaksi kemudian direkacipta untuk memotong OPF secara memanjang kepada banyak jalur sebelum memotong mereka satu demi satu dalam proses pemotongan berurutan dan bukannya pemotongan serentak untuk mengurangkan tenaga yang diperlukan. Mekanisma yang terlibat disiasat secara terperinci dengan menggunakan tiga set pisau kompaun yang terdiri daripada 4, 5 dan 7 bilah pisau berpaksi. Pengesahan model dilakukan dengan mengendalikan mekanisme memotong pelepah kelapa sawit di pelbagai tahap yang dinyatakan di atas pada kelajuan 1500 rpm dan 1900 rpm dan mengukur kadar pusingan pemotong, keperluan kuasa, kapasiti pemprosesan dan kadar mencincang. Keputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian yang paling kuat daripada pelepah kelapa sawit tanpa mengira kandungan kelembapan dan kematangan. Manakala daya potongan sisi adalah berkadar terus dengan kandungan kelembapan, daya pemotongan berpaksi (memanjang) dan daya penembusan pula adalah berkadar songsang dengan kandungan kelembapan. Kandungan lembapan mempunyai pengaruh yang sangat kuat pada kekuatan mencincang pelepah kelapa sawit tetapi tidak mempunyai kesan yang besar kepada daya mampatan. Kematangan secara konsisten mempunyai kesan minima ke atas daya penebusan, mampatan, pemotongan sisi dan berpaksi. Daya yang diperlukan untuk memotong pelepah kelapa sawit menggunakan pisau sisi (cara konvensional) adalah kira-kira dua kali lebih banyak daripada dengan pisau kompaun tanpa mengira kandungan kelembapan dan kematangan pelepah. Satu pisau sebatian yang terdiri daripada 5 paksi yang beraksi dengan menggunakan kuasa enjin petrol 2.8 kW (3.7hp) dapat memotong pelepah kelapa sawit ke tangkai pada kelajuan 1500 rpm. Keperluan kuasa tertinggi didapati ketika menjalankan pisau sebatian 7 bilah berpaksi pada kelajuan 1900 rpm; iaitu 4.7 kW (6.3 hp). Kapasiti pemotongan maksima sebanyak 1059 kg / j diperoleh dengan menggunakan pisau sebatian 5 bilah berpaksi pada kelajuan 1900 rpm. Kesimpulannya, mekanisme pemotongan mencincang terbukti dapat memotong OPF sepenuhnya sehingga tangkai dan menggunakan 50% kurang tenaga. Dua kelebihan ini tidak pernah dicapai oleh mana-mana pencincnag pelepah kelapa sawit komersial yang sedia ada. Selain itu, kajian ini menyumbang kepada kajian kesusasteraan dalam bidang pembangunan mesin yang berkaitan dengan pencincang dan penuaian serta mengembangkan idea baru tentang penggunaan teknologi baru dan bekerja dengan jayanya di ladang.

Page 9: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

v

ACKNOWLEDGEMENTS All praise and glory is due to Almighty Allah (the Most Gracious, the Most Merciful, the Omnipotent and Self-Subsistent) for Allah grace and gave me opportunity towards the success and completion of this work. I would like to extend my heartfelt gratitude to the many people who have contributed to this project in the form of assistance, ideas and critiques. Firstly, I would like to thank my supervisor Associate Professor Rimfiel bin Janius for accepting me as a PhD student. I am truly indebted to his insights during discussions, and for his patience to teach and to review my writings that are often riddled with grammatical errors. He was a source of inspiration with his encouragement, helpful suggestions, valuable guidance and unwavering support at times of technical failures and intellectually challenging findings. I am immensely grateful to my Co-supervisor Professor, Ir Desa bin Ahmad who provided the opportunity and support to pursue my interest in research. I am also greatly indebted to my Co-supervisor Dr. MD. Akhir bin HJ. Hamid for his support, advice, and contribution. This work would not be completed without the support of staff and researchers of the Faculty of Engineering and Mardi Institute. Special thanks go to the technical staff of department of biological and agricultural laboratories at faculty of engineering and the technical staff laboratories at Mardi Institute for efforts in manufacturing and maintaining test equipment.

Page 10: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

Page 11: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

vii

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows: Rimfiel bin Janius, PhD Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman) Desa bin Ahmad, PhD Professor, Ir Faculty of Engineering Universiti Putra Malaysia (Member) MD. Akhir bin HJ. Hamid, PhD Senior Lecturer Mardi Institute Universiti Putra Malaysia (Member)

_______________________________ ROBIAH BINTI YUNUS, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia Date:

Page 12: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

viii

Declaration by graduate student I hereby confirm that: this thesis is my original work; quotations, illustrations and citations have been duly referenced; this thesis has not been submitted previously or concurrently for any other degree

at any institutions; intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;

written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ______________________________ Date: _________________ Name and Matric No.: Wadhah Noori Humadi Alnuaimi , GS33509

Page 13: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

ix

Declaration by Members of Supervisory Committee This is to confirm that: the research conducted and the writing of this thesis was under our supervision; supervision responsibilities as stated in the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: Name of Chairman of Supervisory Committee:

Associate Professor Dr. Rimfiel bin Janius

Signature:

Name of Member of Supervisory Committee:

Professor, Ir Dr. Desa bin Ahmad

Signature:

Name of Member of Supervisory Committee:

Dr. MD. Akhir bin HJ. Hamid

Page 14: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

x

TABLE OF CONTENTS Page ABSTRACT iABSTRAK iiiACKNOWLEDGEMENTS vAPPROVAL viDECLARATION viiiLIST OF TABLES xiiLIST OF FIGURES xvLIST OF ABBREVIATIONS xx

CHAPTER 1 INTRODUCTION 1 1.1 Overview of Oil Palm Fronds (OPF) 1 1.2 Oil Palm Frond (OPF) Size Reduction Machines 2 1.3 Problem Statement 2 1.4 Aim and Objectives 3 1.5 Scope of Study 3 2 LITERATURE REVIEW 4 2.1 Availability of Oil Palm Fronds 4 2.2 Properties of Oil Palm Fronds 6 2.2.1 Physical Properties 7 2.2.2 Chemical Composition 7 2.2.3 Mechanical Properties 7 2.2.4 Utilization of Oil Palm Fronds 8 2.3 Problems in the Utilization of Size Reduction Machines

for Chopping Oil Palm Fronds in Malaysia 10

2.4 Size Reduction Machines for Wood and Cellulosic Materials and Their Basic Working Mechanisms

15

2.4.1 Chippers 16 2.4.2 Hammer Mills 19 2.4.3 Shredders 23 2.4.4 Hybrid Size Reduction Equipment 25 2.5 Effects of Physical-Mechanical Properties of Plant

Materials on the Cutting Process 29

2.6 The Principles of Cutting 29 2.7 Cutting Tool Requirements 32 2.8 Process of Cutting and the Cutting Forces 37 2.9 Motion Angles Relative to the Material 42 2.10 Different Speed of the Knives 45 2.11 Percentage of Length of Cut 46 2.12 Summary 46 3 MATERIALS AND METHODOLOGY 47 3.1 Physical Properties of Oil Palm Fronds 48

Page 15: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xi

3.2 Mechanical Strength of Oil Palm Fronds 51 3.3 Formulation of a Slicing-Chopping Mechanism for

Cutting Oil Palm Fronds 56

3.3.1 Analysis of Forces on Compound Knife during Cutting

61

3.3.2 Cutting Force and Cutting Energy Requirement 66 3.3.3 Torque and Power Requirement 67 3.3.4 The OPF Cutting Mechanism Assembly 74 3.4 Performance evaluation of the OPF cutting mechanism 78 3.5 Statistical Analysis 80 4 RESULTS AND DISCUSSION 81 4.1 Physical Characteristics of Oil Palm Fronds 81 4.2 Statistical Analysis of the Result of Mechanical

Properties of OPF 84

4.2.1 Compressive Strength 85 4.2.2 Penetrative Force 89 4.2.3 Lateral Shear Force 93 4.2.4 Axial Shear Force 98 4.2.5 Summary of Mechanical Strengths of OPF 102 4.3 Effect of Compound Blades on Cutting Force 104 4.4 Chopping Performance of Compound Knives 110 4.4.1 Effect of Compound Knife on Torque 110 4.4.2 Effect of Compound Knife on Cutting Power 115 4.4.3 Effect of Compound Knife on Capacity 120 4.4.4 Effect of Compound Knife on Quality of

Chopped Material 124

4.5 Summary 129 4.6 Benefits and Novelty of New Compound Knife Design 131 5 CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH 132

5.1 Conclusion 132 5.2 Recommendations for Further Research 132 REFERENCES 134APPENDICES 142BIODATA OF STUDENT 145LIST OF PUBLICATIONS 146

Page 16: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xii

LIST OF TABLES Table Page

2.1 Physical Properties of an Oil Palm Frond 7 2.2 Chemical Composition of Oil Palm Fronds 7 2.3 Nutrient Contents of Oil Palm Fronds Obtained from One Hectare

of Oil Palm Fronds (kg/hectare) 8

2.4 The Most Common Applications for Oil Palm Fronds (OPF) 9 2.5 Specification of OPF Choppers Available 14 2.6 Advantages and Disadvantages of Types of Size Reduction

Equipment 26

2.7 Summarize the Most Common Cutting Mechanism Available

with the Power Required 28

3.1 Data Sheet for OPF Strength Tests 53 3.2 Compound Knife Force Requirement for Cutting OPF Stalk

Sections 59

3.3 Data Sheet of Performance test of OPF Cutting Mechanism 79 4.1 Typical Values of the Physical Characteristics of Oil Palm Fronds 82 4.2 Analysis of Variance for Compression Data 85 4.3 Post Hoc Tests (LSD) 86 4.4 Multi Linear Regression of Compressive Strength 86 4.5 Multi Linear Regression of Compressive Strength by Stepwise

Method 87

4.6 Analysis of Variance for Penetration Force Data 90 4.7 Post Hoc Tests (LSD) 90 4.8 Multi Linear Regression of Penetration Force 91 4.9 Analysis of Variance for Lateral Shear Force Data 94 4.10 Post Hoc Tests (LSD) 94

Page 17: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xiii

4.11 Multilinear Regression of Lateral Shear Force 95 4.12 Multilinear Regression of Lateral Shear Force by Stepwise

Method 95

4.13 Analysis of Variance of Axial Shear Force Data 98 4.14 Post Hoc Tests (LSD) 99 4.15 Multi Linear Regression on Axial Shear Force 100 4.16 Multi Linear Regression on Axial Shear Force by Stepwise

Method 100

4.17 Analysis of Variance of Shear Force of Conventional and

Compound Knife 104

4.18 Descriptive Statistics of Shear Forces of Conventional and

Compound Knives 105

4.19 Analysis of Variance for Cutting Torque Data of Compound

Knife 111

4.20 Post Hoc Test (LSD) 112 4.21 Multi Linear Regression on Cutting Torque of Compound Knife 112 4.22 Multi Linear Regression on Cutting Torque of Compound Knife

by Stepwise Method 113

4.23 Analysis of Variance for Cutting Power Data of Compound Knife 116 4.24 Post Hoc Tests (LSD) 117 4.25 Multi Linear Regression on Cutting Power of Compound Knife 118 4.26 Multi Linear Regression on Cutting Power of Compound Knife

by Stepwise Method 118

4.27 Analysis of Variance for Capacity Data of Compound Knife 121 4.28 Post Hoc Test (LSD) 122 4.29 Analysis of Variance for Quality of Chopped Material Data of

Compound Knife 125

4.30 Post Hoc Tests (LSD) 126

Page 18: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xiv

4.31 Multi Linear Regression on Quality of Chopped Material of Compound Knife

127

4.32 Multi Linear Regression on Quality of Chopped Material of

Compound Knife by Stepwise Method 127

4.33 Maximum and Minimum Mean for the Factors of Study Resulted

by the Type of Compound Knife 130

A.1 Data of Mechanical Properties Tests 142 A.2 Data of Field Experiment for Compound Blades 143

Page 19: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xv

LIST OF FIGURES Figure Page 2.1(a) An Oil Palm Plantation 5 2.1(b) Classification of Oil Palm Biomass and Their Respective Fibers 5 2.2 An Oil Palm Frond and Its Parts 6 2.3 Efficient Utilization of Oil Palm Fronds 10 2.4 OPF Picker-Cum-Feeder Chipping Machine 12 2.5 Collection and Chipping of OPF in the Plantation 13 2.6 Details of the TC15 Chopper Machine 14 2.7 Various Size Reduction Methods and Their Respective Positions

in the Overall Size Reduction Process 16

2.8 Cutting Mechanism of a Knife Chipper 17 2.9 Cutting Mechanism of a Disk Chipper 18 2.10 Principles of Operation of (a) a Cylindrical End-Feed Drum

Chipper, (b) a V-Drum Chipper 19

2.11 The Principle of operation of a Hammer Mill 20 2.12 Hammer mill (Swing Hammer) 21 2.13 Impact Hammer Mill 21 2.14 Hammer mill (Fixed Hammer) 22 2.15 (a) Spiral-Head Wood Chunker, (b) An Involuted Disk Chunker

(c) Double Involuted Disk Chunker 23

2.16 (a) Shredder with Four Shafts, (b) Shredder with Two Shafts 24 2.17 Pan and Disc Design 25 2.18 Successive Steps in the Cutting Process 30 2.19 Cut in Local Tension 31 2.20 Wedging cut 32

Page 20: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xvi

2.21 Wedging Cut in Splitting and Cross Cutting 32 2.22 Definition Knife Blades 33 2.23 Wear on Cutter Head Knives and Shear Plate; (A) Sharp Knife,

New Shear Plate; (B) Dull Knife, Worn Shear Plate 34

2.24 Definition of Characteristic Angles and Length Dimensions for

a Knife 35

2.25 Definition of Counter Shear and Knife Edge 36 2.26 Type of Counter Shear Reaction in Cutting 37 2.27 Typical Force Displacement Diagrams for Cutting 38 2.28 Observed Force Displacement Diagram 39 2.29 Observed Cutting Force Diagram for Timothy 39 2.30 Cutting Force versus Displacement 40 2.31 Diagram of average cutting force, FOCAV, LTC = total

thickness of cut layer, not compressed 41

2.32 Principal Directions in a Typical Stem 43 2.33 Definition of Tilt Angle ANT Illustration Seen from Behind the

Knife in the Direction of Knife Motion 43

2.34 Definition of Slant Angle ANS Illustration Seen from the Side

Perpendicular to Knife Motion 44

2.35 Knife Motion Notations 45 3.1 Work Flow Schematic 47 3.2 The Three Sections of the Oil Palm Frond 48 3.3 OPF Length Determination 48 3.4 OPF Leaf Lengths Determination 49 3.5 OPF Stem Cross Section Determination 50 3.6 OPF Conditions: A- Directly after Cut, B - One Week after Cut 51 3.7 The Universal Testing Machine (Instron 3382) 52

Page 21: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xvii

3.8 Shear Test 54 3.9 Penetration Test 54 3.10 Compression Test. (A) Before Compression (B) After

Compression 55

3.11 Longitudinal Section of OPF 56 3.12 Axial shear test along fiber orientation 57 3.13(a) Compound Knife 58 3.13(b) Sketch Drawing and the Dimensions of the Model of

Compound Knife 58

3.14 Cutting of OPF Stalk Section Using Compound Knife 60 3.15 Cutting of OPF Stalk Section Using Lateral Blade

(Conventional Knife) 60

3.16 The Compound Knife during the Cutting Process. Part (a) is the

back view and it shows the action of the axial blade. part (b) is the front view and it shows the action of the lateral blade: 1-compound knife before contacting the frond, 2- Axial blades bite into the frond, 3- Axial blades split the frond into strips and the lateral blade starts cutting the frond strips one by one, 4- The lateral blade continues cutting the frond strips until the end

62

3.17 The Direction of Forces of Wedge (Axial) Blade 63 3.18 Compound Knife with Seven axial Blades 64 3.19 Compound Knife with Five axial Blades 65 3.20 Compound Knife with Four axial Blades 66 3.21 Compound Knife and the Countershear Bar 66 3.22 Force Analysis for Compound Knife during Cutting Process of

OPF Cross Section 68

3.23 Binsfeld Torque Trak 10K Receiver 70 3.24 Binsfeld Torque Trak 10K Transmitter 70 3.25 Binsfeld Torque Trak 10K Battery Holder 71 3.26 Binsfeld Torque Trak 10K Remote Control 71

Page 22: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xviii

3.27 Binsfeld Torque Trak 10K Installations on the Shaft 72 3.28 Binsfeld Torque Trak 10K Installations on the Machine 72 3.29 Torque Range Calculator 73 3.30 Position of the Major Components of the Chopping Mechanism

Relative to the Housing and Supporting Frame 74

3.31 Exploded View of the OPF Chopping Mechanism Showing the

Main Components 75

3.32 Front View of the OPF Cutting Mechanism Combined with

Frame and Housing 76

3.33 The Engine Used and Its Specifications 77 3.34 Using a Tachometer to Determine Shaft Speed 78 4.1 The Curved Section of a Frond 83 4.2 A Whole Oil Palm Fond and Its Typical Cross Section 84

4.3 Correlations of Moisture Content and maturity with Compressive

88

4.4 Correlations of Section with Compressive Strength 88 4.5 Behavior of Compressive Force during Compression Testing 89 4.6 Correlation of moisture content and maturity with Penetration

Force 92

4.7 Correlation of OPF section with Penetration Force 92 4.8 Behavior of Penetration Force during Penetration Testing 93

4.9 Correlation of Moisture Content and Maturity with Lateral Shear Force

96

4.10 Correlation of Section with Lateral Shear Force 97 4.11 Behavior of Lateral Shear Force during Lateral Shear Testing 97 4.12 Correlations of Moisture Content and Maturity with Axial

Shear Force 101

4.13 Correlations of Section with Axial Shear Force 102

Page 23: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xix

4.14 Variation of Load, Frond Section and Maturity for Oil Palm Fronds at 72% Moisture Content

103

4.15 Variation of Load, Frond Section and Maturity for Oil Palm

Fronds at 59% Moisture Content 103

4.16

Shear Test of OPF using Lateral Blade (top) and the Behavior of the Shear Force (bottom)

107

4.17 Shear Test of OPF using Compound Knife (top) and the

Behavior of the Shear Force (bottom) 109

4.18 Correlations of Moisture Content and Maturity with Cutting

Torque 114

4.19 Correlations of Speed and Compound Knife with Cutting

Torque 114

4.20 Correlation of Moisture Content and Maturity with Cutting

Power 119

4.21 Correlation of Speed and Compound Knife with Cutting Power 120 4.22 Correlations of Moisture Content and Maturity with Capacity 123 4.23 Correlations of Speed and Compound Knives with Capacity 123 4.24 The Percentage of Chopped Material 124 4.25

Correlations of Moisture Content and Maturity with Quality of Chopped

128

4.26

Correlations of Speed and Compound Knife with Quality of Chopped

129

Page 24: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xx

LIST OF ABBREVIATIONS OPF oil palm fronds

OPT oil palm trunks

EFB empty fruit bunch

million-t/y million-tone/year

TEM Transmission electron microscopy

µm Micrometer

l/d aspect ratio of fiber

Hp Hours Power

rpm Roller Rotor Speed

LRE edge radius

LTE edge thickness

ANEB wedge angle of blade

LTB blade thickness

LWB blade width

LTC thickness cut layer, total

FOC cutting force

SLK knife travel coordinate

FOCS Specific cutting force

LWC width of cut

ENC1 cutting energy

FOCAV average cutting force during one cut

ENCS specific cutting energy

Page 25: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xxi

ENC total cutting energy for cutting the amount MA

MA amount of dry matter cut

POC power used for cutting

MAT device capacity as dry matter

ANR rake angle

ANC clearance angle

ANP chip angle

ANT tilt angle

ANS slant angle

POD total power for the cutting device

P0L1 non-cutting power loss

EFC cutting efficiency, fraction

POC actual cutting power

ASABE American Society of Agricultural and Biological Engineering

ANSI American National Standards Institute

M% moisture content percentage

Ww wet weight

Wd dry weight

oC Temperature(centigrade)

KN kilonewton

Fw Force necessary to cut material, in the section plane

Kmt Resistance of material to shear

Smt Area of the cut cross-section

τt Shear stress at shearing

Page 26: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

xxii

SCF specific cutting force

SCE specific cutting energy

F max Maximum cutting force

E max maximum cutting energy

A max maximum cross section area of OPF stem

Μe microstrain

Prot rotational mechanical power

M torque

Ω angular velocity

Page 27: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

1

CHAPTER 1

INTRODUCTION

1.1 Overview of Oil Palm Fronds (OPF) Oil palm is one of the most important commodity crops in Malaysia. Mature palms are single-stemmed and grow to 20 m tall. The fronds are pinnate and reach between 3-9 m long. A young palm produces about 30 fronds a year. Established palms over 10 years old produce about 20 fronds a year. The oil palm frond (OPF) is one of the most abundant agricultural by-products in Malaysia. It is obtained from the cultivation of oil palm trees (Elaeis guineensis Jacq). Almost all pruned fronds are discarded in the plantation, mainly for nutrient recycling and soil conservation. It has great potential to be utilized as a roughage source or as a component in compound feed for ruminants. Yuen and Aziz (2012) reported that the total planted area of oil palm in 1990 reached 2,094,028 million hectares. In the year 2011, the total planted area of oil palm was 5,642,943 million hectares (MPOB, 2015). This increase in planted area means an increase in plant biomass and the biggest part of this biomass is oil palm fronds. It is estimated that 47 million tons of oil palm fronds (OPF) are produced in 2011 in Malaysia from 5 million hectares of plantation (MPOB, 2015). This number is estimated to have risen with the increase in hectarage under oil palm. The OPF is rich in fiber and many minerals like N, P, K, and Mg. Moreover, it can be used as mulch, fuel, animal feed constituent and fertilizer constituent. In addition to that, it also is an important resource in various modern industries such as pulp and paper, fiberboard and biodegradable film. However, these benefits could not be realized fully due to the absence of a suitable way of reducing the size of the fronds (Hamid, 2008). According to Abu Hassan et al. (1996), the interest in the use OPF as animal feed have caused many research to be carried out by the Malaysian Agricultural Research and Development Institute (MARDI) and the Japan International Research Center for Agricultural Sciences (JIRCAS). Detailed studies on the fermentation characteristics and palatability of OPF silage as well as on animal performance have been positively reported by Abu Hassan and Ishida (1991), Ishida and Abu Hassan (1997) and Shio et al. (1999). Nevertheless, oil palm frond (OPF) is still limited in its use despite the aforementioned developments.

Page 28: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

2

In the 1990s, oil palm fronds and trunk wastes used to be burned. But environmental concerns led to the banning of such practice (Zainal et al., 2000). Currently, for the long-term benefit of nutrient recycling the OPF are left to rot between the rows of palm trees mainly for soil conservation and erosion control. Ultimately the disadvantages of this practice are the spread of diseases, the harboring of dangerous animals, the trapping of loose fruits and being unsightly. 1.2 Oil Palm Frond (OPF) Size Reduction Machines None of the currently available commercial size reduction machines or choppers is specifically designed for oil palm fronds. They are typically big, of high power requirement, expensive and, as they are actually foraging choppers, can chop up to about a half of the length of the fronds only. In the absence of other alternatives for disposal, as discussed in section 1.1 above, the farmer has no choice but to maintain the status quo, i.e. pile the fronds up in alternate rows in the field. This is because the main goal of the farmer is profit and he/she will try to reduce production costs as much as possible. Biomass pretreatment or chopping is a very expensive operation with high energy demand. Reducing energy requirements improves the whole process economics. Generally, the energy requirement of mechanical comminution depends on the machine type, operating variables, particle sizes (initial and final), biomass characteristics, processing amount, composition and moisture content. The characteristics of OPF are the key to the development and optimization of a cutting mechanism that commensurates with the physical and mechanical properties of OPF. The fiber-packed and strong broad end of the frond is acutely curved and this makes chopping even more difficult. Hence the concept of dividing the stem of OPF frond by installing the axial blades on the lateral blade in order to reduce the chopping force requirement of the frond, in addition to make the cutting process sequentially rather than cumulative to cut part by part until the end cross-section of the frond in one pass. An appropriately designed cutting mechanism would lead to high performance, reducing expenses in the attempt to arrive at the best solution in dealing with this biomass. 1.3 Problem Statement A huge amount of oil palm fronds (OPF) is accumulated in the field after harvesting. Left in the field, they act as mulch but also house rodents and snakes, trap loose fruits, help in the spread of diseases and are unsightly. The relatively large size of the fronds make the cost of transportation to take them out of the field to be about RM10 per kilometer per ton (Gomes, 2011; Rozario and Melssen, 2013) while burning them will cause environmental concerns. Being rich

Page 29: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

3

in minerals and fiber, the OPF can be used not only as mulch, fuel, animal feed constituent and fertilizer constituent but also as an important resource in various modern industries such as pulp and paper, fiberboard and biodegradable film. However, these benefits could not be realized fully due to the pre-processing cost being around RM150 to RM430 per ton (Rozario and Melssen, 2013) to reduce the size to 2-3 cm as per the required demand (Zahari et al., 2002). Also, currently available frond chopping machines are able to cut the slim part of the frond only, not right up to the broad end which contains a lot of useful material. These machines are manufactured to cater for a wide range of agricultural residues, making their power requirement to be around 22 kW (30 horsepower). The absence of a suitable way of reducing the size of the fronds effectively and economically is mainly due to the mechanics of chopping the fiber-packed OPF being still not understood. Therefore, there is a need to develop an appropriate cutting mechanism with a design that commensurate with the physical and mechanical properties of oil palm fronds in order to get the best performance with the least energy consumption. An appropriately designed cutting mechanism would be able chop the whole frond right up to the broad end. 1.4 Aim and Objectives The aim of this study is to develop a suitable cutting mechanism for chopping oil palm fronds. The specific objectives are:

1. To investigate the physical properties and mechanical strengths of oil palm fronds.

2. To formulate a slicing-chopping mechanism for oil palm fronds and to investigate the mechanics involved.

3. To evaluate the cutting performance of physical knife models employing the formulated slicing-chopping mechanism by fabricating compound knives with different slicing blade distances and running them to chop OPF at various frond and machine variables.

1.5 Scope of Study This study focuses on the development of the cutting mechanism only because chopping is the biggest problem and its mechanics has never been understood. The forces involved and the most effective method of cutting was investigated. Therefore, while the appropriate dimensions of the cutting mechanism and the materials used were considered, a full engineering analysis of strength for optimal design was not carried out. Also studied were the physical and mechanical properties of oil palm fronds. The design and development of a whole commercial oil palm frond chopping machine were not covered; as such mechanical feeding was not studied. Also not included in the scope of the study was the mechanical picking up and transporting of the fronds from the field.

Page 30: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

134

REFERENCES

Abdul Khalil, H. P. S., Siti Alwani, M., Ridzuan, R., Kamarudin, H., & Khairul, A. (2008). Chemical Composition, Morphological Characteristics, and Cell Wall Structure of Malaysian Oil Palm Fibers. Polymer-Plastics Technology and Engineering, 47 (3): 273 – 280.

Abdul Khalil, H.P.S., Siti Alwani, M., & Mohd Omar A.K. (2006). Cell Walls of

Tropical Fibers. Bio-Resources, 1(2):220-232. Abu Bakar, A. H., & Abdul Khalil, H. P. S. (2005). Lignocellulose-Based Hybrid

Bilayer Laminate Composite: Part I - Studies On Tensile and Impact Behavior of Oil Palm Fiber-Glass Fiber-Reinforced Epoxy Resin. Journal of Composite Materials, 39 (8): 663-684.

Abu Hassan, O., & Ishida, M. (1991). Effect of Water, Molasses and Urea Addition

on Oil Palm Frond Silage Quality – Fermentation Characteristics and Palatability to Kedah-Kelantan Bulls. Proceedings of the Third International Symposium on The Nutrition of Herbivores, 25-30 Aug 1991, Penang, Malaysia, pp.94-99.

Abu Hassan, O., Ishida, M., Mohammed Shukri, I., & Tajuddin, Z. A. (1996).Oil-

Palm Fronds as A Roughage Feed Source for Ruminants in Malaysia. Extension Bulletin – ASPAC. Food & Fertilizer Technology Center, pp 420-428.

Abu Hassan, O., Ishida, M., Mohd. Shukri, I., & Ahmad Tajuddin, Z. (1994). Oil-

Palm Fronds as a Roughage Feed Source for Ruminants in Malaysia. Malaysia Agriculture Research and Development Institute (MARDI), Kuala Lumpur, Malaysia.

Ahmad, D.S., Roy, K., &. Jaelani, A. R (2000) .Evaluation of Design Parameters of

Sickle Cutter and Claw Cutter for Cutting Oil Palm Frond. AMA Journal, 31(2):55-60.

Ajayi, O., & Clarke, B. (1989). High Velocity Shearing Of Maize Kernels. Journal

Agriculture Engineering Research. 42, 15-25. Alberta, (2012).Forage Harvester Operation. Available from:

http://www1.agric.gov.ab.ca [accessed 3rd October, 2012]. Amar, K. M., Manjusri, M., & Lawrence, T. D. (2005).Natural Fibers, Biopolymers,

and Biocomposites. USA: CRC Press, Tayler and Francis Group. ANSI/ASAE, American National Standards Institute/American Society of

Agricultural Engineers. (1992). Method Of Determining And Expressing Particle Size Of Chopped Forage Materials By Screening: S424.1 Mar1992 (R2007).

Page 31: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

135

ASABE, American Society of Agricultural and Biological Engineers (2006a). Agricultural machinery management: EP496.3, St. Joseph, MI.

ASABE, American Society of Agricultural and Biological Engineers. (2006b). Three

Point Free Link Attachment for Hitching Implements to Agricultural Wheel Tractors: S217.12, St. Joseph, MI: 95-104.

ASABE, American Society of Agricultural and Biological Engineers.

(2008a).Moisture Measurement–Forages: 608, S358. 2, St. Joseph, MI. ASABE, American Society of Agricultural and Biological Engineers. (2008b).

Uniform Terminology for Agricultural Machinery Management: S495.1, St. Joseph, MI.

ASABE, American Society of Agricultural and Biological Engineers. (2009).

Agricultural Machinery Management Data: D497.6, St. Joseph, MI. ASABE, American Society of Agricultural and Biological Engineers. (2012).

Adjusting Forage Harvester Test Data for Varying Crop Moisture: S358.3, St. Joseph, MI.

Austin, L. G. (2004). A Preliminary Simulation Model for Fine Grinding in High

Speed Hammer mills. Powder Technology, 143-144: 240-252. Austin, L.G. (2002). A Treatment of Impact Breakage of Particles. Powder

Technology, (126): 85-90. Binsfeld, (2013).Full Scale Torque Calculator. Available from:

http://www.binsfeld.com/calculators/ [accessed 17th June, 2013]. Bosoi, E.S., Verniaev, I.I., Smirnov, E.G., & Sultan-Shakh, (1991). Theory,

Construction and Calculations of Agricultural Machines. Moscow. Mashinostroenie publishers.

Chancellor, W. J. (1957). Basic Concepts of Cutting Hay. PhD Thesis. Cornell Univ.

Ithaca NY. 170pp. Chattopadhyay, P., & Pandey, K. (1999). Effect of Knife and Operational Parameters

on Energy Requirement in Flail Forage Harvesting. Journal of Agricultural Engineering Research, 73(1): 3-12.

Chen, Y., Jean, L.G., & Jude L. (2004). Power Requirements of Hemp Cutting and

Conditioning. Bio Systems Engineering, 87 (4):417-424. CWC, (1997). Wood Waste Size Reduction Technology Study. Final report. Report

No. CDL-97-3. Seattle, Washington. [accessed 25 December 2015]. Available from: http://www.p2pays.org/ref/13/12638.pdf.

Page 32: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

136

Dahlan, I. (2000).Oil Palm Frond, A Feed for Herbivores. Asian-Australasian Journal of Animal Sciences, 13 (SUPPL. C): 300-303.

Diakun, J., Tesmer, J. (1986). Opory Ciecia Mięsa Mrożonego. Gospodarka mięsna,

1, 7-8. Djordjevic, N., Shi, F. N., & Morrison, R. D. (2003). Applying Discrete Element

Modeling to Vertical and Horizontal Shaft Impact Crushers. Minerals Engineering, 16: 983-991.

Dobler, K. (1972). Der freie Schnitt beim Mahen von Halmgut. (The Free Cut in

Cutting Straw Material).Verlag Eugen Ulmer Stuttgart. Hohenheimer Arbeiten, Reihe: Agrartechnik, Heft 62.

Elaeis guineensis, (2015). The Plant List and Material Property Data. [Accessed 5

December 2014].Available from: http://en.wikipedia.org/wiki/Elaeis_guineensis.

Esehaghbeygi, A., Hoseinzadeh, B., Khazaei, M., & Masoumi, A. (2009). Bending

and Shearing Properties of Wheat Stem of Alvand Variety .World Appl Sci J, 6: 1028–1032.

Figiel, A., & Frontczak, J. (2000).Wpływ Wilgotności Na Opory I Pracę Przecinania

Ziaren I Nasion Wybranych Roślin. Referaty I Doniesienia. II Zjazd Naukowy, PTA Lublin –Dąbrowica, 51- 152.

Figiel, A., & Frontczak, J. (2001). Opory Cięcia Ziarna Kukurydzy. Inżynieria

Rolnicza, 2(22), 49-55. Fisher, D.A., Kolega, J. J., & Wheeler, W.C. (1957). An Evaluation of Energy

Required To Cut Forage Grasses and Legumes. Progress Report 17, Agr. Exp. Stat. University of Connecticut. Storrs, CT.

Franz, N.C. (1958). Analysis of the Wood Cutting Process. University of Mich.

Press. Ann Arbor, pp: 152, FE674.4F857a. FRIM, Forest Research Institute Malaysia. (1991). Oil Palm Stem Utilisation 1991:

Review of Research. FRIM Research Pamphlet No. 107, Kepong, Forest Research Institute Malaysia.

Ghahraei, O., Ahmad, D., Khalina, A., Suryanto, H., & Othman, J. (2011). Cutting

Tests of Kenaf Stems. Transactions of the ASABE, 54(1): 51-56. Ghahraei, O., Khoshtaghaza, M.H., & Ahmad, D. (2008). Design and Development

of Special Cutting System for Sweet Sorghum Harvester. Journal of Central European Agriculture, 9(3): 469-474.

Goriaczkin, W. (1936).Tieorija sołomoriezki i siłosoriezki. Moskwa.T. 5.

Page 33: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

137

Hakkila, P. (1989). Utilization of Residual Forest Biomass. Heidelberg, Berlin: Springer-Verlag.

Hamid, K.A.A. (2008) .Production Of Cellulose Fiber from Oil Palm Frond Using

Steam Explosion Method. Undergraduate Project Papers. Faculty of Chemical & Natural Resources. Universiti Malaysia Pahang.

Harden Industries Ltd., (2013).Four-Shaft-Shredder-Applicated-In-Wood-Waste-

Recycling. Available from: http://wood-shredder.com/four-shaft-shredder-applicated-in-wood-waste-recycling/. (28.08.2013).

Hassim, H. A., Lourenço, M., Goel, G., Vlaeminck, B., Goh, Y. M., & Fievez, V.

(2010). Effect of Different Inclusion Levels of Oil Palm Fronds on in Vitro Rumen Fermentation Pattern, Fatty Acid Metabolism and Apparent Biohydrogenation of Linoleic and Linolenic Acid. Animal Feed Science and Technology, 162 (3-4): 155-158.

Hill, B., & Pulkinen D .A. (1988). Study of factors affecting pellet durability and

pelleting efficiency in the production of dehydrated alfalfa pellets. A special report. Tisdale, SK, Canada: Saskatchewan Dehydrators Association.

Igathinathane, C., Womac, A., Sokhansanj, S., & Narayan, S. (2008). Knife Grid

Size Reduction to Pre-Process Packed Beds of High-And Low-Moisture Switchgrass. Bioresource Technology, 99(7): 2254-2264.

Igathinathane, C., Womac, A., Sokhansanj, S., & Narayan, S. (2009). Size Reduction

of High-And Low-Moisture Corn Stalks by Linear Knife Grid System. Biomass and Bioenergy, 33(4): 547-557.

Ige, M.T., & Finner, M.F. (1976). Forage Harvester Knife Response to Cutting

Force. Transactions of the ASABE, 19(3): 451-454. Ishida, M., & Abu Hassan, O. (1997). Utilization of oil palm frond as cattle feed.

Japan Agricultural Research Quarterly, 31 (1): 41-47. Jorge, S. P. d. C. F., Francesco, G. P., Coronel, C. I., Reina, F. G. ,& Spugnoli, P.

(2009). Power demand of a flail mower during pineapple field demolition. Cien. Inv. Agr. , 36(1): 59 - 68.

Kakahy, A.N., Ahmad, D., Akhir, M., Ishak, A., & Sulaiman, S. (2012). Design and

Development of an Integrated Slasher (Pulverizer) for Sweet Potato Harvester: A Review. IOP Conference Series: Materials Science and Engineering, 36 (1), 012007.

Kalpakjian, S., Schmid, S.R., & Musa, H. (2010). Manufacturing Engineering and

Technology. Singapore. Prentice hall.

Page 34: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

138

Kanafojski, C. Z., & Karwowski, T. (1976). Agricultural Machines, Theory and Construction, Potato Harvester. Poland. Warsaw. Department of the National Center for Scientific, Technical and Economic Information Publishers.

Kanafojski, Cz. (1973). Fundamentals of Elements of Harvesting Machines (In

Agricultural Machinery. Theory and Design of Agricultural Machines). Agricultural Mechanization and Automation, Volume (1): 524.

Khurmi, R.S., & Gupta, J.K. (2005). A Textbook of Machine Design. New Delhi.

Eurasia Publishing House (PVT.) LTD. Ram Nagar. Kivimaa, E. (1950). Cutting Force in Woodworking. Helsinki, Publ. No. 18.The

State Inst, for Tech. Res. Koloor, R. T., & Kiani, G. (2007). Soybean Stem Cutting Energy and the Effects of

Blades Parameters on it. Pakistan Journal of Biological Sciences, 10(9):1532-1535.

Koniger, R. (1953). Versuch Eirier Theorie Des Scherenschnittes Von Halmen.

(Tentative Theory for the Cutting of Plant Stems). In Gmndlagen der Landtechnik (5): 96 - 97.

Kośmicki, Z. (1996). Badania Fi Zykomechanicznych Cech Roślin Dla Potrzeb

Projektowania Maszyn Roślinnych I Analiz Konstrukcyjnych. Prace PIMR, nr 2.

Krutz, G., Thompson, L., & Claar, P. (1984). Design of Agricultural Machinery.

USA. John Wiley and sons. Law, K.N. , & Jiang, X. (2001). Comparative Papermaking Properties of Oil-Palm

Empty Fruit Bunch. Tappi J., 84(4): 95–103. Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding Performance and Physical

Properties of Wheat and Barley Straws, Corn Stover and Switchgrass. Biomass and Bioenergy, 27: 339-352.

Miu, S., Tabil, L. G., & Sokhansanj, S. (2006). Effects of Compressive Force,

Particle Size and Moisture Content on Mechanical Properties of Biomass Pellets from Grasses. Biomass and Bioenergy, 30(7): 648 - 654.

MARDI, Malaysian Agriculture Research and Development Institute. (2008).

Production Technology of Kenaf. Available from http://www.mardi.gov.rny/.

McKenzi, W.M. (1961). Fundamental Analysis of the Wood Cutting Process. Dept.

Wood Techn. Sch. Natural Resources. University of Mich. Forest. Pr. J., 10(9):447-456.

Page 35: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

139

McRandal, D. M., & McNulty, P. B. (1978). Impact Cutting Behavior of Forage Crops, Mathematical Models and Laboratory Tests. Journal of Agricultural Engineering Research, 23:313-328.

McRandal, D. M., and & McNulty, P. B. (1980). Mechanical and Physical Properties

of Grasses. Transactions of the ASAE, 23 (2): 816-821. Maquinariaferro, (2016). [Accessed 17 May 2016].Available from:

http://www.maquinariaferro.com/ 2016. Mohamad, H., Zawawi, Z.Zin. , & Abdul Halim, H. (1985).Potentials of Oil Palm

Byproducts as Raw Materials for Agro-Based Industries. National Symposium on Oil Palm By-Products for Agro-Based Industries (1985).Kuala lumper, Malaysia.

MPOB, Malaysian Palm Oil Council. (2014). Review of the Malaysian Oil Palm

Industry 2006. Available from: http://www.mpoc.org.my. MPOB, Malaysian Palm Oil Council. (2016). Malaysian Oil Palm Statistics 2016.

Available from: http://www.mpoc.org.my. MPOB, Malaysian Palm Oil Council. (2016). Malaysian Oil Palm Statistics 2016.

Available from: http://www.mpoc.org.my. Niedziółka, I., Szymanek, M., & Rybczyński, R. (2003). Metodyczne Aspekty

Procesu Cięcia Ziarna OD Kolbkukurydzy Cukrowej. Acta Agrophysica, CZ. II, 83, 131-139.

Nikolov, S. (2004). Modeling and Simulation of Particle Breakage in Impact

Crushers. International Journal of Mineral Processing, 74(S): 219-225. Noor Haliza, A.H., Fazilah, A., & Azemi, M.N. (2006). Development of

Hemicelluloses Biodegradable Films from Oil Palm from (Elais Guinnesis). International Conference on Oil Palm Biomass Fibers and Recent Advancement in Oil Palm Biomass Fibers Based Hybrid Biocomposites 217 Green and Sustainable Innovation. Energy Management and Conservation Centre. Chang Mai University. Chang Mai, Thailand.

O'dogherty, M., & Gale, G. (1991). Laboratory Studies of The Effect of Blade

Parameters and Stem Configuration on The Dynamics of Cutting Grass. Journal of Agricultural Engineering Research, 49: 99-111.

Paulrud, S., Mattson, J. E., & Nilsson, C. (2002). Particle and Handling

Characteristics of Wood Fuel Powder: Effects of Different Mills. Fuel Processing Technology, 76:23-39.

Pawlicki, T. (1996). Badania Empiryczne Procesu Cięcia Źdźbeł Nożycowym

Zespołem Tnącym. Prace PIMR, 2, 8-11.

Page 36: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

140

Persson, S. (1987). Mechanics of Cutting Plant Material. Michigan St Joseph. ASAE Monograph.

Prasad, J., & Gupta, C. (1975). Mechanical Properties of Maize Stalk as Related To

Harvesting. Journal of Agricultural Engineering Research, 20(1): 79-87. Raffaele, S., Eugenio, C., & Alessio, F. (2012).A New Comminution Device for

High-Quality Chip Production. Fuel Processing Technology, 99: 69–74. Rypma, J. A. (1983). What The European Feed Manufacturer Requires in Particle

Reduction Equipment and Systems. First International Symposium on Particle Size Reduction in the Feed Industry, (Vol B-11). Kansas State University .Manhattan, KS, USA.

Schubert, G., & Bernotat, S. (2004). Comminution of Non-Brittle Materials.

International Journal of Mineral Processing, 74S:19-30. Shio, S.O, Wan Zahari, M., & Jaafar, M. (1999).Feed Evaluation for Quality Control

of Oil Palm Fronds as A Ruminant Feed Pruning. MARDI-JICA publication, No.07, p.7.

Shuit, S. H., Tan, K. T., Lee, K. T., & Kamaruddin, A. H. (2009). Oil Palm Biomass

as a Sustainable Energy Source: A Malaysian Case Study. Energy, 34:1225-1235.

Spinelli, R., & Hartsough, B. R. (2001). A Survey of Italian Chipping Operations.

Biomass and Bioenergy, 21, 433-444. Srivastava, A.K., Carroll, E.G., Roger, P.R., & Dennis, R.B. (2006). Engineering

Principles of Agricultural Machines. Hay and Forage Harvesting, Chapter 11. Michigan. ASABE, St. Joseph.

Stroppel, T. (1939). Was Weiss Man Heute Vom Schneiden? (What is Presently

Known about Cutting?). Konstrukteurheft, RKTL-Schrift, 91. Berlin, p 83. Sulaiman, S.A., Ahmad, M. R.T., Antwan, S.M. (2011). Prediction of Biomass

Conversion Process for Oil Palm Fronds in a Downdraft Gasifier. The 4th International Meeting of Advances in Thermofluids (3-4th October, 2011). Melaka. Malaysia.

Suryanto, H., Bardaie, M.Z., Ahmad, D., & Yahya, A. (1993). Force and Energy

Requirement for Cutting Oil Palm Fresh Fruit Bunch. Planter, 69(810): 399-407.

Taghijarah, H., Ahmadi, H., Ghahderijani, M., & Tavakoli, M. (2011). Shearing

Characteristics of Sugar Cane (Saccharum Officinarum L.) Stalks as a Function of the Rate of the Applied Force. Australian Journal of Crop Science, 5(6): 630-634.

Page 37: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/70243/1/FK 2017 121 - IR.pdfKeputusan ujian kekuatan mendedahkan bahawa bahagian tangkai adalah bahagian ... daya penebusan, mampatan,

© COPYRIG

HT UPM

141

Wan Rosli, W. D., Law, K. N., Zainuddin, Z., & Asro, R. (2004).Effect Of Pulping Variables on the Characteristics of Oil-Palm Frond-Fiber. Bioresource Technology, 93 (3): 233-240.

Wan Rosli, WD., & Kwei-Nam, L. (2011). Oil Palm Fibers as papermaking Material:

Potential and Challenge: Review. Bio Resources, 6(1):901-917. Wang, X., Jian, U .H. Liang, Y., & Zeng, J. (2012).Oil Palm Frond Pulp Bleaching.

BioResource, 7(1): 275-282. Woldt, D., Schubert, G., & Jäckel, H. G. (2004). Size Reduction By Means of Low-

Speed Rotary Shears. International Journal of Mineral Processing, 74S: 405-415.

Womac, A., Yu, M., Igathinathane, C., Ye, P., Hayes, D., Narayan, S., Sokhansanj,

S., &Wright, L. (2005). Shearing Characteristics of Biomass for Size Reduction. ASAE Paper, 56058:2-8.

Yanbei, Yanbei Animal Husbandry Machinery Group. (2016). 9QS SERIES.

Available from https://yanbei.en.alibaba.com/. Yazid, I. I., Suastawa, I. N., & Radite, P. A. S. (2005a).Analysis on Specific Cutting

Force of Oil Palm Leaf Stem and Fruits Stem Parenchyma. Journal Ilmu Keteknikan Pertanian, 19(1): 61-70.

Yazid, I. I., Suastawa, I. N., & Radite, P. A. S. (2005b).Physical And Mechanical

Properties of Parenchyma of Leaf And Fruits Stem of Oil Palm. Journal Ilmu Keteknikan Pertanian, 19(2):117-126.

Yuen, C., & Aziz, A.A. (2012).Adding Value to Biomass Utilization in Oil Palm

Industry. ASM International conference (ASMIC), 2012. Zahari, M. A. K.M., Sharifah, S. S. A., Ahmad, M. R., Hidayah, A., Yoshihito, S.,

& Mohd Ali, H. (2014). Efficient utilization of oil palm frond for bio-based products and biorefinery. Journal of Cleaner Production, 65: 252-260.

Zainal, Z. A., Lin, K. O., Quadir, G. A., & Abdullah, M. Z. (2000).Plant Based

Energy Potential and Biomass Utilization in Malaysia. Int. Energy J., 1 (2), 77-88.

Zastęmpowski, M., & Bochat, M. (2005). Analiza Modeli Cięcia Źdźbeł Roślin

Zbożowych. Inżynieria i aparatura chemiczna, Nr 1-2, 95-96. Zuk, D. (1984). Untersuchungen des Schneidevorgangs vom Getreidehaimgut bei

den Erntemaschinen. (Studies of the Cutting Process of Grain Stem Material in Harvesters). Proc. CIGR 10-th Int. Congr. (Sept 3-7). Budapest. Hungary. Sec.3, part 3: 552 - 559.