rm e composite grillage oenorm

Upload: tran-tien-dung

Post on 03-Jun-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 RM E Composite Grillage OENORM

    1/55

    RM BridgeProfessional Engineering Software for Bridges of all Types

    RM Bridge V8i

    October 2010

    TRAINING COMPOSITE GRILLAGE RM -NORM

  • 8/12/2019 RM E Composite Grillage OENORM

    2/55

    RM BRIDGE

    Training Composite Grillage RM - NORM I

    Bentley Systems Austria

    Contents

    1 Design Criteria ............................................................................................................. 1-11.1 Materials .............................................................................................................. 1-11.2 Design Loadings: ................................................................................................. 1-2

    1.2.1 Dead Load:....................................................................................................... 1-21.2.2 Live Load ......................................................................................................... 1-21.2.3 Dynamical Coefficient ..................................................................................... 1-61.2.4 Wind Loads:..................................................................................................... 1-61.2.5 Thermal Forces: ............................................................................................... 1-71.2.6 Creep and Shrinkage: ....................................................................................... 1-71.2.7 Pier Settlement: ................................................................................................ 1-7

    1.3 Load Combinations: ............................................................................................ 1-72 System Modifications .................................................................................................. 2-1

    2.1 Definition of Elements for the Shear Studs ......................................................... 2-13 Loads............................................................................................................................ 3-1

    3.1 Load Manager ...................................................................................................... 3-13.2 Defining Loads .................................................................................................... 3-1

    3.2.1 Definition of Load Cases for Self Weight ....................................................... 3-23.2.2 Definition of Load Cases for the Superimposed Dead Loads ......................... 3-53.2.3 Definition of Load Cases for the Creep and Shrinkage Effects....................... 3-5

    4 Construction Stages ..................................................................................................... 4-14.1 Stage 1 ................................................................................................................. 4-1

    4.1.1 Element Activation .......................................................................................... 4-14.1.2 Calculation (Static) .......................................................................................... 4-2

    4.2 Stage 2 ................................................................................................................. 4-24.2.1 Element Activation .......................................................................................... 4-24.2.2 Calculation (Static) .......................................................................................... 4-3

    4.3 Stage 3 ................................................................................................................. 4-34.3.1 Element Activation .......................................................................................... 4-34.3.2 Calculation (Static) .......................................................................................... 4-5

    4.4 Stage 4 ................................................................................................................. 4-6

  • 8/12/2019 RM E Composite Grillage OENORM

    3/55

    RM BRIDGE

    Training Composite Grillage RM - NORM II

    Bentley Systems Austria

    4.4.1 Element Activation .......................................................................................... 4-64.5

    Final stage ............................................................................................................ 4-7

    4.5.1 Element Activation .......................................................................................... 4-74.5.2 Calculation (Static) .......................................................................................... 4-7

    5 Additional Loads ......................................................................................................... 5-95.1 Definition of Settlement Load Cases ................................................................... 5-95.2 Definition of Temperature Load Case ............................................................... 5-105.3 Definition of Wind Load Cases ......................................................................... 5-115.4 Calculation of Additional Loadings................................................................... 5-13

    6 Superposition of Additional Loadings ......................................................................... 6-17 Traffic .......................................................................................................................... 7-3

    7.1 Traffic Definition ................................................................................................. 7-37.2 Traffic Lanes ........................................................................................................ 7-57.3 Traffic Loads ....................................................................................................... 7-97.4 Traffic Calculation ............................................................................................. 7-107.5 Traffic Superposition ......................................................................................... 7-14

    8

    Load Combinations ...................................................................................................... 8-1

    9 Fibre Stress Check ....................................................................................................... 9-19.1 Definition of the Stress Limits ............................................................................. 9-19.2 Inserting the Actions into the Construction Schedule ......................................... 9-2

    10 Ultimate Load Check ................................................................................................. 10-110.1 Strain/Stress Values ........................................................................................... 10-1

    10.1.1 Reinforcement: BSt_550 ........................................................................... 10-110.1.2 Concrete: Type C 30/37 ............................................................................. 10-1

    10.2 Reinforcement Definition .................................................................................. 10-210.3 Inserting the Actions into the Construction Schedule ....................................... 10-3

    11 Shear and Equivalent Stresses for Steel..................................................................... 11-5

  • 8/12/2019 RM E Composite Grillage OENORM

    4/55

    RM Bridge Design Cr iteria

    Training Composite Grillage RM - NORM 1-1

    Bentley Systems Austria

    1 Design Criteria

    General explanations about the structure and the modelling as well as the detailed descrip-

    tion of node and element numbering is already discussed in TRAINING 5 (GP). In this part

    of the documentation only definitions and features used in RMare described.

    The following design criteria are used in this example:

    Material: OENORM bridge design specifications

    Loads: simple loadings only used to demonstrate the program capabilities

    Checks: simple checks only used to demonstrate the program capabilities

    1.1 Materials

    Reinforcement: BSt_550

    Yield Strength: 550000 kN/m2

    Modulus of Elasticity: 2.0000E+08 kN/m2

    Concrete: Type C 30/37

    28 day Cylinder Compressive Strength: 37000 kN/m2

    Modulus of Elasticity: 3.2000E+07 kN/m2

    Steel: Fe_360

    Yield Strength: 240000 kN/m2

    Modulus of Elasticity: 2.1000E+08 kN/m

    2

    Allow. longit. tens. str.-General 160000 kN/m2

    Allow. longit. compr. str.-General -160000 kN/m2

  • 8/12/2019 RM E Composite Grillage OENORM

    5/55

    RM Bridge Design Cr iteria

    Training Composite Grillage RM - NORM 1-2

    Bentley Systems Austria

    1.2 Design Loadings:

    1.2.1 Dead Load:

    Self weight (concrete) : 25 kN/m3

    Self weight (steel) 78.5 kN/m3

    Additional dead load (asphalt, traffic barriers..): 16.0 kN/m each main girder

    1.2.2 Liv e Load

    The live load calculation is defined according to the Austrian Standard OENORM B4002

    including the rules of the RVS. Therefore also heavy trucks with 200to and 150to have to

    be considered. The following pictures show the different loading positions that have to be

    taken into account.

    1.2.2.1 System

    9.0m

    4.5m 4.5m

    3.75m 3.75m0.75m 0.75m

    2.0m 5.0m 2.0m

    7.5m

  • 8/12/2019 RM E Composite Grillage OENORM

    6/55

    RM Bridge Design Cr iteria

    Training Composite Grillage RM - NORM 1-3

    Bentley Systems Austria

    LaneSet SV1:

    250kN

    q=6.29 kN/m

    250kN

    12 35 4

    z

    y

    Lane

    LaneSet SV2:

    250kN 250kN

    q=6.29 kN/m

    z

    y

    12 35 4Lane

    LaneSet SFZ200-1/2/3:

    For this LaneSet there are three different positions in the cross-section for taking into ac-

    count the heavy truck with 200to. The truck has to be positioned 1.0m left of the middle of

    the roadway, the second position is 1.0m right of the middle and the third position is di-

    rectly in the middle of the roadway. The loadings on the sidewalks have also to be consid-

    ered.

  • 8/12/2019 RM E Composite Grillage OENORM

    7/55

    RM Bridge Design Cr iteria

    Training Composite Grillage RM - NORM 1-4

    Bentley Systems Austria

    2000kN

    12 135 4

    z

    y

    11

    1.0m 1.0m

    LaneSet SFZ150-1/2:

    1500 kN

    315 33

    z

    y

    32

    1.875m 1.875m

    4

    250 kN

  • 8/12/2019 RM E Composite Grillage OENORM

    8/55

    RM Bridge Design Cr iteria

    Training Composite Grillage RM - NORM 1-5

    Bentley Systems Austria

    225 23 21 4

    1500 kN

    zy

    1.875m 1.875m

    250 kN

  • 8/12/2019 RM E Composite Grillage OENORM

    9/55

    RM Bridge Design Cr iteria

    Training Composite Grillage RM - NORM 1-6

    Bentley Systems Austria

    1.2.3 Dynam ical Coeff icient

    The dynamical coefficient is calculated according to the OENORM B4002 Table 1. All

    loadings on the roadway have to be multiplied with this factor. The live load on the side-

    walk has not to be multiplied with a dynamical factor (.

    For the additional loadings according to the RVS 15.114 for special trucks following dy-

    namical coefficient has to be applied:

    2

    1

    `

    17.12

    33.11

    `

    Intensity of the uniform live loads:

    26.29kN/m 2.245750550.7 lq

    1.2.4 Wind Load s:

    Wind loadings are calculated according to OENORM (Austrian Standard).

    Wind without traffic:

    Wind on Structure (MG1): 3.43 kN/m (in the centroid)

    Wind on Structure (MG2): 2.57 kN/m (in the centroid)

    Wind on Structure (PIERS): 13.07 kN/m (in the centroid)

    Wind with traffic:

    Wind on Structure (MG1): 1.72 kN/m (in the centroid)

    Wind on Structure (MG2): 1.29 kN/m (in the centroid)

    Wind on Structure (PIERS): 6.53 kN/m (in the centroid)

    Wind on Live Load (MG1): 1.10 kN/m (1.25 m above the deck)

    Wind on Live Load (MG2): 1.10 kN/m (1.25 m above the deck)

  • 8/12/2019 RM E Composite Grillage OENORM

    10/55

    RM Bridge Design Cr iteria

    Training Composite Grillage RM - NORM 1-7

    Bentley Systems Austria

    1.2.5 Thermal Forces:

    Thermal Coefficient: 1.0 e-05 per C

    Uniform temperature load: 20 C

    1.2.6 Creep and Shrink age:

    Time dependent effects calculated in accordance with OENORM 4750 Creep & Shrinkage

    model code.

    1.2.7 Pier Settlement:

    1 cm at each abutment and pier axis

    1.3 Load Combinations:

    The Load combinations are defined according to OENORM.

    Sum load case 100 permanent loadings

    Sum load case 200 additional permanent loadings

    Sum load case 600 Creep & shrinkage

    Load case 699 End Creep &shrinkageSuperposition traffic.sup Traffic loading

    Superposition wind-wot.sup Wind without traffic

    Superposition wind-t.sup Wind including traffic

    Superposition Temp_uniform.sup Uniform temperature loadings

    Superposition settle.sup Settlement

  • 8/12/2019 RM E Composite Grillage OENORM

    11/55

    RM Bridge Design Cr iteria

    Training Composite Grillage RM - NORM 1-8

    Bentley Systems Austria

    SLS Comb I Comb II Comb III Comb IV

    Combin

    ationtableSLS

    For the ULS calculation the value GAMMA as a security factor on material side is a l-

    ready taken into account in the stress/strain diagrams for Steel with =1.15 and for concrete

    using =1.50.

    ULS Comb V Comb VI Comb VII Comb VIII Comb IX

    CombinationtableULS

  • 8/12/2019 RM E Composite Grillage OENORM

    12/55

    RM Bridge System Modif ications

    Training Composite Grillage RM - NORM 2-1

    Bentley Systems Austria

    2 System Modifications

    2.1 Definition of Elements for the Shear Studs

    To complete the structural definitions also the elements representing the shear studs

    have to be defined in RM. For these elements a special numbering system has to beused. The elements must have the number of the steel beam elements +10000. That

    means shear stud element at element 1101 is 11101. The element type is spring. To

    define spring constants is not necessary. The definition for main girder 1 is shown be-

    low. Also a Group name for later plotting of results will be assigned to these elements.

    For the spring elements at the first main girder the group should be MG1 -S and at the

    second main girder MG2-S.

    InsertnewElements

  • 8/12/2019 RM E Composite Grillage OENORM

    13/55

    RM Bridge Loads

    Training Composite Grillage RM - NORM 3-1

    Bentley Systems Austria

    3 Loads

    3.1 Load Manager

    The following actions can be made with LMANAGE

    An individual loading case can be defined so that, after calculation, its re-sults are automatically added to 1,2 or 3 other loading case numbers.

    An individual loading case can be defined so that, after calculation, its re-sults are automatically combined into 1,2 or 3 envelopes.

    The loading cases and envelopes that are being added or combined into,

    must have been defined prior to this Info action.

    Choose insert after to insert all necessary load management definitions.

    T

    able

    Loadmanag.:Loadmanag.:

    SW SDL CS

    Load Case 1: LC0100 LC0200 LC0600

    Type: o Total o Total o TotalLoad Case 2: LC1000 LC1000 LC1000

    Type: o Total o Total o TotalLoad Case 3: - - -

    Type: o Total o Total o Total

    The final creep loading case is No 699 is not added to the general loading case 600 as it

    is necessary to have the final creep and shrinkage effects separate for checking the

    structure including all live loadings and other loading combinations at time zero (after

    construction, before final creep and shrinkage) and at time infinity.

    3.2 Defining Loads

    Several loads can be combined into one LOAD CASE. Later on these LOAD CASES

    can be calculated in the Construction schedule.

    Select CONSTRUCTION SCHEDULE and LOAD DEFINTION to start the load-

    ing definitions.

    Select to open the load definition input window.

  • 8/12/2019 RM E Composite Grillage OENORM

    14/55

    RM Bridge Loads

    Training Composite Grillage RM - NORM 3-2

    Bentley Systems Austria

    3.2.1 Definit ion of Load Cases for Self Weight

    Insert a new loading case.

    LC-Selfweight

    LoadCase:LoadCase:

    LC0101

    Insert: Upper List

    Duration Type: P

    Load Management: SW

    Insert: Bottom List

    Loading:Uniform

    LoadUniform

    LoadUniform

    LoadUniform

    LoadUniform

    Load

    LoadType:Selfweightjust as load

    Selfweightjust as load

    Selfweightjust as load

    Selfweightjust as load

    Selfweightjust as load

    Confirm: OK OK OK OK OK

    From: 1101 2101 101 201 3101

    To: 1144 2144 105 205 3116

    Step: 1 1 1 1 1

    Rx: 0 0 0 0 0

    Ry: -1 -1 -1 -1 -1

    Rz: 0 0 0 0 0

    Gamma: 78.5 78.5 25.0 25.0 78.5

    Type: Real Length Real Length Real Length Real Length Real LengthConfirm: OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    15/55

    RM Bridge Loads

    Training Composite Grillage RM - NORM 3-3

    Bentley Systems Austria

    LC-Selfweight

    LoadCase:

    LoadCase:

    LC0102

    Insert: Upper List

    Duration Type: P

    Load Management: SW

    Insert: Bottom Lidz

    Loading:Uniform

    Load

    Uniform

    Load

    Uniform

    Load

    Uniform

    Load

    Uniform

    Load

    Uniform

    Load

    LoadType:

    Uniform

    concentric

    element

    load

    Uniform

    concentric

    element

    load

    Uniform

    concentric

    element

    load

    Uniform

    concentric

    element

    load

    Uniform

    concentric

    element

    load

    Uniform

    concentric

    element

    load

    Confirm: OK OK OK OK OK OK

    From: 1101 2101 1117 2117 1137 2137To: 1108 2108 1128 2128 1144 2144

    Step: 1 1 1 1 1 1

    Qx [kN/m] 0 0 0 0 0 0

    Qy [kN/m] -24.45 -24.45 -24.45 -24.45 -24.45 -24.45

    Qz [kN/m] Global Global Global Global Global Global

    DirectionReal

    length

    Real

    length

    Real

    length

    Real

    length

    Real

    length

    Real

    length

    Load application

    Load/Unit

    length

    Load/Unit

    length

    Load/Unit

    length

    Load/Unit

    length

    Load/Unit

    length

    Load/Unit

    length

    Confirm: OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    16/55

    RM Bridge Loads

    Training Composite Grillage RM - NORM 3-4

    Bentley Systems Austria

    LC-Selfweight

    LoadCase:

    LoadCase:

    LC0103

    Insert: Upper List

    Duration Type: P

    Load Management: SW

    Insert: Bottom List

    Loading:Uniform

    Load

    Uniform

    Load

    Uniform

    Load

    Uniform

    Load

    LoadType:

    Uniform

    concentric

    element

    load

    Uniform

    concentric

    element

    load

    Uniform

    concentric

    element

    load

    Uniform

    concentric

    element

    load

    Confirm: OK OK OK OK

    From: 1109 2109 1129 2129To: 1116 2116 1136 2136

    Step: 1 1 1 1

    Qx [kN/m] 0 0 0 0

    Qy [kN/m] -24.45 -24.45 -24.45 -24.45

    Qz [kN/m]

    Direction Global Global Global Global

    Load applicationReal

    length

    Real

    length

    Real

    length

    Real

    length

    Confirm: OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    17/55

    RM Bridge Loads

    Training Composite Grillage RM - NORM 3-5

    Bentley Systems Austria

    3.2.2 Definit ion of Load Cases for the Superim pos ed Dead Loads

    LCS

    uperimposedDeadLoad

    LoadCase:LoadCase:

    LC0204

    Insert: Upper List

    Duration Type: P

    Load Management: SDL

    Insert: Bottom List

    Loading:Uniform

    Load

    Uniform

    Load

    LoadType:

    Uniform

    concentricelement

    load

    Uniform

    concentricelement

    load

    Confirm: OK OK

    From: 1301 2301

    To: 1344 2344

    Step: 1 1

    Rx: 0 0

    Ry: -16 -16

    Rz: 0 0

    Gamma: Global Global

    Type:Real

    length

    Real

    lengthConfirm: OK OK

    3.2.3 Definit ion of Load Cases for the Creep and Shrinkage Effects

    LCC

    +S

    Name:Name:

    LC0602 LC0603 LC0699

    Insert: Upper List Upper List Upper List

    Duration Type: P P P

    Load Manag.: C+S C+S -

    Description: - - -

    Insert: Bottom List Bottom List Bottom List

    No Input nec-essary

    No Input nec-essary

    No Input nec-essary

  • 8/12/2019 RM E Composite Grillage OENORM

    18/55

    RM Bridge Construction Stages

    Training Composite Grillage RM - NORM 4-1

    Bentley Systems Austria

    4 Construction Stages

    4.1 Stage 1

    4.1.1 Element Ac tivation

    Open the construction schedule input window with CONSTRCUTION SCHED-

    ULE andSTAGE ACTIONS AND ACTIVATION.

    Create a new stage (stage 1)

    Select

    The entire activation plan for the bridge construction is summarised in this window.

    Select the (upper) append button to open the input window for the construction stage

    definition. Insert the construction stage number and the descriptionStage 1 here.

    Select the (lower) append button to open the input window for element activa-

    tion/deactivation.

    Activate elements for stage 1 as shown in the following table.

    Activation

    Construction Stage:Construction Stage:

    Stage1

    Insert: Bottom List

    Type: Active Active Active Active Active

    From: 1101 2101 4100 4101 4145

    To: 1144 2144 4200 4201 4245

    Step: 1 1 100 100 100

    Age: 0 0 0 0 0

    ts: - - - - -

    Confirm: OK OK OK OK OK

    Activation

    Construction Stage:Construction Stage:

    Stage1

    Insert: Bottom List

    Type: Active Active Active Active Active Active

    From: 101 201 100 4113 4133 3101

    To: 105 205 200 4213 4233 3116

    Step: 1 1 100 100 100 1

    Age: 28 28 0 0 0 0

    ts: - - - - - -

    Confirm: OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    19/55

    RM Bridge Construction Stages

    Training Composite Grillage RM - NORM 4-2

    Bentley Systems Austria

    4.1.2 Calcu latio n (Static)

    Open the construction schedule Actions input window by selecting

    Select the (lower) append button to add an action and insert the actions shown in the

    table below.

    ActionsS

    tage

    1

    ConstructionStage:

    Construction

    Stage:

    Stage1 Stage1 Stage1 Stage1 Stage1 Stage1

    Insert: Bottom List Bottom List Bottom List Bottom List Bottom List Bottom List

    Action:LC/Envelop

    e Action

    LC/Envelop

    e Action

    LC/Envelop

    e Action

    LC/Envelop

    e Action

    Calculation

    Static

    Calculation

    Static

    Type: LcInit LcInit LcInit LcInit Calc LcInit

    Input 1: - - - - LC0101 LC1000

    Input 2: - - - - - -

    Input 3: - - - - - -

    Output 1: LC0100 LC0200 LC0600 LC1000 - LC1001

    Output 2: - - - - * -

    Delta-T: - - - - - -

    Description: - - - - - -

    Confirm: OK OK OK OK OK OK

    4.2 Stage 2

    4.2.1 Element Ac tivation

    No activation for this stage 2 is done because in this stage only the wet concrete is

    loaded on the steel elements (concrete elements are not activated yet).

  • 8/12/2019 RM E Composite Grillage OENORM

    20/55

    RM Bridge Construction Stages

    Training Composite Grillage RM - NORM 4-3

    Bentley Systems Austria

    4.2.2 Calcu latio n (Static)

    Action

    sS

    tage2

    ConstructionStage:

    Construction

    Stage:

    Stage2 Stage2 Stage2

    Insert: Bottom List Bottom List Bottom List

    Action:LC/Envelope

    Action

    LC/Envelope

    Action

    LC/Envelope

    Action

    Type: Calc Creep LcInit

    Input 1: LC0102 - LC1000

    Input 2: - 1 -Input 3: - - -

    Output 1: - LC0602 LC1002

    Output 2: * - -

    Delta-T: 0 14 0

    Description: - - -

    Confirm: OK OK OK

    Plot diagrams can be made at any time in the Construction schedule. By setting a new

    RMSet for each individual plot. When creating RMSets the function copy is very

    useful.

    4.3 Stage 3

    4.3.1 Element Ac tivation

    Activation

    Construction Stage:Construction Stage:

    Stage3

    Insert:Bottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    List

    Type: Active Active Active Active Active Active

    From: 1201 2201 1217 2217 1237 2237

    To: 1208 2208 1228 2228 1244 2244Step: 1 1 1 1 1 1

    Age: 7 7 7 7 7 7

    ts: 0 0 0 0 0 0

    Confirm: OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    21/55

    RM Bridge Construction Stages

    Training Composite Grillage RM - NORM 4-4

    Bentley Systems Austria

    Activation

    Construction Stage:

    Construction Stage:

    Stage3

    Insert:Bottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    List

    Type: Active Active Active Active Active Active

    From: 1301 2301 1317 2317 1337 2337

    To: 1308 2308 1328 2328 1344 2344

    Step: 1 1 1 1 1 1

    Age: 0 0 0 0 0 0

    ts: 0 0 0 0 0 0

    Confirm: OK OK OK OK OK OK

    Activation

    Construction Stage:Construction Stage:

    Stage3

    Insert:Bottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    List

    Type: Active Active Active Active Active Active

    From: 3201 3209 3301 3309 301 319

    To: 3204 3212 3304 3312 309 329

    Step: 1 1 1 1 1 1

    Age: 7 7 0 0 7 7

    ts: 0 0 0 0 0 0

    Confirm: OK OK OK OK OK OK

    Activation

    Construction Stage:Construction Stage:

    Stage3

    Insert:Bottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    List

    Type: Active Active Active Active Active Active

    From: 339 11101 11117 11137 12101 12117

    To: 347 11108 11128 11144 12108 12128

    Step: 1 1 1 1 1 1

    Age: 7 0 0 0 0 0

    ts: 0 0 0 0 0 0

    Confirm: OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    22/55

    RM Bridge Construction Stages

    Training Composite Grillage RM - NORM 4-5

    Bentley Systems Austria

    4.3.2 Calcu latio n (Static)

    ActionsS

    tage3

    Construction Stage:

    ConstructionStage:

    Stage2 Stage2 Stage2

    Insert: Bottom List Bottom List Bottom List

    Action:Calculation

    (Static)Calculation

    (Static)Load case

    action

    Type: Calc Creep LcInit

    Input 1: LC0103 - LC1000

    Input 2: - 1 -Input 3: - - -

    Output 1: - LC0603 LC 1003

    Output 2: * - -

    Delta-T: 0 14 0

    Description: - - -

    Confirm: OK OK OK

    Plot diagrams can be made at any time in the Construction schedule. By setting a new

    RMSet for each individual plot. When creating RMSets the function copy is very

    useful.

  • 8/12/2019 RM E Composite Grillage OENORM

    23/55

    RM Bridge Construction Stages

    Training Composite Grillage RM - NORM 4-6

    Bentley Systems Austria

    4.4 Stage 4

    4.4.1 Element Ac tivation

    Activation

    Construction Stage:Construction Stage:

    Stage4

    Insert:Bottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    List

    Type: Active Active Active Active Active Active

    From: 1209 1229 1309 1329 2209 2229

    To: 1216 1236 1316 1336 2216 2236

    Step: 1 1 1 1 1 1

    Age: 7 7 0 0 7 7ts: 0 0 0 0 0 0

    Confirm: OK OK OK OK OK OK

    Ac

    tivation

    Construction Stage:Construction Stage:

    Stage4

    Insert:Bottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    List

    Type: Active Active Active Active Active Active

    From: 2309 2329 3205 3213 3305 3313

    To: 2316 2336 3211 3216 3311 3316

    Step: 1 1 1 1 1 1

    Age: 0 0 7 7 0 0

    ts: 0 0 0 0 0 0

    Confirm: OK OK OK OK OK OK

    Activ

    ation

    Construction Stage:Construction Stage:

    Stage4

    Insert:Bottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    ListBottom

    List

    Type: Active Active Active Active Active Active

    From: 310 330 11109 11129 12109 12129To: 318 338 11116 11136 12116 12136

    Step: 1 1 1 1 1 1

    Age: 7 7 0 0 0 0

    ts: 0 0 0 0 0 0

    Confirm: OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    24/55

    RM Bridge Construction Stages

    Training Composite Grillage RM - NORM 4-7

    Bentley Systems Austria

    Calculation (Static)

    Actio

    nsS

    tage4

    Construction Stage:

    ConstructionStage:

    Stage4

    Insert: Bottom List Bottom List

    Action:Calculation

    (Static)Calculation

    (Static)

    Type: Calc LcInit

    Input 1: LC0204 LC1000

    Input 2: - -

    Input 3: - -Output 1: - LC1004

    Output 2: * -

    Delta-T: 0 0

    Description: - -

    Confirm: OK OK

    4.5 Final stage

    4.5.1 Element Ac tivation

    In this stage there is no element activation necessary. All elements are already activated.

    4.5.2 Calcu latio n (Static)

    ActionsS

    tage99

    Construction Stage:

    ConstructionStage:

    Stage99

    Insert: Bottom List Bottom List Bottom ListAction:

    Calculation(Static)

    Calculation(Static)

    Load caseaction

    Type: Creep LcInit LcAdd

    Input 1: - LC1000 LC0699

    Input 2: 1 - -

    Input 3: - - -

    Output 1: LC0603 LC1099 LC1099

    Output 2: - - -

    Delta-T: 1e+04 0 0

    Description: - - -

    Confirm: OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    25/55

    RM Bridge Construction Stages

    Training Composite Grillage RM - NORM 4-8

    Bentley Systems Austria

  • 8/12/2019 RM E Composite Grillage OENORM

    26/55

    RM Bridge Additional L oads

    Training Composite Grillage RM - NORM 5-9

    Bentley Systems Austria

    5 Additional Loads Select to open the load definition input window

    Define following and load cases and for the loading of the temperature gradient a

    load Set that will be added into a Load Case.

    5.1 Definition of Settlement Load Cases

    Change to CONSTRCUTION SCHEDULE and LOAD DEFINITION LCASE

    and define a series of load case for Settlement at the abutments and at the piers.

    LCA

    dd.

    Load

    s-Settlement

    LoadCase:LoadCase:

    LC0021 LC0022 LC0023 LC0024

    Insert: Upper List

    Duration Type: NP

    Load Management: -

    Insert: Bottom List

    Loading:

    Actions

    on ele-

    ment end

    Actions

    on ele-

    ment end

    Actions

    on ele-

    ment end

    Actions

    on ele-

    ment end

    LoadType:Element-

    end de-

    formation

    Element-

    end de-

    formation

    Element-

    end de-

    formation

    Element-

    end de-

    formationConfirm: OK OK OK OK

    From 4100 100 200 4200

    to 4100 100 200 4200

    Step 1 1 1 1

    Vx [m] 0 0 0 0

    Vy [m] -0.01 -0.01 -0.01 -0.01

    Vz [m] 0 0 0 0

    Direction Global Global Global Global

    Rx [Rad] 0 0 0 0

    Ry [Rad] 0 0 0 0

    Rz [Rad] 0 0 0 0

    Where End End End End

    Confirm: OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    27/55

    RM Bridge Additional L oads

    Training Composite Grillage RM - NORM 5-10

    Bentley Systems Austria

    5.2 Definition of Temperature Load Case

    Under CONSTRCUTION SCHEDULE LOAD DEFINITION LCASE a load

    case for uniform temperature loading may be defined.

    LCA

    dd.

    Loads-Te

    mperature

    Load Case:Load Case:

    LC0031

    Insert: Bottom Table

    Loading:Initial

    Stress/StrainInitial

    Stress/StrainInitial

    Stress/StrainInitial

    Stress/StrainInitial

    Stress/Strain

    Load Type:

    Uniform

    TemperatureLoad

    Uniform

    TemperatureLoad

    Uniform

    TemperatureLoad

    Uniform

    TemperatureLoad

    Uniform

    TemperatureLoad

    Confirm: OK OK OK OK OK

    From: 1301 2301 3301 101 201

    To: 1344 2344 3312 105 205

    Step: 1 1 1 1 1

    Alpha (1/C): 1.00e-5 1.00e-5 1.00e-5 1.00e-5 1.00e-5

    DT-G (C): 20 20 20 20 20

    DT-Y (C): 0 0 0 0 0

    H-Y (m): 0 0 0 0 0

    DT-Z (C): 0 0 0 0 0

    H-Z (m): 0 0 0 0 0

    Confirm: OK OK OK OK OK

    For the later calculation of the temperature gradient an empty Load Set has to be d e-

    fined. By using the action TempVar in the Construction schedule the equivalent forces

    according to the defined temperature gradient in GPwill be written into this loadingSet. Create one LSet which has to be assigned to one Load Case. The name of the

    load case is specified as LC0032.

  • 8/12/2019 RM E Composite Grillage OENORM

    28/55

    RM Bridge Additional L oads

    Training Composite Grillage RM - NORM 5-11

    Bentley Systems Austria

    5.3 Definition of Wind Load Cases

    There are two sets of wind loading defined for wind without traffic and including traf-

    fic. The Load Sets 41 and 43 are the Load Sets for wind without traffic (wind direction

    directly on MG1 and indirectly on MG2). The Load Sets 42 and 44 are calculated with-

    out traffic (from the other side, directly on MG2 and indirectly on MG1).

    Areas that are directly loaded by wind are loaded with 1.6 kN/m2and areas that are indi-

    rectly loaded with 1.1 kN/m2. In addition the calculated intensity of the wind loading is

    multiplied with a factor of q=1.1 for wind without traffic and with a factor q=0.55 for

    wind including traffic.

    Under CONSTRUCTION SCHEDULE LOAD DEFINITION LCASE a load

    case for wind loading may be defined.

    LCA

    dd.

    Loads-

    Wind

    Lastfall:Lastfall:

    LC0041

    Insert: Bottom Table Bottom Table Bottom Table Bottom Table

    Loading: Uniform Load Uniform Load Uniform Load Uniform Load

    Load Type:Uniform eccentric

    element load

    Uniform eccentric

    element load

    Uniform eccentric

    element load

    Uniform eccentric

    element load

    Confirm: OK OK OK OK

    From: 1301 2301 101 201

    To: 1344 2344 105 205

    Step: 1 1 1 1

    Qx: 0 0 0 0

    Qy: 0 0 0 0

    Qz: 3.43 2.57 13.07 13.07

    Direction: Local Local Local Local

    Eccentricity: Local Local Local Local

    Ey: 0 0 0 0

    Ez: 0 0 0 0

    Load application: Real length Real length Real length Real length

    Definition: Qz Load mult. by heightConfirm: OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    29/55

    RM Bridge Additional L oads

    Training Composite Grillage RM - NORM 5-12

    Bentley Systems Austria

    LCA

    dd

    .Loads-Wind

    Load Case:Load Case:

    LC0042

    Insert: Bottom Table Bottom Table Bottom Table Bottom Table

    Loading: Uniform Load Uniform Load Uniform Load Uniform Load

    Load Type: Uniform eccentric element load

    Confirm: OK OK OK OK

    From: 1301 2301 101 201

    To: 1344 2344 105 205

    Step: 1 1 1 1

    Qx: 0 0 0 0

    Qy: 0 0 0 0

    Qz: 1.1 1.1 6.53 6.53Direction: Local Local Local Local

    Eccentricity:Local +

    Y-Elem Ecc

    Local +

    Y-Elem EccLocal Local

    Ey: 1.25 1.25 0 0

    Ez: 0 0 0 0

    Load application: Real length Real length Real length Real length

    Definition: Qz Load mult. by height

    Confirm: OK OK OK OK

    LC

    Add.

    Loads-Wind

    Load Case:Load Case:

    LC0043

    Insert: Bottom Table Bottom Table Bottom Table Bottom Table

    Loading: Uniform Load Uniform Load Uniform Load Uniform Load

    Load Type: Uniform eccentric element load

    Confirm: OK OK OK OK

    From: 1301 2301 101 201

    To: 1344 2344 105 205

    Step: 1 1 1 1

    Qx: 0 0 0 0

    Qy: 0 0 0 0

    Qz: -2.57 -3.43 -13.07 -13.07

    Direction: Local Local Local Local

    Eccentricity: Local Local Local LocalEy: 0 0 0 0

    Ez: 0 0 0 0

    Load application: Real length Real length Real length Real length

    Definition: Qz Load mult. by height

    Confirm: OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    30/55

    RM Bridge Additional L oads

    Training Composite Grillage RM - NORM 5-13

    Bentley Systems Austria

    LCA

    dd.L

    oads-Wind

    Load Case:Load Case:

    LC0044

    Insert:Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Loading:Uniform

    LoadUniform

    LoadUniform

    LoadUniform

    LoadUniform

    LoadUniform

    Load

    Load Type: Uniform eccentric element load

    Confirm: OK OK OK OK OK OK

    From: 1301 2301 1301 2301 101 201

    To: 1344 2344 1344 2344 105 205

    Step: 1 1 1 1 1 1

    Qx: 0 0 0 0 0 0

    Qy: 0 0 0 0 0 0Qz: -1.29 -1.72 -1.1 -1.1 -6.53 -6.53

    Direction: Local Local Local Local Local Local

    Eccentricity: Local LocalLocal +

    Y-Elem

    Ecc

    Local +Y-Elem

    Ecc

    Local Local

    Ey: 0 0 1.25 1.25 0 0

    Ez: 0 0 0 0 0 0

    Load application:Real

    length

    Real

    length

    Real

    length

    Real

    length

    Real

    length

    Real

    length

    Definition:Qz Load mult. by

    hight

    Qz Load mult. by

    height

    Confirm: OK OK OK OK OK OK

    5.4 Calculation of Additional Loadings

    UnderCONSTRUCTION SCHEDULE STAGE ACTIONS AND ACTIVATION a

    new stage called 100 may be defined.

    ActionsS

    tage

    100

    Construction Stage:

    ConstructionStage:

    Stage100

    Insert: Bottom List Bottom List Bottom List Bottom List

    Action:Calcula-tion (Static)

    Calcula-tion (Static)

    Calcula-tion (Static)

    Calcula-tion (Static)

    Type: Calc Calc Calc Calc

    Input 1: LC0021 LC0022 LC0023 LC0024

    Input 2: - - - -

    Input 3: - - - -

    Output 1: - - - -

    Select the (upper) ap-

    pend button to open the

    input window for theconstruction stage defi-

    nition. Input 100 for

    the number. Input Ad-

    ditional loads for the

    description. All ele-ments are already acti-

    vated!

  • 8/12/2019 RM E Composite Grillage OENORM

    31/55

    RM Bridge Additional L oads

    Training Composite Grillage RM - NORM 5-14

    Bentley Systems Austria

    Output 2: 0 0 0 0

    Delta-T: 21 22 23 24

    Description: - - - -Confirm: OK OK OK OK

    Confirm

    ActionsS

    tage100

    Construction Stage:

    ConstructionStage:

    Stage100

    Insert:Bottom

    List

    Bottom

    List

    Bottom

    List

    Bottom

    List

    Bottom

    List

    Bottom

    List

    Bottom

    List

    Action:Calcu-

    lation

    (Static)

    Calcu-

    lation

    (Static)

    Calcu-

    lation

    (Static)

    Calcu-

    lation

    (Static)

    Calcu-

    lation

    (Static)

    Calcu-

    lation

    (Static)

    Calcu-

    lation

    (Static)

    Type: Calc TempVar Calc Calc Calc Calc Calc

    Input 1: Calc Calc Calc Calc Calc Calc Calc

    Input 2: LC0031 TEMP+ LC0032 LC0041 LC0043 LC0042 LC0044

    Input 3: - - - - - - -

    Output 1: - LS0032 - - - - -

    Output 2: - - - - - - -

    Delta-T: 0 0 0 0 0 0 0

    Description: - - - - - - -

    Confirm: OK OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    32/55

    RM Bridge Superpositi on of Additional Loadings

    Training Composite Grillage RM - NORM 6-1

    Bentley Systems Austria

    6 Superposition of Additional Loadings

    Open the construction schedule input window with CONSTR.SCHED and STAGE

    DEFINITONS and ACTIVATION

    ActionsS

    tage101

    Construction Stage:

    ConstructionStage:

    Stage101

    Insert: Stage101Bottom

    List

    Bottom

    List

    Bottom

    List

    Bottom

    List

    Action:

    LC/Enve

    lope

    action

    LC/Enve

    lope

    action

    LC/Enve

    lope

    action

    LC/Enve

    lope

    action

    LC/Enve

    lope

    action

    Type: SupInitSup-

    AndLcSupOrLc SupOrLc SupOrLc

    Input 1: - settle.sup settle.sup settle.sup settle.sup

    Input 2: - LC0021 LC0022 LC0023 LC0024

    Input 3: - - - - -

    Output 1: settle.sup - - - -

    Output 2: - - - - -

    Delta-T: 0 0 0 0 0

    Description: - - - -

    Confirm: OK OK OK OK OK

    Select the (upper) ap-

    pend button to open the

    input window for the

    construction stage defi-

    nition. Input 101 for

    the number. Input Su-perposition of addi-

    tional loads for the

    description. All ele-

    ments are already acti-

    vated!

    Confirm

  • 8/12/2019 RM E Composite Grillage OENORM

    33/55

    RM Bridge Superpositi on of Additional Loadings

    Training Composite Grillage RM - NORM 6-2

    Bentley Systems Austria

    ActionsS

    tage101

    Construction Stage:

    ConstructionStage:

    Stage101

    Insert: Stage101

    Action: LC/Envelope action

    Type:Su-

    pOrLcSupInit

    Su-

    pAndXLc

    SupInitSu-

    pAndLcSu-

    pOrLcSupInit

    Su-pOrLc

    Input 1:set-

    tle.sup-

    Temp_u

    ni-

    form.sup

    -Wind-

    wot.sup

    Wind-

    wot.sup-

    Wind-

    t.sup

    Input 2: LC0024 - LC0031 - LC0041 LC0043 - LC0044

    Input 3: - - - - - - - -

    Output 1: -Temp_u

    ni-form.sup

    -Wind-

    wot.sup- -

    Wind-

    t.sup-

    Output 2: - - - - - - - -

    Delta-T: 0 0 0 0 0 0 0 0

    Description: - - - - - - - -

    Confirm: OK OK OK OK OK OK OK OK

    Using RMSets resp. PlotContainer plot diagrams and structure plots may be made at

    any time in the Construction schedule.

  • 8/12/2019 RM E Composite Grillage OENORM

    34/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-3

    Bentley Systems Austria

    7 Traffic

    7.1 Traffic Definition

    The live load calculation is defined according to the Austrian Standard OENORM B4002

    including the rules of the RVS. Therefore also heavy trucks with 200to and 150to have to

    be considered. The following pictures show the different loading positions that have to be

    taken into account.

    Load train 1 (Lane uniform load + Truck 250KN):

    Load train 2 (Uniform load 2.5m q=-6.29 kN/m2):

    Load train 3 (Sidewalk uniform load 1.0m):

    3.0m1.5m 1.5m

    2*4.0 to 2*8.5 to

    Traffic uniform Load

    Traffic uniform Load

    Lane relative to

    1 MG1 El 1301 to 1344 ez= 0.000 - - - -

    2 MG2 El 2301 to 2344 ez= 0.000 - - - -

    El - 302 303 304 to 344 345 346 -

    x/L - 0.000 0.357 0.739 1.000 -

    4 MG1 El 1301 to 1344 ez= -1.625 - - - -

    5 MG2 El 2301 to 2344 ez= 1.625 - - - -

    El - - 303 304 to 344 345 346 -

    x/L - - 0.0715 0.3572 0.5556 -

    El - 302 303 304 to 344 345 - -

    x/L - 0.444 0.643 0.929 - -

    El - 302 303 304 to 344 - - -

    x/L - 0.000 0.357 - -

    El - - - 304 to 344 345 346 347

    x/L - - - 0.107 0.167 0.375

    El 301 302 303 304 to 344 345 - -

    x/L 0.000 0.556 0.714 0.000 - -

    23 MG2 El 2301 to 2344 ez= 0.625 - - - -

    El 301 302 303 304 to 344 - - -

    x/L 0.625 0.833 0.893 - - -

    El - - 303 304 to 344 345 346 347

    x/L - - 0.000 0.286 0.444 0.000

    33 MG1 El 1301 to 1344 ez= -0.625 - - - -

    Cross beams

    Cross beams

    Cross beams

    Cross beams

    Cross beams0.917

    0.222Cross beams

    11

    12

    13

    21

    22

    31

    32

    0.722

    0.500

    0.083

    0.778

    Lane definitions - eccentricities and x/L values for Lanes defined relative

    to secondary girders

    ELEMENTS

    0.500

    0.2778

    Cross beams3

    Cross beams

    Traffic uniform Load

    mkNmmkNq /72.475.0/29.6 2

  • 8/12/2019 RM E Composite Grillage OENORM

    35/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-4

    Bentley Systems Austria

    Load train 3 (rest area uniform load 1.25 m):

    The position of the lanes are already shown in chapter1.2.2 Live Load.The combination

    of the lanes and the Load trains defined above are specified in the Construction schedulewith the function LiveL.

    The results from the traffic loading analysis must be compared and combined in order to

    achieve the most critical result. The results from the different load trains acting on each

    individual lane are first combined according to the code and the most critical of the results

    of all defined and calculated lane settings will be compared (SupOr) to get the most criti-

    cal traffic loading file traffic.sup.

    Traffic uniform Load

    mkNmmkNq /86.725.1/29.62

  • 8/12/2019 RM E Composite Grillage OENORM

    36/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-5

    Bentley Systems Austria

    7.2 Traffic Lanes

    The following table shows you the definition of lanes relative to the main girders resp.

    relative to cross girders. The exact position of the lane at each cross member will be re-

    flected by the x/L values, Because of the different length of cross girders at the begin and

    at the end of the structure we get also different values for x/L shown in this table.

    Select (lower left function list) to open the lane input window.

    The upper table in this window lists all the defined traffic lanes, the lower table lists the

    properties of the selected lane (point on the lane for evaluation).

    Lane relative to

    1 MG1 El 1301 to 1344 ez= 0,000 - - - -

    2 MG2 El 2301 to 2344 ez= 0,000 - - - -El - 302 303 304 to 344 345 346 -

    x/L - 0,000 0,357 0,739 1,000 -

    4 MG1 El 1301 to 1344 ez= -1,625 - - - -

    5 MG2 El 2301 to 2344 ez= 1,625 - - - -El - - 303 304 to 344 345 346 -

    x/L - - 0,071 0,357 0,556 -

    El - 302 303 304 to 344 345 - -

    x/L - 0,444 0,643 0,929 - -

    El- 302 303 304 to 344 - - -x/L - 0,000 0,357 - -

    El - - - 304 to 344 345 346 347

    x/L - - - 0,107 0,167 0,375

    El 301 302 303 304 to 344 345 - -

    x/L 0,000 0,556 0,714 0,000 - -

    23 MG2 El 2301 to 2344 ez= 0,625 - - - -El 301 302 303 304 to 344 - - -

    x/L 0,625 0,833 0,893 - - -

    El - - 303 304 to 344 345 346 347

    x/L - - 0,000 0,286 0,444 0,000

    33 MG1 El 1301 to 1344 ez= -0,625 - - - -

    Cross beams

    Cross beams

    Cross beams

    Cross beams

    Cross beams0,917

    0,222Cross beams

    11

    12

    13

    21

    22

    31

    32

    0,722

    0,500

    0,083

    0,778

    Lane definitions - eccentricities and x/L values for Lanes defined

    relative to secondary girders

    ELEMENTS

    0,500

    0,2778

    Cross beams3

    Cross beams

  • 8/12/2019 RM E Composite Grillage OENORM

    37/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-6

    Bentley Systems Austria

    Change to CONSTRCUTION SCHEDULE and LOAD DEFINITION LANEwhere lane definitions may be specified.

    LaneInput

    Lane:Lane:

    1 2 3 4

    Insert: Bottom Table

    Macro: 1 1 3 3 3 3 3 2

    Eccentricity: Ygl Ygl Ygl Ygl Ygl Ygl Ygl Ygl

    El-from: 1301 2301 302 303 304 345 346 1301

    El-to: 1344 2344 302 303 344 345 346 1344

    El-Step: 1 1 1 1 1 1 1 1

    X/L: - - 0 0.357 0.5 0.739 1 -

    ey [m]: 0 0 0 0 0 0 0 0

    ez [m]: 0 0 0 0 0 0 0 -1.625

    Phi]: 1.33- 1.33 1.33 1.33 1.33 1.33 1.33 1

    Ndiv: 1 1 1 1 1 1 1

    Confirm: OK OK OK OK OK OK OK OK

    LaneInput

    Lane:Lane:

    5 11 12

    Insert: Bottom Table

    Macro: 2 3 3 3 3 3 3 3

    Eccentricity: Ygl Ygl Ygl Ygl Ygl Ygl Ygl YglEl-from: 2301 303 304 345 346 302 303 304

    El-to: 2344 303 344 345 346 302 303 344

    El-Step: 1 1 1 1 1 1 1 1

    X/L: - 0.0715 0.2777 0.3572 0.5556 0.444 0.643 0.7222

    ey [m]: 0 0 0 0 0 0 0 0

    ez [m]: 1.625 0 0 0 0 0 0 0

    Phi]: 1 1.17 1.17 1.17 1.17 1.17 1.17 1.17

    Ndiv: 1 1 1 1 1 1 1 1

    Confirm: OK OK OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    38/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-7

    Bentley Systems Austria

    LaneInput

    Lane:

    Lane:

    12 13 21

    Insert: Bottom Table

    Macro: 3 3 3 3 3 3 3 3

    Eccentricity: Ygl Ygl Ygl Ygl Ygl Ygl Ygl Ygl

    El-from: 345 302 303 304 304 345 346 347

    El-to: 345 302 303 344 344 345 346 347

    El-Step: 1 1 1 1 1 1 1 1

    X/L: 0.929 0 0.357 0.5 0.0833 0.107 0.167 0.375

    ey [m]: 0 0 0 0 0 0 0 0

    ez [m]: 0 0 0 0 0 0 0 0

    Phi]: 1.17 1.17 1.17 1.17 1.17 1.17 1.17 1.17

    Ndiv: 1 1 1 1 1 1 1 1

    Confirm: OK OK OK OK OK OK OK OK

    Lane

    Input

    Lane:Lane:

    22 23 31

    Insert:Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Macro: 3 3 2 3 3 3 3 3

    Eccentricity: Ygl Ygl Ygl Ygl Ygl Ygl Ygl Ygl

    El-from: 301 302 303 304 345 2301 301 302

    El-to: 301 302 303 344 345 2344 301 302El-Step: 1 1 1 1 1 1 1 1

    X/L: 0 0.556 0.714 0.778 0 0.625 0.625 0.833

    ey [m]: 0 0 0 0 0 0 0 0

    ez [m]:

    Phi]: 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33

    Ndiv: 1 1 1 1 1 1 1 1

    Confirm: OK OK OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    39/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-8

    Bentley Systems Austria

    LaneInput

    Lane:

    Lane:

    31 32 33

    Insert:Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Macro: 3 3 3 3 3 3 3 2

    Eccentricity: Ygl Ygl Ygl Ygl Ygl Ygl Ygl Ygl

    El-from: 303 304 303 304 345 346 347 1301

    El-to: 303 344 303 344 345 346 347 1344

    El-Step: 1 1 1 1 1 1 1 1

    X/L: 0.893 0.917 0.00 0.222 0.286 0.444 0.00 -

    ey [m]: 0 0 0 0 0 0 0 0

    ez [m]: 0 0 0 -0.625

    Phi]: 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33

    Ndiv: 1 1 1 1 1 1 1 1Confirm: OK OK OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    40/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-9

    Bentley Systems Austria

    7.3 Traffic Loads

    Change to CONSTRCUTION SCHEDULE and LOAD DEFINITION LTRAIN

    where the intensity of load trains may be specified.

    LTrainIn

    put

    Lane:Lane:

    1 2 3

    Description:Description:

    Lane uniform load + Truck 250KN

    Lane unif.load 2.5mq=-6.29kN/m2

    Sidewalkuniform

    load

    Insert: BottomTable

    BottomTable

    BottomTable

    BottomTable

    BottomTable

    BottomTable

    BottomTable

    Q [kN/m]: -15.73 - - - -15.73 -15.73 -4.72

    F [kN]: - -80 -170 0 - - -

    AASHTO: - - - - - - -

    Free Length: - - -

    L-from: - 1.5 3.0 1.5 - - -

    L-to: - 1.5 3.0 1.5 - - -

    L-step: - 1.5 3.0 1.5 - - -

    Confirm: OK OK OK OK OK OK OK

    LTrainInput

    Lane:Lane:

    4 11 12

    Description:Description:

    uniformload of restarea 1.25m

    Special vehicle 200t - 20m Special vehicle 150t - 20m

    Insert:Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Q [kN/m]: -7.86 - - - - - -

    F [kN]: - -5019 entries

    using

    -100

    -50 -5014 entries

    using

    -100

    -50

    AASHTO: - - - - - - -

    Free Length: - - - - - -L-from: - 1 1 0 1 1 0

    L-to: - 1 1 0 1 1 0

    L-step: - 1 1 0 1 1 0

    Confirm: OK OK OK OK OK OK OK

    The live load definition is now complete.

  • 8/12/2019 RM E Composite Grillage OENORM

    41/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-10

    Bentley Systems Austria

    7.4 Traffic CalculationThe results of the live load traffic calculation will be stored in a superposition file. The

    superposition file must be initialised (set to zero) before starting the calculation! For each

    combination of LANE with LTRAIN a superposition file has to be initialised.

    Select CONSTRCUTION SCHEDULE STAGE ACTIVATION AND DEFINI-

    TIONS and insert a new stage 102.

    CS-Traffic

    Stage:Stage:

    TRAFFIC

    Insert:BottomTable

    BottomTable

    BottomTable

    BottomTable

    BottomTable

    BottomTable

    BottomTable

    Action:Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Type: Infl Infl Infl Infl Infl Infl Infl

    Input 1: 1 2 3 4 5 11 12

    Input 2: - - - - - - -

    Input 3: - - - - - - -

    Output 1: - - - - - - -

    Output 2: * * * * * * *

    Delta-T: - - - - - - -

    Description: - - - - - - -

    Confirm: OK OK OK OK OK OK OK

    CS

    -Traffic

    Stage:Stage:

    TRAFFIC

    Insert:Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Bottom

    Table

    Action:Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Calc.

    Static

    Type: Infl Infl Infl Infl Infl Infl Infl

    Input 1: 13 21 22 23 31 32 33

    Input 2: - - - - - - -

    Input 3: - - - - - - -

    Output 1: - - - - - - -

    Output 2: * * * * * * *

    Delta-T: - - - - - - -

    Description: - - - - - - -

    Confirm: OK OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    42/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-11

    Bentley Systems Austria

    Initialisation of superposition files:

    CS-Traffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: LC/Envelope actions

    Type: SupInit SupInit SupInit SupInit SupInit

    Input 1: - - - - -

    Input 2: - - - - -

    Input 3: - - - - -

    Output 1: SV11.sup SV12.sup SV21.sup SV22.sup SV31.sup

    Output 2: - - - - -

    Delta-T: - - - - -Description: - - - - -

    Confirm: OK OK OK OK OK

    CS-

    Traffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: LC/Envelope actions

    Type: SupInit SupInit SupInit SupInit SupInit

    Input 1: - - - - -

    Input 2: - - - - -

    Input 3: - - - - -

    Output 1: GW43.sup GW53.sup SV32.sup SFZ200-11.sup SFZ200-12.sup

    Output 2: - - - - -

    Delta-T: - - - - -

    Description: - - - - -

    Confirm: OK OK OK OK OK

    CS-Traffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: LC/Envelope actionsType: SupInit SupInit SupInit SupInit SupInit

    Input 1: - - - - -

    Input 2: - - - - -

    Input 3: - - - - -

    Output 1: SFZ200-13.sup SFZ150-21.sup SFZ150-22.sup SFZ150-23.sup SFZ150-31.sup

    Output 2: - - - - -

    Delta-T: - - - - -

    Description: - - - - -

    Confirm: OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    43/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-12

    Bentley Systems Austria

    CS-Traffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: LC/Envelope actions

    Type: SupInit SupInit SupInit SupInit SupInit

    Input 1: - - - - -

    Input 2: - - - - -

    Input 3: - - - - -

    Output 1: SFZ150-32.sup SFZ150-33.sup Traffic.sup SV1.sup SV2.sup

    Output 2: - - - - -

    Delta-T: - - - - -

    Description: - - - - -

    Confirm: OK OK OK OK OK

    C

    S-Traffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: LC/Envelope actions

    Type: SupInit SupInit SupInit SupInit SupInit

    Input 1: - - - - -

    Input 2: - - - - -

    Input 3: - - - - -

    Output 1: SFZ200-1.sup SFZ200-2.sup SFZ200-3.sup SFZ150-1.sup SFZ150-2.sup

    Output 2: - - - - -

    Delta-T: - - - - -

    Description: - - - - -

    Confirm: OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    44/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-13

    Bentley Systems Austria

    Calculate the traffic loading results:

    CS-Traffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: Calc. Static

    Type: LiveL LiveL LiveL LiveL LiveL LiveL LiveL LiveL

    Input 1: 1 2 3 4 5 1 2 11

    Input 2: 1 1 1 3 3 2 2 11

    Input 3: - - - - - - - -

    Output 1: SV11.sup SV22.sup SV31.sup GW43.sup GW53.sup SV12.sup SV21.supSFZ200-

    11.sup

    Output 2: * * * * * * * *Delta-T: 0 0 0 0 0 0 0 0

    Description: - - - - - - - -

    Confirm: OK OK OK OK OK OK OK OK

    CS-T

    raffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: Calc. Static

    Type: LiveL LiveL LiveL LiveL LiveL LiveL LiveL LiveL

    Input 1: 12 13 21 22 23 31 32 33

    Input 2: 11 11 12 1 4 12 1 4Input 3: - - - - - - - -

    Output 1:SFZ200-12.sup

    SFZ200-13.sup

    SFZ150-21.sup

    SFZ150-22.sup

    SFZ150-23.sup

    SFZ150-31.sup

    SFZ150-32.sup

    SFZ150-33.sup

    Output 2: * * * * * * * *

    Delta-T: 0 0 0 0 0 0 0 0

    Description: - - - - - - - -

    Confirm: OK OK OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    45/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-14

    Bentley Systems Austria

    7.5 Traffic SuperpositionAdd following actions into stage 102.

    Note: For advanced users please think of the possibility to use the IMPORT/EXPORT functionality andmodify ascii-Files to speed up your input procedure!

    CS-T

    raffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: Calc. Static

    Type: SupAddSup SupAndSup SupAndSup SupAndSup SupAndSup SupAddSup

    Input 1: SV1.sup SV1.sup SV1.sup SV1.sup SV1.sup SV2.sup

    Input 2: SV11.sup SV22.sup SV31.sup GW43.sup GW53.sup SV12.supInput 3: - -

    Output 1:

    Output 2: * * * * * *

    Delta-T: 0 0 0 0 0 0

    Description: - - - - - -

    Confirm: OK OK OK OK OK OK

    CS-Traffic

    Stage:Stage:

    TRAFFIC

    Insert:Bottom Table

    Action: Calc. Static

    Type: SupAndSup SupAndSup SupAndSup SupAndSup SupAddSup SupAndSup

    Input 1: SV2.sup SV2.sup SV2.sup SV2.sup SFZ200-1.sup SFZ200-1.sup

    Input 2: SV21.sup SV31.sup GW43.sup GW53.sup SFZ200-11.sup GW43.sup

    Input 3: - - - - -

    Output 1:

    Output 2: * * * * * *

    Delta-T: 0 0 0 0 0 0

    Description: SupAndSup SupAndSup SupAndSup SupAndSup SupAddSup SupAndSup

    Confirm: OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    46/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-15

    Bentley Systems Austria

    CS-Traffic

    Stage:

    Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: Calc. Static

    Type: SupAndSup SupAddSup SupAndSup SupAndSup SupAddSup SupAndSup

    Input 1:SFZ200-

    1.sup

    SFZ200-

    2.sup

    SFZ200-

    2.sup

    SFZ200-

    2.sup

    SFZ200-

    3.sup

    SFZ200-

    3.sup

    Input 2: GW53.supSFZ200-

    12.supGW43.sup GW53.sup

    SFZ200-

    13.supGW43.sup

    Input 3:

    Output 1:

    Output 2: * * * * * *

    Delta-T: 0 0 0 0 0 0

    Description: - - - - - -Confirm: OK OK OK OK OK OK

    C

    S-Traffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: Calc. Static

    Type: SupAndSup SupAddSup SupAndSup SupAndSup SupAndSup SupAndSup

    Input 1:SFZ200-

    3.sup

    SFZ150-

    1.sup

    SFZ150-

    1.sup

    SFZ150-

    1.sup

    SFZ150-

    1.sup

    SFZ150-

    1.sup

    Input 2: GW53.supSFZ150-21.sup

    SFZ150-22.sup

    SFZ150-23.sup

    GW43.sup GW53.sup

    Input 3:

    Output 1:

    Output 2: * * * * * *

    Delta-T: 0 0 0 0 0 0

    Description: - - - - - -

    Confirm: OK OK OK OK OK OK

    CS-Traffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: Calc. Static

    Type: SupAddSup SupAndSup SupAndSup SupAndSup SupAndSup SupAddSup

    Input 1:SFZ150-

    2.sup

    SFZ150-

    3.sup

    SFZ150-

    3.sup

    SFZ150-

    3.sup

    SFZ150-

    3.suptraffic.sup

    Input 2:SFZ150-31.sup

    SFZ150-32.sup

    SFZ150-33.sup

    GW43.sup GW53.sup SV1.sup

    Input 3:

    Output 1:

    Output 2: * * * * * *

    Delta-T: 0 0 0 0 0 0

    Description: - - - - - -

    Confirm: OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    47/55

    RM Bridge Traffic

    Training Composite Grillage RM - NORM 7-16

    Bentley Systems Austria

    CS-Traffic

    Stage:Stage:

    TRAFFIC

    Insert: Bottom Table

    Action: Calc. Static

    Type: SupOrSup SupOrSup SupOrSup SupOrSup SupOrSup SupOrSup

    Input 1: traffic.sup traffic.sup traffic.sup traffic.sup traffic.sup traffic.sup

    Input 2: SV2.supSFZ200-

    1.sup

    SFZ200-

    2.sup

    SFZ200-

    3.sup

    SFZ150-

    1.sup

    SFZ150-

    2.sup

    Input 3:

    Output 1:

    Output 2: * * * * * *

    Delta-T: 0 0 0 0 0 0

    Description: - - - - - -Confirm: OK OK OK OK OK OK

    Plot diagrams can be made at any time in the Construction schedule.by setting a new

    RMSet for each individual plot. When creating RMSets the function Copy is very

    useful.

  • 8/12/2019 RM E Composite Grillage OENORM

    48/55

    RM Bridge Load Combinations

    Training Composite Grillage RM - NORM 8-1

    Bentley Systems Austria

    8 Load Combinations

    Select CONSTRUCTION SCHEDULE LOAD DEFINITION COMB to open the

    Combination input screen.

    24 different columns can be used. Each combination is calculated from the sum of its

    column entries. Additionally its possible to change the combination type.

    Insert several combinations for the calcualation of loading combinations according to

    SLS and ULS. The used factors for these combinations are shown in chapter1.3.

  • 8/12/2019 RM E Composite Grillage OENORM

    49/55

    RM Bridge F ibre Stress Check

    Training Composite Grillage RM - NORM 9-1

    Bentley Systems Austria

    9 Fibre Stress Check

    Select PROPERTIESCROSS SECTION to look at the defined stress-

    check points in the cross sections. These stress points will be shown separately forevery part of the composite.

    The upper table in this window lists all the cross sections defined for the project. The

    lower table lists all the reinforcement, stress and temperature points (RefSets).

    The stress check points and reinforcement points are created by using the intersec-

    tion of two straight lines. A variation from this point can additionally be defined. All

    these points are already defined in GP. Its also possible to define further additionalpoints in RM.

    9.1 Definition of the Stress Limits

    Under PROPERTIES MATERIAL DATA the stress limits may be defined. There

    exist the possibility to define more limits for different checks. Every individual defini-

    tion is specified by one compressive and one tensile limit.

    Note: If the limits are exceeded (during a caclualtion of a fibre stress check), the program wi llgive a message. These stress limit groups can also shown in the plot file.

    The following picture shows the input of the stress limits for steel.

    In this example the stress limits for steel BSt_550 are taken as 160000kN/m2for pres-

    sure and 160000kN/m2for tension. For FE_360 the stress limits for longitudinal stresses

    are limited with/+213000kN/m2.

  • 8/12/2019 RM E Composite Grillage OENORM

    50/55

    RM Bridge F ibre Stress Check

    Training Composite Grillage RM - NORM 9-2

    Bentley Systems Austria

    9.2 Inserting the Actions into the Construction Schedule

    Select CONSTRUCTION SCHEDULE STAGE ACTIVATION AND DEFINI-

    TIONS to insert the necessary actions (stage 103).

    C

    S

    Stage:Stage:

    103

    Insert: Bottom List Bottom List Bottom List Bottom List Bottom List Bottom List

    Action:LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    Type: SupComb SupComb SupComb SupComb SupInit SupAddSup

    Confirm: OK OK OK OK OK OK

    Input 1: 1 2 3 4 Comb.supInput 2: - - - - - Comb1.sup

    Input 3: - - - - -

    Output 1: Comb1.sup Comb2.sup Comb3.sup Comb4.sup Comb.sup

    Output 2: - - - - - *

    Delta-T: - - - - - 0

    Description: - - - - - -

    Confirm: OK OK OK OK OK OK

    CS

    Stage:Stage:

    103

    Insert: Bottom List Bottom List Bottom List Bottom List Bottom List Bottom List

    Action:LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    Type: SupOrSup SupOrSup SupOrSup FibSup FibSup FibSup

    Confirm: OK OK OK OK OK OK

    Input 1: Comb.sup Comb.sup Comb.sup Comb1.sup Comb2.sup Comb3.sup

    Input 2: Comb2.sup Comb3.sup Comb4.sup 1 1 1

    Input 3:

    Output 1:

    Output 2: * * *Fib-

    comb1.lst

    Fib-

    comb2.lst

    Fib-

    comb3.lst

    Delta-T: 0 0 0 0 0 0

    Description: - - - - - -Confirm: OK OK OK OK OK OK

    Finally create some plot files to watch all the stress results.

  • 8/12/2019 RM E Composite Grillage OENORM

    51/55

    RM Bridge Ul timate Load Check

    Training Composite Grillage RM - NORM 10-1

    Bentley Systems Austria

    10 Ultimate Load Check

    At the begin its necessary to define reinforcement groups. If they are already defined in

    GPyou only have to edit the material properties in the way that an ultimate load check ispossible (stress/strain diagram has to be specified). Normally these stress strain diagrams

    are already predefined in the TDV material data base.

    Plese note that for the stress/strain digrams used for the ultimate load check secu-

    rity factors on the material side have to be included in these diagrams.

    If necessary select PROPERTIES ATTR.SET to modify the Material of the rein-

    forcement groups.

    10.1 Strain/Stress Values

    10.1.1 Reinfo rc emen t: BSt_550

    10.1.2 Conc rete: Ty pe C 30/37

    If the stress/strain curve isnt defined for the chosen material:

    Select PROPERTIESMATERIAL DATA to modify the reinforcement material.

    Select the material BSt_550

    Clicking on the Modify button the material properties may be changed or extended.

  • 8/12/2019 RM E Composite Grillage OENORM

    52/55

    RM Bridge Ul timate Load Check

    Training Composite Grillage RM - NORM 10-2

    Bentley Systems Austria

    Click on the check box of Ultimate on the right side of the window and click also the

    check box Values. Now the list of values for the stress strain diagram opens. By click-

    ing the Insert after button on the right side of the stress/strain list you can specify new

    entries.

    10.2 Reinforcement Definition

    Select STRUCTURE ELEMENT DATA AND PROPERTIES to specify

    resp. modify the reinforcement area for elements.

    Defining the assignment of the reinforcement to the structural elements for the cross sec-tions is displayed in the bottom table.

    Click on the line for element 1201in the top table. Select the edit button for the bottom table to activate the assignment of rei n-

    forcement area in the bottom table of the input window.

    Input the element series and the reinforcement area (Al, fix area of reinforce-ment at element begin and end) for this reinforcement group (REINF).

    As default the type is specified as VAR to calculate the additional area of rein-forcement if necessary for reinforced concrete design.

    Modify the values to those shown adjunct table.

    EL 12011244 Al=0.002 m2

    EL 22012244 Al=0.002 m2

    Confirm with .

    For all other elements (Pier elements, cross members) change the check status (in the upper

    table) to NO, because in this example we only look at the checks of the main girders.

  • 8/12/2019 RM E Composite Grillage OENORM

    53/55

    RM Bridge Ul timate Load Check

    Training Composite Grillage RM - NORM 10-3

    Bentley Systems Austria

    10.3 Inserting the Actions into the Construction Schedule

    Select CONSTRUCTION SCHEDULE STAGE ACTIVATION AND DEFINI-

    TIONS to insert the necessary actions (create new stage 104 before).

    CSUltim

    ateState

    Stage:Stage:

    104

    Insert: Bottom List Bottom List Bottom List Bottom List Bottom List Bottom List

    Action:LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    Type: SupComb SupComb SupComb SupComb SupComb SupInit

    Confirm: OK OK OK OK OK OK

    Input 1: 5 6 7 8 9Input 2: - - - - -

    Input 3: - - - - -

    Output 1: Comb5.sup Comb6.sup Comb7.sup Comb8.sup Comb9.sup ULS.sup

    Output 2: - - - - - *

    Delta-T: - - - - - 0

    Description: - - - - - -

    Confirm: OK OK OK OK OK OK

    CSUltimateState

    Stage:Stage:

    104

    Insert: Bottom List Bottom List Bottom List Bottom List Bottom List Bottom List

    Action:LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    LC/Envelop

    e actions

    Type: SupAddSup SupOrSup SupOrSup SupOrSup SupOrSup SupInit

    Confirm: OK OK OK OK OK OK

    Input 1: ULS.sup ULS.sup ULS.sup ULS.sup ULS.sup -

    Input 2: Comb5.sup Comb6.sup Comb7.sup Comb8.sup Comb9.sup -

    Input 3: - - - - - -

    Output 1: ULT.sup

    Output 2: * * * * * *

    Delta-T: 0 0 0 0 0

    Description: - - - - - -

    Confirm:OK OK OK OK OK OK

  • 8/12/2019 RM E Composite Grillage OENORM

    54/55

    RM Bridge Ul timate Load Check

    Training Composite Grillage RM - NORM 10-4

    Bentley Systems Austria

    CSUltimateState

    Stage:Stage:

    104

    Insert: Bottom List Bottom List Bottom List

    Action:Check ac-

    tions (SUP)

    Check ac-

    tions (SUP)

    Check ac-

    tions (SUP)

    Type: ReinIni UltSup UltSup

    Confirm: OK OK OK

    Input 1: - ULS.sup ULS.sup

    Input 2: - Rein UltMz

    Input 3: - - -

    Output 1: - - ULT.sup

    Output 2: - * *

    Delta-T: - - -

    Description: - - -

    Confirm: OK OK OK

    Plot diagrams can be made at any time in the Construction schedule.by setting a new

    RMSet for each individual plot. When creating RMSets the function copy is very use-

    ful.

    Select RECALC to open the input window for global project calculation

    property definitions.

    Insert the load case LC1000 into SumLC.

    Recalculate the structure

  • 8/12/2019 RM E Composite Grillage OENORM

    55/55

    RM Bridge Shear and Equivalent Stresses for Steel

    Training Composite Grillage RM - NORM 11-5

    11 Shear and Equivalent Stresses for Steel

    For steel structures also the principal, equivalent stresses are of interest. In this chapter

    the necessary input for this calculation is shown. Make sure that for the calculation of the

    stresses several stress points have to be defined in GPbefore. Generally different types ofcalculations may be chosen. Following possibilities are available:

    Principal Stresses Equivalent von Mises Stresses Equivalent Shear Hypothesis Stresses Shear StressesY- Direction Shear StressesZ Direction

    Normally, and also in this example the Equivalent von Mises Stresses will be calculated.

    Select CONSTRUCTION SCHEDULE STAGE ACTIVATION AND DEFINI-

    TIONS to insert the necessary actions (create new stage 105 befo re).

    CSUltimateState

    Stage:Stage:

    104

    Insert: Bottom List Bottom List Bottom List Bottom List

    Action: Check ac-tions (SUP)

    List andPlot actions

    LC/Envelope actions

    LC/Envelope actions

    Type: PrincSup Plsys Plsys Plsys

    Confirm: OK OK OK OK

    Input 1: ULS.suppl-shear-H-

    FF_T-MG1-A3.rm

    pl-shear-H-

    FCOM-MG1-A3.rm

    pl-shear-H-

    FST-MG1-A3.rm

    Input 2: Mises - - -

    Input 3: - - - -

    Output 1: -pl-shear-H-

    FF_T-MG2.pl

    pl-shear-H-

    FCOM-

    MG2.pl

    pl-shear-H-

    FST-MG2.pl

    Output 2: * - - -

    Delta-T: 0 - - -

    Description: - - - -Confirm: OK OK OK OK

    Here only some plot files are shown. For shear stresses resp. equivalent stresses plots maybeaded individually.