peluruhan radioaktif

23
Peluruhan radioaktif Dari Wikipedia bahasa Indonesia, ensiklopedia bebas Belum Diperiksa Langsung ke: navigasi , cari Simbol trefoil digunakan untuk menunjukkan sebuah material radioaktif. Peluruhan radioaktif adalah kumpulan beragam proses di mana sebuah inti atom yang tidak stabil memancarkan partikel subatomik (partikel radiasi ). Peluruhan terjadi pada sebuah nukleus induk dan menghasilkan sebuah nukleus anak. Ini adalah sebuah proses acak sehingga sulit untuk memprediksi peluruhan sebuah atom. Satuan internasional (SI ) untuk pengukuran peluruhan radioaktif adalah becquerel (Bq). Jika sebuah material radioaktif menghasilkan 1 buah kejadian peluruhan tiap 1 detik, maka dikatakan material tersebut mempunyai aktivitas 1 Bq. Karena biasanya sebuah sampel material radiaktif mengandung banyak atom,1 becquerel akan tampak sebagai tingkat aktivitas yang rendah; satuan yang biasa digunakan adalah dalam orde gigabecquerels. Daftar isi [sembunyikan ] 1 Pendahuluan 2 Penemuan 3 Mode Peluruhan 4 Rantai peluruhan dan mode peluruhan ganda 5 Keberadaan dan penerapan 6 Laju peluruhan radioaktif

Upload: aditya-shaefurohman

Post on 27-Jun-2015

527 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Peluruhan radioaktif

Peluruhan radioaktifDari Wikipedia bahasa Indonesia, ensiklopedia bebas

Belum DiperiksaLangsung ke: navigasi, cari

Simbol trefoil digunakan untuk menunjukkan sebuah material radioaktif.

Peluruhan radioaktif adalah kumpulan beragam proses di mana sebuah inti atom yang tidak stabil memancarkan partikel subatomik (partikel radiasi). Peluruhan terjadi pada sebuah nukleus induk dan menghasilkan sebuah nukleus anak. Ini adalah sebuah proses acak sehingga sulit untuk memprediksi peluruhan sebuah atom.

Satuan internasional (SI) untuk pengukuran peluruhan radioaktif adalah becquerel (Bq). Jika sebuah material radioaktif menghasilkan 1 buah kejadian peluruhan tiap 1 detik, maka dikatakan material tersebut mempunyai aktivitas 1 Bq. Karena biasanya sebuah sampel material radiaktif mengandung banyak atom,1 becquerel akan tampak sebagai tingkat aktivitas yang rendah; satuan yang biasa digunakan adalah dalam orde gigabecquerels.

Daftar isi

[sembunyikan]

1 Pendahuluan 2 Penemuan 3 Mode Peluruhan 4 Rantai peluruhan dan mode peluruhan ganda 5 Keberadaan dan penerapan 6 Laju peluruhan radioaktif

o 6.1 Pengukuran aktivitas 7 Waktu peluruhan

[sunting] Pendahuluan

Neutron dan proton yang menyusun inti atom, terlihat seperti halnya partikel-partikel lain, diatur oleh beberapa interaksi. Gaya nuklir kuat, yang tidak teramati pada skala makroskopik, merupakan gaya terkuat pada skala subatomik. Hukum Coulomb atau gaya elektrostatik juga mempunyai peranan yang berarti pada ukuran ini. Gaya nuklir lemah sedikit berpengaruh pada interaksi ini. Gaya gravitasi tidak berpengaruh pada proses nuklir.

Page 2: Peluruhan radioaktif

Interaksi gaya-gaya ini pada inti atom terjadi dengan kompleksitas yang tinggi. Ada sifat yang dimiliki susunan partikel didalam inti atom, jika mereka sedikit saja bergeser dari posisinya, mereka dapat jatuh ke susunan energi yang lebih rendah. Mungkin bisa sedikit digambarkan dengan menara pasir yang kita buat di pantai: ketika gesekan yang terjadi antar pasir mampu menopang ketinggian menara, sebuah gangguan yang berasal dari luar dapat melepaskan gaya gravitasi dan membuat tower itu runtuh.

Keruntuhan menara (peluruhan) membutuhkan energi aktivasi tertentu. Pada kasus menara pasir, energi ini datang dari luar sistem, bisa dalam bentuk ditendang atau digeser tangan. Pada kasus peluruhan inti atom, energi aktivasi sudah tersedia dari dalam. Partikel mekanika kuantum tidak pernah dalam keadaan diam, mereka terus bergerak secara acak. Gerakan teratur pada partikel ini dapat membuat inti seketika tidak stabil. Hasil perubahan akan mempengaruhi susunan inti atom; sehingga hal ini termasuk dalam reaksi nuklir, berlawanan dengan reaksi kimia yang hanya melibatkan perubahan susunan elektron diluar inti atom.

(Beberapa reaksi nuklir melibatkan sumber energi yang berasal dari luar, dalam bentuk "tumbukkan" dengan partikel luar misalnya. Akan tetapi, reaksi semacam ini tidak dipertimbangkan sebagai peluruhan. Reaksi seperti ini biasanya akan dimasukan dalam fisi nuklir/fusi nuklir.

[sunting] Penemuan

Radioaktivitas pertama kali ditemukan pada tahun 1896 oleh ilmuwan Perancis Henri Becquerel ketika sedang bekerja dengan material fosforen. Material semacam ini akan berpendar di tempat gelap setelah sebelumnya mendapat paparan cahaya, dan dia berfikir pendaran yang dihasilkan tabung katoda oleh sinar-X mungkin berhubungan dengan fosforesensi. Karenanya ia membungkus sebuah pelat foto dengan kertas hitam dan menempatkan beragam material fosforen diatasnya. Kesemuanya tidak menunjukkan hasil sampai ketika ia menggunakan garam uranium. Terjadi bintik hitam pekat pada pelat foto ketika ia menggunakan garam uranium tesebut.

Tetapi kemudian menjadi jelas bahwa bintik hitam pada pelat bukan terjadi karena peristiwa fosforesensi, pada saat percobaan, material dijaga pada tempat yang gelap. Juga, garam uranium nonfosforen dan bahkan uranium metal dapat juga menimbulkan efek bintik hitam pada pelat.

Page 3: Peluruhan radioaktif

Partikel Alfa tidak mampu menembus selembar kertas, partikel beta tidak mampu menembus pelat alumunium. Untuk menghentikan gamma diperlukan lapisan metal tebal, namun karena penyerapannya fungsi eksponensial akan ada sedikit bagian yang mungkin menembus pelat metal

Pada awalnya tampak bentuk radiasi yang baru ditemukan ini mirip dengan penemuan sinar-X. Akan tetapi, penelitian selanjutnya yang dilakukan oleh Becquerel, Marie Curie, Pierre Curie, Ernest Rutherford dan ilmuwan lainnya menemukan bahwa radiaktivitas jauh lebih rumit ketimbang sinar-X. Beragam jenis peluruhan bisa terjadi.

Sebagai contoh, ditemukan bahwa medan listrik atau medan magnet dapat memecah emisi radiasi menjadi tiga sinar. Demi memudahkan penamaan, sinar-sinar tersebut diberi nama sesuai dengan alfabet yunani yakni alpha, beta, dan gamma, nama-nama tersebut masih bertahan hingga kini. Kemudian dari arah gaya elektromagnet, diketahui bahwa sinar alfa mengandung muatan positif, sinar beta bermuatan negatif, dan sinar gamma bermuatan netral. Dari besarnya arah pantulan, juga diketahui bahwa partikel alfa jauh lebih berat ketimbang partikel beta. Dengan melewatkan sinar alfa melalui membran gelas tipis dan menjebaknya dalam sebuah tabung lampu neon membuat para peneliti dapat mempelajari spektrum emisi dari gas yang dihasilkan, dan membuktikan bahwa partikel alfa kenyataannya adalah sebuah inti atom helium. Percobaan lainnya menunjukkan kemiripan antara radiasi beta dengan sinar katoda serta kemiripan radiasi gamma dengan sinar-X.

Para peneliti ini juga menemukan bahwa banyak unsur kimia lainnya yang mempunyai isotop radioaktif. Radioaktivitas juga memandu Marie Curie untuk mengisolasi radium dari barium; dua buah unsur yang memiliki kemiripan sehingga sulit untuk dibedakan.

Bahaya radioaktivitas dari radiasi tidak serta merta diketahui. Efek akut dari radiasi pertama kali diamati oleh insinyur listrik Amerika Elihu Thomson yang secara terus menerus mengarahkan sinar-X ke jari-jarinya pada 1896. Dia menerbitkan hasil pengamatannya terkait

Page 4: Peluruhan radioaktif

dengan efek bakar yang dihasilkan. Bisa dikatakan ia menemukan bidang ilmu fisika medik (health physics); untungnya luka tersebut sembuh dikemudian hari.

Efek genetis radiasi baru diketahui jauh dikemudian hari. Pada tahun 1927 Hermann Joseph Muller menerbitkan penelitiannya yang menunjukkan efek genetis radiasi. Pada tahun 1947 dimendapat penghargaan hadiah Nobel untuk penemuannya ini.

Sebelum efek biologi radiasi diketahui, banyak perusahan kesehatan yang memasarkan obat paten yang mengandung bahan radioaktif; salah satunya adalah penggunaan radium pada perawatan enema. Marie Curie menentang jenis perawatan ini, ia memperingatkan efek radiasai pada tubuh manusia belum benar-benar diketahui (Curie dikemudian hari meninggal akibat Anemia Aplastik, yang hampir dipastikan akibat lamanya ia terpapar Radium). Pada tahun 1930-an produk pengobatan yang mengandung bahan radioaktif tidak ada lagi dipasaran bebas.

[sunting] Mode Peluruhan

Sebuah inti radioaktif dapat melakukan sejumlah reaksi peluruhan yang berbeda. Reaksi-reaksi tersebut disarikan dalam tabel berikut ini. Sebuah inti atom dengan muatan (nomor atom) Z dan berat atom A ditampilkan dengan (A, Z).

Mode peluruhan Partikel yang terlibat Inti anakPeluruhan dengan emisi nukleon:Peluruhan alfa Sebuah partikel alfa (A=4, Z=2) dipancarkan dari inti (A-4, Z-2)Emisi proton Sebuah proton dilepaskan dari inti (A-1, Z-1)Emisi neutron Sebuah neutron dilepaskan dari inti (A-1, Z)

Fisi spontanSebuah inti terpecah menjadi dua atau lebih atom dengan inti yang lebih kecil disertai dengan pemancaran partikel lainnya

-

Peluruhan clusterInti atom memancarkan inti lain yang lebih kecil tertentu (A1, Z1) yang lebih besar daripada partikel alfa

(A-A1, Z-Z1) + (A1,Z1)

Berbagai peluruhan beta:

Peluruhan betaSebuah inti memancarkan

elektron dan sebuah antineutrino || (A, Z+1)Emisi positron Sebuah inti memancarkan positron dan sebuah neutrino (A, Z-1)

Tangkapan elektronSebuah inti menangkap elektron yang mengorbit dan memancarkan sebuah neutrino

(A, Z-1)

Peluruhan beta gandaSebuah inti memancarkan dua elektron dan dua antineutrinos

(A, Z+2)

Tangkapan elektron ganda

Sebuah inti menyerap dua elektron yang mengorbit dan memancarkan dua neutrino

(A, Z-2)

Tangkapan elektron dengan emisi positron

Sebuah inti menangkap satu elektron yang mengorbit memancarkan satu positron dan dua neutrino

(A, Z-2)

Emisi positron gandaSebuah inti memancarkan dua positrons dan dua neutrino

(A, Z-2)

Transisi antar dua keadaan pada inti yang sama:Peluruhan gamma Sebuah inti yang tereksitasi melepaskan sebuah foton (A, Z)

Page 5: Peluruhan radioaktif

energi tinggi (sinar gamma)

Konversi internalInti yang tereksitasi mengirim energinya pada sebuah elektron orbital dan melepaskannya

(A, Z)

Peluruhan radioaktif berakibat pada pengurangan massa, dimana menurut hukum relativitas khusus massa yang hilang diubah menjadi energi (pelepasan energi) sesuai dengan persamaan E = mc2. Energi ini dilepaskan dalam bentuk energi kinetik dari partikel yang dipancarkan.

[sunting] Rantai peluruhan dan mode peluruhan ganda

Banyak inti radioaktif yang mempunyai mode peluruhan berbeda. Sebagai contoh adalah Bismuth-212, yang mempunyai tiga.

Inti anak yang dihasilkan dari proses peluruhan biasanya juga tidak stabil, kadang lebih tidak stabil dari induknya. Bila kasus ini terjadi, inti anak tadi akan meluruh lagi. Proses kejadian peluruhan berurutan yang menghasilkan hasil akhir inti stabil, disebut rantai peluruhan.

[sunting] Keberadaan dan penerapan

Menurut teori Big Bang, isotop radioaktif dari unsur teringan (H, He, dan Li) dihasilkan tidak berapa lama seteleah alam semesta terbentuk. Tetapi, inti-inti ini sangat tidak stabil sehingga tidak ada dari ketiganya yang masih ada saat ini. Karenanya sebagian besar inti radioaktif yang ada saat ini relatif berumur muda, yang terbentuk di bintang (khususnya supernova) dan selama interaksi antara isotop stabil dan partikel berenergi. Sebagai contoh, karbon-14, inti radioaktif yang mempunyai umur-paruh hanya 5730 tahun, secara terus menerus terbentuk di atmosfer atas bumi akibat interaksi antara sinar kosmik dan Nitrogen.

Peluruhan radioaktif telah digunakan dalam teknik perunut radioaktif, yang digunakan untuk mengikuti perjalanan subtansi kimia di dalam sebuah sistem yang kompleks (seperti organisme hidup misalnya). Sebuah sampel dibuat dengan atom tidak stsbil konsentrasi tinggi. Keberadaan substansi di satu atau lebih bagian sistem diketahui dengan mendeteksi lokasi terjadinya peluruhan.

Dengan dasar bahwa proses peluruhan radioaktif adalah proses acak (bukan proses chaos), proses peluruhan telah digunakan dalam perangkat keras pembangkit bilangan-acak yang merupakan perangkat dalam meperkirakan umur absolutmaterial geologis dan bahan organik.

[sunting] Laju peluruhan radioaktif

Laju peluruhan, atau aktivitas, dari material radioaktif ditentukan oleh:

Konstanta:

Waktu paruh - simbol t1 / 2 - waktu yang diperlukan sebuah material radioaktif untuk meluruh menjadi setengah bagian dari sebelumnya.

Rerata waktu hidup - simbol τ - rerata waktu hidup (umur hidup) sebuah material radioaktif.

Page 6: Peluruhan radioaktif

Konstanta peluruhan - simbol λ - konstanta peluruhan berbanding terbalik dengan waktu hidup (umur hidup).

(Perlu dicatat meskipun konstanta, mereka terkait dengan perilaku yang secara statistik acak, dan prediksi menggunakan kontanta ini menjadi berkurang keakuratannya untuk material dalam jumlah kecil. Tetapi, peluruhan radioaktif yang digunakan dalam teknik penanggalan sangat handal. Teknik ini merupakan salah satu pertaruhan yang aman dalam ilmu pengetahuan sebagaimana yang disampaikan oleh [1])

Variabel:

Aktivitas total - simbol A - jumlah peluruhan tiap detik. Aktivitas khusus - simbol SA - jumlah peluruhan tiap detik per jumlah

substansi. "Jumlah substansi" dapat berupa satuan massa atau volume.)

Persamaan:

dimana adalah jumlah awal material aktif.

[sunting] Pengukuran aktivitas

Satuan aktivitas adalah: becquerel (simbol Bq) = jumah disintegrasi (pelepasan)per detik ;

curie (Ci) = disintegrasi per detik; dan disintegrasi per menit (dpm).

[sunting] Waktu peluruhan

Sebagaimana yang disampaikan di atas, peluruhan dari inti tidak stabil merupakan proses acak dan tidak mungkin untuk memperkirakan kapan sebuah atom tertentu akan meluruh, melainkan ia dapat meluruh sewaktu waktu. Karenanya, untuk sebuah sampel radioisotop tertentu, jumlah kejadian peluruhan –dN yang akan terjadi pada selang (interval) waktu dt adalah sebanding dengan jumlah atom yang ada sekarang. Jika N adalah jumlah atom, maka kemungkinan (probabilitas) peluruhan (– dN/N) sebanding dengan dt:

Masing-masing inti radioaktif meluruh dengan laju yang berbeda, masing-masing mempunyai konstanta peluruhan sendiri (λ). Tanda negatif pada persamaan menunjukkan bahwa jumlah

Page 7: Peluruhan radioaktif

N berkurang seiring dengan peluruhan. Penyelesaian dari persamaan diferensial orde 1 ini adalah fungsi berikut:

Fungsi di atas menggambarkan peluruhan exponensial, yang merupakan penyelesaian pendekatan atas dasar dua alasan. Pertama, fungsi exponensial merupakan fungsi berlanjut, tetapi kuantitas fisik N hanya dapat bernilai bilangan bulat positif. Alasan kedua, karena persamaan ini penggambaran dari sebuah proses acak, hanya benar secara statistik. Akan tetapi juga, dalam banyak kasus, nilai N sangat besar sehingga fungsi ini merupakan pendekatan yang baik.

Selain konstanta peluruhan, peluruhan radioaktif sebuah material biasanya juga dicirikan oleh rerata waktu hidup. Masing-masing atom "hidup" untuk batas waktu tertentu sebelum ia meluruh, dan rerata waktu hidup adalah rerata aritmatika dari keseluruhan waktu hidup atom-atom material tersebut. Rerata waktu hidup disimbolkan dengan τ, dan mempunyai hubungan dengan konstanta peluruhan sebagai berikut:

Parameter yang lebih biasa digunakan adalah waktu paruh. Waktu paruh adalah waktu yang diperlukan sebuah inti radioatif untuk meluruh menjadi separuh bagian dari sebelumnya. Hubungan waktu paruh dengan konstanta peluruhan adalah sebagai berikut:

Hubungan waktu paruh dengan konstanta peluruhan menunjukkan bahwa material dengan tingkat radioaktif yang tinggi akan cepat habis, sedang materi dengan dengan tingkat radiasi rendah akan lama habisnya. Waktu paruh inti radioaktif sangat bervariasi, dari mulai 10 24 tahun untuk inti hampir stabil, sampai 10 -6 detik untuk yang sangat tidak stabil.

Waktu paruhDari Wikipedia bahasa Indonesia, ensiklopedia bebasLangsung ke: navigasi, cari

Waktu paruh (half-life) dari sejumlah bahan yang menjadi subjek dari peluruhan eksponensial adalah waktu yang dibutuhkan untuk jumlah tersebut berkurang menjadi setengah dari nilai awal. Konsep ini banyak terjadi dalam fisika, untuk mengukur peluruhan radioaktif dari zat-zat, tetapi juga terjadi dalam banyak bidang lainnya. Tabel di kanan menunjukan pengurangan jumlah dalam jumlah waktu paruh yang terjadi.

Setelah xwaktu paruh

Persen jumlahyang tersisa

0 100%1 50%2 25%3 12,5%4 6,25%5 3,125%6 1,5625%7 0,78125%... ...

N

... ...

Page 8: Peluruhan radioaktif

[sunting] Turunan

Kuantitas subyek yang mengalami peluruhan eksponensial biasanya diberi lambang N. Nilai N pada waktu t ditentukan dengan rumus

, di mana

N0 sebagai nilai awal N (pada saat t=0) λ sebagai konstanta positif (konstanta peluruhan).

Ketika t=0, eksponensialnya setara dengan 1, sedangkan N(t) setara dengan N0. Ketika t mendekati tak terbatas, eksponensialnya mendekati nol.

Secara khusus, terdapat waktu sehingga

Mengganti rumus di atas, akan didapatkan:

Maka waktu paruhnya 69.3% dari mean lifetime

Waktu Paruh

Waktu paruh didefinisikan sebagai lamanya zat radioaktif melakukan peluruhan hingga banyaknya inti sisa adalah setengah dari banyaknya inti mula-mula:   subsitusikan nilai ini ke persamaan hukum peluruhan zat radioaktif, diperoleh:

Page 9: Peluruhan radioaktif

      

                           

          

Faktor T½ dinamakan waktu paruh. Waktu paruh dari beberapa zat radioaktif telah diketahui melalui

Page 10: Peluruhan radioaktif

berbagai percobaan dan pemodelan.Contoh : Waktu paruh dari Au-198 adalah 3 hari, tentukan tetapan peluruhnya?                        λ = 0,693/3 hari                             = 0,231 per hari                             = 2,7 x 10-7 per detik

peluruhan   radioaktif

25 Mei 2010 1 Komentar

by chebii in Uncategorized

Peluruhan radioaktifDari Wikipedia bahasa Indonesia, ensiklopedia bebas

Simbol trefoil digunakan untuk menunjukkan sebuah material radioaktif.Peluruhan radioaktif adalah kumpulan beragam proses di mana sebuah inti atom yang tidak stabil memancarkan partikel subatomik (partikel radiasi). Peluruhan terjadi pada sebuah nukleus induk dan menghasilkan sebuah nukleus anak. Ini adalah sebuah proses acak sehingga sulit untuk memprediksi peluruhan sebuah atom.Satuan internasional (SI) untuk pengukuran peluruhan radioaktif adalah becquerel (Bq). Jika sebuah material radioaktif menghasilkan 1 buah kejadian peluruhan tiap 1 detik, maka dikatakan material tersebut mempunyai aktivitas 1 Bq. Karena biasanya sebuah sampel material radiaktif mengandung banyak atom,1 becquerel akan tampak sebagai tingkat aktivitas yang rendah; satuan yang biasa digunakan adalah dalam orde gigabecquerels.PendahuluanNeutron dan proton yang menyusun inti atom, terlihat seperti halnya partikel-partikel lain, diatur oleh beberapa interaksi. Gaya nuklir kuat, yang tidak teramati pada skala makroskopik, merupakan gaya terkuat pada skala subatomik. Hukum Coulomb atau gaya elektrostatik juga mempunyai peranan yang berarti pada ukuran ini. Gaya nuklir lemah sedikit berpengaruh pada interaksi ini. Gaya gravitasi tidak berpengaruh pada proses nuklir.Interaksi gaya-gaya ini pada inti atom terjadi dengan kompleksitas yang tinggi. Ada sifat yang dimiliki susunan partikel didalam inti atom, jika mereka sedikit saja bergeser dari posisinya, mereka dapat jatuh ke susunan energi yang lebih rendah. Mungkin bisa sedikit digambarkan dengan menara pasir yang kita buat di pantai: ketika gesekan yang terjadi antar pasir mampu menopang ketinggian menara, sebuah gangguan yang berasal dari luar dapat melepaskan gaya gravitasi dan membuat tower itu runtuh.Keruntuhan menara (peluruhan) membutuhkan energi aktivasi tertentu. Pada kasus menara pasir, energi ini datang dari luar sistem, bisa dalam bentuk ditendang atau digeser tangan. Pada kasus peluruhan inti atom, energi aktivasi sudah tersedia dari dalam. Partikel mekanika kuantum tidak pernah dalam keadaan diam, mereka terus bergerak secara acak. Gerakan teratur pada partikel ini dapat membuat inti seketika tidak stabil. Hasil perubahan akan

Page 11: Peluruhan radioaktif

mempengaruhi susunan inti atom; sehingga hal ini termasuk dalam reaksi nuklir, berlawanan dengan reaksi kimia yang hanya melibatkan perubahan susunan elektron diluar inti atom.(Beberapa reaksi nuklir melibatkan sumber energi yang berasal dari luar, dalam bentuk “tumbukkan” dengan partikel luar misalnya. Akan tetapi, reaksi semacam ini tidak dipertimbangkan sebagai peluruhan. Reaksi seperti ini biasanya akan dimasukan dalam fisi nuklir/fusi nuklir.PenemuanRadioaktivitas pertama kali ditemukan pada tahun 1896 oleh ilmuwan Perancis Henri Becquerel ketika sedang bekerja dengan material fosforen. Material semacam ini akan berpendar di tempat gelap setelah sebelumnya mendapat paparan cahaya, dan dia berfikir pendaran yang dihasilkan tabung katoda oleh sinar-X mungkin berhubungan dengan fosforesensi. Karenanya ia membungkus sebuah pelat foto dengan kertas hitam dan menempatkan beragam material fosforen diatasnya. Kesemuanya tidak menunjukkan hasil sampai ketika ia menggunakan garam uranium. Terjadi bintik hitam pekat pada pelat foto ketika ia menggunakan garam uranium tesebut.Tetapi kemudian menjadi jelas bahwa bintik hitam pada pelat bukan terjadi karena peristiwa fosforesensi, pada saat percobaan, material dijaga pada tempat yang gelap. Juga, garam uranium nonfosforen dan bahkan uranium metal dapat juga menimbulkan efek bintik hitam pada pelat.

Partikel Alfa tidak mampu menembus selembar kertas, partikel beta tidak mampu menembus pelat alumunium. Untuk menghentikan gamma diperlukan lapisan metal tebal, namun karena penyerapannya fungsi eksponensial akan ada sedikit bagian yang mungkin menembus pelat metalPada awalnya tampak bentuk radiasi yang baru ditemukan ini mirip dengan penemuan sinar-X. Akan tetapi, penelitian selanjutnya yang dilakukan oleh Becquerel, Marie Curie, Pierre Curie, Ernest Rutherford dan ilmuwan lainnya menemukan bahwa radiaktivitas jauh lebih rumit ketimbang sinar-X. Beragam jenis peluruhan bisa terjadi.Sebagai contoh, ditemukan bahwa medan listrik atau medan magnet dapat memecah emisi radiasi menjadi tiga sinar. Demi memudahkan penamaan, sinar-sinar tersebut diberi nama sesuai dengan alfabet yunani yakni alpha, beta, dan gamma, nama-nama tersebut masih bertahan hingga kini. Kemudian dari arah gaya elektromagnet, diketahui bahwa sinar alfa mengandung muatan positif, sinar beta bermuatan negatif, dan sinar gamma bermuatan netral. Dari besarnya arah pantulan, juga diketahui bahwa partikel alfa jauh lebih berat ketimbang partikel beta. Dengan melewatkan sinar alfa melalui membran gelas tipis dan menjebaknya dalam sebuah tabung lampu neon membuat para peneliti dapat mempelajari spektrum emisi dari gas yang dihasilkan, dan membuktikan bahwa partikel alfa kenyataannya adalah sebuah inti atom helium. Percobaan lainnya menunjukkan kemiripan antara radiasi beta dengan sinar katoda serta kemiripan radiasi gamma dengan sinar-X.Para peneliti ini juga menemukan bahwa banyak unsur kimia lainnya yang mempunyai isotop radioaktif. Radioaktivitas juga memandu Marie Curie untuk mengisolasi radium dari barium; dua buah unsur yang memiliki kemiripan sehingga sulit untuk dibedakan.Bahaya radioaktivitas dari radiasi tidak serta merta diketahui. Efek akut dari radiasi pertama kali diamati oleh insinyur listrik Amerika Elihu Thomson yang secara terus menerus mengarahkan sinar-X ke jari-jarinya pada 1896. Dia menerbitkan hasil pengamatannya terkait dengan efek bakar yang dihasilkan. Bisa dikatakan ia menemukan bidang ilmu fisika medik (health physics); untungnya luka tersebut sembuh dikemudian hari.Efek genetis radiasi baru diketahui jauh dikemudian hari. Pada tahun 1927 Hermann Joseph Muller menerbitkan penelitiannya yang menunjukkan efek genetis radiasi. Pada tahun 1947 dimendapat penghargaan hadiah Nobel untuk penemuannya ini.

Page 12: Peluruhan radioaktif

Sebelum efek biologi radiasi diketahui, banyak perusahan kesehatan yang memasarkan obat paten yang mengandung bahan radioaktif; salah satunya adalah penggunaan radium pada perawatan enema. Marie Curie menentang jenis perawatan ini, ia memperingatkan efek radiasai pada tubuh manusia belum benar-benar diketahui (Curie dikemudian hari meninggal akibat Anemia Aplastik, yang hampir dipastikan akibat lamanya ia terpapar Radium). Pada tahun 1930-an produk pengobatan yang mengandung bahan radioaktif tidak ada lagi dipasaran bebas.Mode PeluruhanSebuah inti radioaktif dapat melakukan sejumlah reaksi peluruhan yang berbeda. Reraksi-reaksi tersebut disarikan dalam tabel berikut ini. Sebuah inti atom dengan muatan (nomor atom) Z dan berat atom A ditampilkan dengan (A, Z).Mode peluruhan Partikel yang terlibat Inti anakPeluruhan dengan emisi nukleon:Peluruhan alfaSebuah partikel alfa (A=4, Z=2) dipancarkan dari inti(A-4, Z-2)Emisi protonSebuah proton dilepaskan dari inti (A-1, Z-1)Emisi neutronSebuah neutron dilepaskan dari inti (A-1, Z)Fisi spontanSebuah inti terpecah menjadi dua atau lebih atom dengan inti yang lebih kecil disertai dengan pemancaran partikel lainnya -Peluruhan clusterInti atom memancarkan inti lain yang lebih kecil tertentu (A1, Z1) yang lebih besar daripada partikel alfa (A-A1, Z-Z1) + (A1,Z1)Berbagai peluruhan beta:Peluruhan betaSebuah inti memancarkanelektron dan sebuah antineutrino || (A, Z+1)

Emisi positronSebuah inti memancarkan positron dan sebuah neutrino(A, Z-1)Tangkapan elektronSebuah inti menangkap elektron yang mengorbit dan memancarkan sebuah neutrino (A, Z-1)Peluruhan beta gandaSebuah inti memancarkan dua elektron dan dua antineutrinos (A, Z+2)Tangkapan elektron gandaSebuah inti menyerap dua elektron yang mengorbit dan memancarkan dua neutrino (A, Z-2)Tangkapan elektron dengan emisi positronSebuah inti menangkap satu elektron yang mengorbit memancarkan satu positron dan dua neutrino (A, Z-2)Emisi positron gandaSebuah inti memancarkan dua positrons dan dua neutrino (A, Z-2)Transisi antar dua keadaan pada inti yang sama:Peluruhan gammaSebuah inti yang tereksitasi melepaskan sebuah foton energi tinggi (sinar gamma)(A, Z)Konversi internal

Page 13: Peluruhan radioaktif

Inti yang tereksitasi mengirim energinya pada sebuah elektron orbital dan melepaskannya (A, Z)Peluruhan radioaktif berakibat pada pengurangan massa, dimana menurut hukum relativitas khusus massa yang hilang diubah menjadi energi (pelepasan energi) sesuai dengan persamaan E = mc2. Energi ini dilepaskan dalam bentuk energi kinetik dari partikel yang dipancarkan.Rantai peluruhan dan mode peluruhan gandaBanyak inti radioaktif yang mempunyai mode peluruhan berbeda. Sebagai contoh adalah Bismuth-212, yang mempunyai tiga.Inti anak yang dihasilkan dari proses peluruhan biasanya juga tidak stabil, kadang lebih tidak stabil dari induknya. Bila kasus ini terjadi, inti anak tadi akan meluruh lagi. Proses kejadian peluruhan berurutan yang menghasilkan hasil akhir inti stabil, disebut rantai peluruhan.Keberadaan dan penerapanMenurut teori Big Bang, isotop radioaktif dari unsur teringan (H, He, dan Li) dihasilkan tidak berapa lama seteleah alam semesta terbentuk. Tetapi, inti-inti ini sangat tidak stabil sehingga tidak ada dari ketiganya yang masih ada saat ini. Karenanya sebagian besar inti radioaktif yang ada saat ini relatif berumur muda, yang terbentuk di bintang (khususnya supernova) dan selama interaksi antara isotop stabil dan partikel berenergi. Sebagai contoh, karbon-14, inti radioaktif yang mempunyai umur-paruh hanya 5730 tahun, secara terus menerus terbentuk di atmosfer atas bumi akibat interaksi antara sinar kosmik dan Nitrogen.Peluruhan radioaktif telah digunakan dalam teknik perunut radioaktif, yang digunakan untuk mengikuti perjalanan subtansi kimia di dalam sebuah sistem yang kompleks (seperti organisme hidup misalnya). Sebuah sampel dibuat dengan atom tidak stsbil konsentrasi tinggi. Keberadaan substansi di satu atau lebih bagian sistem diketahui dengan mendeteksi lokasi terjadinya peluruhan.Dengan dasar bahwa proses peluruhan radioaktif adalah proses acak (bukan proses chaos), proses peluruhan telah digunakan dalam perangkat keras pembangkit bilangan-acak yang merupakan perangkat dalam meperkirakan umur absolutmaterial geologis dan bahan organik.Laju peluruhan radioaktifLaju peluruhan, atau aktivitas, dari material radioaktif ditentukan oleh:Konstanta:• Waktu paruh – simbol t1 / 2 – waktu yang diperlukan sebuah material radioaktif untuk meluruh menjadi setengah bagian dari sebelumnya.• Rerata waktu hidup – simbol τ – rerata waktu hidup (umur hidup) sebuah material radioaktif.• Konstanta peluruhan – simbol λ – konstanta peluruhan berbanding terbalik dengan waktu hidup (umur hidup).(Perlu dicatat meskipun konstanta, mereka terkait dengan perilaku yang secara statistik acak, dan prediksi menggunakan kontanta ini menjadi berkurang keakuratannya untuk material dalam jumlah kecil. Tetapi, peluruhan radioaktif yang digunakan dalam teknik penanggalan sangat handal. Teknik ini merupakan salah satu pertaruhan yang aman dalam ilmu pengetahuan sebagaimana yang disampaikan oleh [1])Variabel:• Aktivitas total – simbol A – jumlah peluruhan tiap detik.• Aktivitas khusus – simbol SA – jumlah peluruhan tiap detik per jumlah substansi. “Jumlah substansi” dapat berupa satuan massa atau volume.)Persamaan:

dimanaadalah jumlah awal material aktif.Pengukuran aktivitas

Page 14: Peluruhan radioaktif

Satuan aktivitas adalah: becquerel (simbol Bq) = jumah disintegrasi (pelepasan)per detik ; curie (Ci) = disintegrasi per detik; dan disintegrasi per menit (dpm).Waktu peluruhanSebagaimana yang disampaikan di atas, peluruhan dari inti tidak stabil merupakan proses acak dan tidak mungkin untuk memperkirakan kapan sebuah atom tertentu akan meluruh, melainkan ia dapat meluruh sewaktu waktu. Karenanya, untuk sebuah sampel radioisotop tertentu, jumlah kejadian peluruhan –dN yang akan terjadi pada selang (interval) waktu dt adalah sebanding dengan jumlah atom yang ada sekarang. Jika N adalah jumlah atom, maka kemungkinan (probabilitas) peluruhan (– dN/N) sebanding dengan dt:

Masing-masing inti radioaktif meluruh dengan laju yang berbeda, masing-masing mempunyai konstanta peluruhan sendiri (λ). Tanda negatif pada persamaan menunjukkan bahwa jumlah N berkurang seiring dengan peluruhan. Penyelesaian dari persamaan diferensial orde 1 ini adalah fungsi berikut:

Fungsi di atas menggambarkan peluruhan exponensial, yang merupakan penyelesaian pendekatan atas dasar dua alasan. Pertama, fungsi exponensial merupakan fungsi berlanjut, tetapi kuantitas fisik N hanya dapat bernilai bilangan bulat positif. Alasan kedua, karena persamaan ini penggambaran dari sebuah proses acak, hanya benar secara statistik. Akan tetapi juga, dalam banyak kasus, nilai N sangat besar sehingga fungsi ini merupakan pendekatan yang baik.Selain konstanta peluruhan, peluruhan radioaktif sebuah material biasanya juga dicirikan oleh rerata waktu hidup. Masing-masing atom “hidup” untuk batas waktu tertentu sebelum ia meluruh, dan rerata waktu hidup adalah rerata aritmatika dari keseluruhan waktu hidup atom-atom material tersebut. Rerata waktu hidup disimbolkan dengan τ, dan mempunyai hubungan dengan konstanta peluruhan sebagai berikut:

Parameter yang lebih biasa digunakan adalah waktu paruh. Waktu paruh adalah waktu yang diperlukan sebuah inti radioatif untuk meluruh mejadi separuh bagian dari sebelumnya. Hubungan waktu paruh dengan konstanta peluruhan adalah sebagai berikut:

Hubungan waktu paruh dengan konstanta peluruhan menunjukkan bahwa material dengan tingkat radioaktif yang tinggi akan cepat habis, sedang materi dengan dengan tingkat radiasi rendah akan lama habisnya. Waktu paruh inti radioaktif sangat bervariasi, dari mulai 1024 tahun untuk inti hampir stabil, sampai 10-6 detik untuk yang sangat tidak stabil.

Waktu paruh Radioaktif

Waktu paruh radioaktif untuk suatu radioisotop adalah waktu selama setengah inti radioaktif dalam sampel untuk menjalani peluruhan radioaktif. Setelah dua setengah-hidup, akan ada seperempat sampel yang asli, setelah tiga setengah delapan tinggal satu sampel asli, dan sebagainya.

Page 15: Peluruhan radioaktif

Radioaktif waktu paruh untuk suatu radioisotop adalah ukuran kecenderungan inti untuk "pembusukan" atau "hancur" dan karena itu murni didasarkan atas bahwa probabilitas. Ukuran nuklir kecil dibandingkan dengan atom dan besarnya gaya-gaya yang bekerja di dalamnya membuatnya hampir sama sekali tidak terpengaruh dengan dunia luar. Kehidupan yang setengah independen dari keadaan fisik (padat, cair, gas), suhu, tekanan, senyawa kimia di mana nukleus menemukan dirinya, dan pada dasarnya pengaruh luar lainnya. Hal ini tergantung pada kimia permukaan atom, dan independen dari faktor fisik biasa dari dunia luar. Satu-satunya hal yang dapat mengubah kehidupan setengah nuklir langsung interaksi dengan partikel dari luar, misalnya, sebuah tumbukan energi tinggi dalam akselerator.

dia prediksi pembusukan dapat dinyatakan dalam bentuk setengah hidup, konstanta peluruhan, atau rata-rata seumur hidup. Hubungan antara jumlah tersebut adalah sebagai berikut.

Grafik Peluruhan Radioaktif

Radioaktif paruh memberikan pola pengurangan setengah berturut-turut dalam paruh periode.

Page 16: Peluruhan radioaktif

Decay nuklir Probabilitas (peluang peluruhan Inti)

Peluruhan radioaktif adalah proses statistik yang bergantung pada ketidakstabilan radioisotop tertentu, tetapi yang untuk setiap inti dalam sampel benar-benar tidak terduga. Proses peluruhan dan yang diamati paruh ketergantungan radioaktivitas dapat diperkirakan dengan mengasumsikan bahwa individu meluruh nuklir adalah murni peristiwa acak. Jika ada N radioaktif inti pada suatu waktu t, maka jumlah yang akan ΔN pembusukan pada selang waktu tertentu akan Δt proporsional ke N:

dimana λ adalah konstanta proporsionalitas (konstanta peluruhan).

Tanpa asumsi lebih jauh, hal ini mengarah kepada hasil peluruhan radioaktif eksponensial:

Pertunjukan

dan juga menunjukkan bahwa tingkat kerusakan dan jumlah radiasi yang dipancarkan juga mengikuti jenis hubungan yang sama:

Mengembangkan Decay Expression (ekspresi peluruhan)

Meskipun melibatkan peluruhan radioaktif peristiwa diskrit disintegrasi nuklir, jumlah kejadian adalah begitu besar sehingga dapat diperlakukan seperti sebuah kontinum dan metode kalkulus digunakan untuk memprediksi perilaku. Hasil dari probabilitas peluruhan dapat diletakkan dalam bentuk diferensial:

Ini dapat diintegrasikan secara langsung untuk memberikan ln N =-λt + C di mana C adalah konstanta integrasi.

Mengambil eksponen dari kedua belah pihak memberikansehingga bentuk standar persamaan peluruhan adalah:

dimana λ adalah konstanta proporsionalitas (konstanta peluruhan).

Tanpa asumsi lebih jauh, hal ini mengarah kepada hasil peluruhan radioaktif eksponensial:

Pertunjukan

dan juga menunjukkan bahwa tingkat kerusakan dan jumlah radiasi yang dipancarkan juga mengikuti

Page 17: Peluruhan radioaktif

jenis hubungan yang sama:

Radioactive Decay Constant (konstanta peluruhan)

Laju peluruhan radioaktif biasanya dinyatakan dalam baik paruh radioaktif, atau konstanta peluruhan radioaktif. Mereka terkait sebagai berikut:

Konstanta peluruhan juga disebut disintegrasi sometimed konstan. Setengah hidup dan konstanta peluruhan memberikan informasi yang sama, sehingga baik dapat digunakan untuk menandai membusuk. Konsep lain yang berguna dalam peluruhan radioaktif adalah rata-rata seumur hidup. Seumur hidup rata-rata adalah kebalikan dari konstanta peluruhan sebagaimana didefinisikan di sini.

Sebagai contoh, peluruhan neutron bebas dengan halflife sekitar 10,3 menit. Hal ini terkait dengan konstanta peluruhan .067/min dan masa pakai rata-rata 14,8 menit atau 890 detik.

sumber : http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/halfli2.html#c1

Diposkan oleh hiens megantara di 5:36:00 AM Email This BlogThis! Share to Twitter Share to

Facebook Share to Google Buzz

0 komentar:

Post a Comment

Newer Post Older Post