interpretation of plain x-ray images using fuzzy … of plain -ray images... · pengimejan awal...

24
INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY LOGIC TO DETECT AND CLASSIFY BONE TUMORS Yeck Yin Ping Master of Science 2010

Upload: duongnhi

Post on 31-Mar-2019

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY LOGIC TO DETECT AND CLASSIFY BONE TUMORS

Yeck Yin Ping

Master of Science 2010

Page 2: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Pusat Khidmat Maklumat Akademik UNIVERSITI MALAYSIA SARAWAK

INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY LOGIC TO DETECT AND CLASSIFY BONE TUMORS

P. KHIDMAT MAKLUMAT AKADEMIK

111111111 Iii'I'Vi III II1 1000246244

YECK YIN PING

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Computer Science and Information Technology UNIVERSITI MALAYSIA SARAWAK

2010

Page 3: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Acknowledgements

First of all, I gratefully acknowledge Unimas Postgraduate Fellowship for financially

sponsoring my education and research work.

I would like to express my sincere gratitude to my main supervisor, Professor Dr. Wang Yin

Chai. His excellent guidance, advice, continuous supports and insightful comments help me

throughout all the phase of the research work and thesis write-up. This research has been a

very challenging but rewarding experience and I have gained extra knowledge which have

made me more confident and self-independent to participate any particular researches in the

future.

My sincere appreciation is also extended to my co-supervisor, Professor Dr. Pan Kok Long

for providing me with the bone tumor x-ray images that are used in this research. He patiently

guide me through medical knowledge and generously shared his expertise, assisted me to

write several publications and conduct a successful research.

Special thanks are dedicated to all postgraduate committee members from Faculty of

Computer Science and Information Technology for sharing their valuable suggestion, and

great ideas. Furthermore, I would also like to thank my friends in the lab for the fruitful

discussions and invaluable help.

Finally, I am very grateful to my parents for their spiritual support and love. They are always

there for me in any situation to make my life and gained this experience a lot easier.

i

Page 4: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Abstract

C Radiographic is a conventional x-ray image, typically the first imaging test used to diagnose

bone tumor. Probably the most common use of x-ray image is to assist the medical experts in

detecting the early stages of benign tumor growth, identifying tumor suspicious location and

monitoring the progression of degenerative tumor. Reading of x-ray image is usually done by

medical experts visually. The diagnosis process requires human expert's cognitive. It depends

extremely on the knowledge and long term diagnosis experiences of the medical experts. At

the earliest stage of bone tumors, when they are small and difficult to recognize, the

radiological finding can lead to potential misidentification and increase the frequency of

human error. Meanwhile, different medical experts have different perception of bone tumors

because the variable distributions of tumor appeared in x-ray images have presented

ambiguity. To help in overcoming such problems, an x-ray interpretation method based on

fuzzy logic has been developed in this studyýThis method allows the interpretation of plain x-

ray images to be performed semi automatically involving minimum number of input variables

in the detection and classification of bone tumor. In order to ensure that all the abnormalities

present as benign or malignant are classified properly, an image enhancement method has

been developed to refine the input image based on direct manipulation of pixel in the partial

domain. The proposed enhancement method employs image filtering technique with

combination of image registration to increase the contrast of tumor region. The developed

method has been extensively tested and compared against the Mamdani's fuzzy inference

methods in term of accuracy using test samples that were obtained from humeral parts with

various intensities on the x-ray images. The result showed that a 87.36% of accuracy rate was

achieved in bone tumor detection and a 98.38% of sensitivity was achieved in the

11

Page 5: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

classification of bone tumor. Demonstrations of the experiment results show the feasibility of

the proposed method in detecting the distributed abnormalities and classifying any

abnormalities present as benign and malignant tumor.

iii

Page 6: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Abstrak

Radiografi merupakan imej x-ray konvensional yang lazimnya digunakan sebagai ujian

pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk

membantu pakar perubatan dalam mengesan peringkat awal pertumbuhan tumor, mengenal

pasti lokasi tumor dan memantau penyebaran tumor yang progresif. Pemeriksaan imej x-ray

lazimnya dilakukan oleh pakar perubatan secara visual. Proses ini memerlukan kepakaran

pakar perubatan. Pada peringkat awal pertumbuhan tumor tulang, pakar perubatan sukar

mengenal pasti tumor tulang yang kecil dan ketaksaan, terutamanya bagi pakar perubatan

yang kurang pengalaman. Ini boleh mengakibatkan peningkatan kesilapan yang dilakukan

oleh pakar perubatan dalam penterjemahan imej x-ray. Bentuk tumor tulang yang pelbagai

juga boleh mengakibatkan pakar-pakar perubatan mempunyai pengertian dan penterjemahan

yang berbeza. Bagi mengatasi masalah tersebut, satu kaedah penafsiran x-ray berdasarkan

fuzzy logik telah dibangunkan dalam kajian ini. Kaedah ini membolehkan tafsiran imej x-ray

dilakukan secara separuh automatik yang melibatkan bilangan pembolehubah yang minimum

dalam pengesanan dan pengelasan tumor tulang. Demi memastikan bahawa kesemua

ketaknormalan sel dapat diklasifikasikan dengan betul, kaedah pembaikan imej telah

dibangunkan untuk membaiki imej berdasarkan manipulasi piksel dalam turnor tulang. Teknik

peningkatan yang dicadangkan dengan menggunakan penapisan imej dan pengabungan imej

untuk meningkatkan kontras rantau tumor. Kaedah-kaedah yang dibangunkan telah diuji dan

dibandingkan dengan kaedah-kaedah Mamdani. Ini adalah untuk menilai kejituan dalam

proses pengesan and pengelasan tumor tulang. Pengkajian ini diuji dengan sampel-sampel

yang didapati daripada pelbagai bahagian humerus yang mempunyai intensiti yang

berlainan. Kadar ketepatan sebanyak 87.36% telah dicapai dalam pengesanan tumor tulang

iv

Page 7: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

dan kadar kejituan sebanyak 98.38% telah dicapai dalam pengelasan tumor tulang.

Keputusan eksperimen menunjukkan bahawa kaedah yang dicadangkan mempunyai

kebolehan dalam pengesanan ketaknormalan dan pengelasan tumor tulang.

V

Page 8: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Pusat Khidmat Maklumat Akademik tJNIVERSITI MALAYSIA SARAWAK

Table of Contents

Acknowledgements

Abstract

Abstrak

Table of Contents

List of Figures

List of Tables

List of Abbreviations

Chapter 1 Introduction

1.1 Introduction

1.2 Research Problem

1.3 Research Objectives

1.4 Scope

1.5 Chapters Outline

1

11

iv

V1

X1

xvi

xvii

I

3

4

4

5

Chapter 2 Literature Review

2.1 Introduction 7

2.2 Radiographic Preprocessing and Radiographic Enhancement 7

2.3 Past Investigations on the Detection and Classification of Tumors 11

2.3.1 Neural Networks 11

2.3.2 Fractal Theory 14

2.3.3 Template Matching 16

vi

Page 9: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

2.3.4 Wavelet Approaches

2.3.5 Statistical or Texture Analysis Methods

2.3.6 Morphological Operations

2.3.7 Fuzzy Logic

2.4 Comparative Studies

2.5 Summary

Chapter 3 Fuzzy Tumor Detection

3.1 Introduction

3.2 X-ray Images Preprocessing

3.3 Fuzzy Logic Based Knowledge Formalization

3.4 Fuzzy Variable Identification and Rejection

3.4.1 Mean Intensity

3.4.2 Maximum of Gradient Amplitude

3.4.3 Euclidean Distance

3.4.4 Skewness

19

21

23

25

33

35

37

37

39

40

42

43

44

45

3.5 Fuzzification 47

3.5.1 Fuzzy Variables Normalization 47

3.5.2 Quantization 49

3.5.3 Assignment of Fuzzy Membership Functions 49

3.5.3.1 Fuzzy Membership Functions for Mean Intensity 50

3.5.3.2 Fuzzy Membership Functions for Maximum of Gradient 53

3.5.3.3 Fuzzy Membership Functions for Skewness 56

3.6 Fuzzy Inference Rules Setup 59

Vll

Page 10: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

3.7 Defuzzification

3.8 Summary

Chapter 4 Fuzzy Tumor Classification

4.1 Introduction

4.2 Partial Tumor Enhancement

4.2.1 Image Filtering

4.2.1.1 Mean Filter

4.2.1.2 Median Filter

4.2.1.3 Gaussian Blur Filter

4.2.2 Image Registration

4.3 Fuzzy Logic Based Knowledge Formalization

4.4 Fuzzy Variable Identification and Rejection

4.4.1 Intensity Difference

4.4.2 Standard Deviation

4.5 Fuzzification

4.5.1 Fuzzy Variables Normalization

4.5.2 Quantization

4.5.3 Assignment of Fuzzy Membership Functions

4.6 Fuzzy Inference Rules Setup

4.7 Defuzzification

4.8 Summary

61

63

66

66

66

67

67

68

68

71

73

74

75

76

77

78

79

87

93

95

viii

Page 11: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Chapter 5 Results and Analysis

5.1 Introduction 98

5.2 Data Acquisitions 98

5.3 X-ray Image Preprocessing Analysis 99

5.3.1 Preprocessing Analysis on High Frequency X-ray Images 99

5.3.2 Preprocessing Analysis on Low Frequency X-ray Images 100

5.3.3 Preprocessing Method Selection 101

5.3.4 Comparison Against Ordinary Images and Enhanced Images 101

5.4 Fuzzy Context Selection 104

5.5 Radiographic Analysis 104

5.5.1 Intensity Characteristics of Normal Radiographic 104

5.5.2 Intensity Characteristics of Abnormal Radiographic 106

5.6 Fuzzy Variables Analysis for Tumor Detection 109

5.6.1 Mean Intensity Analysis on Healthy Samples 109

5.6.2 Mean Intensity Analysis on Abnormal Samples 111

5.6.3 Euclidean Distance Analysis 112

5.6.4 Maximum of Gradient Amplitude Analysis 113

5.6.5 Skewness Analysis 114

5.7 Fuzzy Variables Selection for Tumor Detection 114

5.8 Fuzzy Membership Interval Analysis for Turpor Detection 116

5.9 Fuzzy Defuzzification Method Selection for Tumor Detection 125

5.10 Fuzzy Tumor Detection Benchmark 127

5.11 Partial Filter Selection 128

5.12 Full Filter Analysis 129

ix

Page 12: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

5.13 Intensity Difference Analysis for Benign and Malignant Tumors 135

5.14 Standard Deviation Analysis for Benign and Malignant Tumors 137

5.15 Fuzzy Membership Interval Analysis for Tumor Classification 138

5.15 Fuzzy Defuzzification Method Selection for Tumor Classification 147

5.16 Fuzzy Tumor Classification Benchmark 148

5.17 Summary 150

Chapter 6 Conclusions

6.1 Summary

6.2 Research Contributions

6.3 Future Works

152

155

158

References 160

Appendix I Fuzzy Tumor Detection Benchmark for Noise and Noise-free 168

X-ray Images

Appendix II Fuzzy Tumor Classification Benchmark for Noise and Noise- 190

free X-ray Images

Appendix III List of Published Papers 203

X

Page 13: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

List of Figures

Figure 2.1 Neural networks structure (Demuth et al., 2008) 11

Figure 3.1 Horizontal projection block diagram 43

Figure 3.2 Block diagram of Euclidean distance measurement on healthy 44

bone image

Figure 3.3 Block diagram of Euclidean distance measurement on bone tumor 45

image

Figure 3.4 Block diagram of symmetric distribution of skew data sets 46

Figure 3.5 Block diagram of asymmetric distribution of skew data sets 46

Figure 3.6 L-function for linguistic value of A, Lo 51

Figure 3.7 Triangular function for linguistic value of A, Med 52

Figure 3.8 F-function for linguistic value of A, Hi 52

Figure 3.9 The membership functions used in classifying the A, value 53

Figure 3.10 L-function for linguistic value of A,, Lo 54

Figure 3.11 Triangular function for linguistic value of A,,, Med 54

Figure 3.12 F-function for linguistic value of AHi 55

Figure 3.13 The membership functions used in classifying the A,, value 56

Figure 3.14 L-function for linguistic value of A.. Lo - 57

Figure 3.15 Triangular function for linguistic value of A, Med 57

Figure 3.16 F-function for linguistic value of A, Hi 58

Figure 3.17 The membership functions used in classifying the A, value 59

X1

Page 14: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Figure 3.18 Cube FAM and sliced cube FAM representations 60

Figure 4.1 The mechanism of image registration 69

Figure 4.2 Subtraction from the image at the left to create the image at right 70

after OR operation is being utilized

Figure 4.3 The enhanced image is created after AND operation is being 70

applied

Figure 4.4 Block diagram of intensity difference between bone lesion and 75

healthy bone

Figure 4.5 Block diagram of selecting and calculating the distributed bone 76

lesion

Figure 4.6 Fuzzy classifier control process 77

Figure 4.7 L-function for linguistic value of AdVLo 80

Figure 4.8 Triangular function for linguistic value of AdLo 81

Figure 4.9 Trapezoidal function for linguistic value of AdMed 81

Figure 4.10 Triangular function for linguistic value of AdHi

Figure 4.11 F-function for linguistic value of AJVHi

Figure 4.12 The membership functions used in classifying the A,, value

Figure 4.13 L-function for linguistic value of AVLo

Figure 4.14 Triangular function for linguistic value of A, Lo

Figure 4.15 Triangular function for linguistic value of A%Med

Figure 4.16 Triangular function for linguistic value of A, Hi

Figure 4.17 F-function for linguistic value of AVVHi

82

83

83

94

85

85

86

87

X11

Page 15: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Figure 4.18 The membership functions used in classifying the Av value 87

Figure 5.1 Comparison between enhanced images and high frequency image 99

Figure 5.2 Comparison between enhanced images and low frequency image 100

Figure 5.3 Comparison between ordinary images and enhanced images 102

Figure 5.4 Intensity characteristics of healthy sample 105

Figure 5.5 Results of threshold value for healthy samples 106

Figure 5.6 Malignant tumor 107

Figure 5.7 Benign tumor 107

Figure 5.8 Intensity characteristics of abnormal sample 108

Figure 5.9 Results of threshold value for normal and abnormal samples 108

Figure 5.10 Mean intensity histogram of healthy sample 1 110

Figure 5.11 Mean intensity histogram of healthy sample 2 110

Figure 5.12 Mean intensity histogram of healthy sample 3 110

Figure 5.13 Mean intensity histogram of abnormal sample 1 111

Figure 5.14 Mean intensity histogram of abnormal sample 2 112

Figure 5.15 Mean intensity histogram of abnormal sample 3 112

Figure 5.16 The comparison of Euclidean distance between healthy bone and 113

bone lesion

Figure 5.17 Maximum of gradient values for normal and abnormal images 113

Figure 5.18 The skewness measurement based on asymmetric and symmetric 114

distribution

Figure 5.19 Construction of fuzzy membership interval for mean intensity 117

Figure 5.20 Optimal frequency for linguistic value of A, Lo 118

X111

Page 16: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Figure 5.21 Optimal frequency for linguistic value of A, Med 118

Figure 5.22 Optimal frequency for linguistic value of A, Hi 119

Figure 5.23 Construction of fuzzy membership interval for maximum gradient 120

Figure 5.24 Optimal frequency for linguistic value of A. Lo

Figure 5.25 Optimal frequency for linguistic value of AmMed

Figure 5.26 Optimal frequency for linguistic value of A�, Hi

121

121

123

Figure 5.27 Construction of fuzzy membership interval for skewness 123

Figure 5.28 Optimal frequency for linguistic value of A,. Lo

Figure 5.29 Optimal frequency for linguistic value of A, Med

Figure 5.30 Optimal frequency for linguistic value of A, Hi

124

124

125

Figure 5.31 Optimal value of mean filter 130

Figure 5.32 Optimal value of median filter 131

Figure 5.33 Optimal value of Gaussian blur filter 132

Figure 5.34 Intensity difference of benign and malignant bone lesion 136

Figure 5.35 Standard deviation of benign and malignant bone lesion 137

Figure 5.36 Construction of fuzzy membership interval for intensity difference 139

Figure 5.37 Optimal frequency for linguistic value of AVLo 140

Figure 5.38 Optimal frequency for linguistic value of AdLo

Figure 5.39 Optimal frequency for linguistic value of AdMed

Figure 5.40 Optimal frequency for linguistic value of Ad Hi

Figure 5.41 Optimal frequency for linguistic value of AdVHi

140

141

142

142

Figure 5.42 Construction of fuzzy membership interval for standard deviation 144

xiv

Page 17: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Figure 5.43 Optimal frequency for linguistic value of A, VLo

Figure 5.44 Optimal frequency for linguistic value of A, Lo

Figure 5.45 Optimal frequency for linguistic value of A, Med

Figure 5.46 Optimal frequency for linguistic value of AVHi

Figure 5.47 Optimal frequency for linguistic value of AVVHi

Figure 5.48 Mean of benign and malignant bone tumor samples

145

145

146

146

147

149

xv

Page 18: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

List of Tables

Table 2.1 Comparison among the current studies and clinical applications 34

Table 3.1 Categorization of fuzzy variables into status, ratio range and 50

linguistic value

Table 4.1 Categorization of fuzzy variables into status, ratio range and 79

linguistic value

Table 4.2 The fuzzy rules table for fuzzy tumor classification 88

Table 5.1 Contrast refinement rates for each preprocessing method 101

Table 5.2 Results of difference between ordinary image and enhanced 103

image

Table 5.3 Data overlapped rate for fuzzy variables 115

Table 5.4 Abnormality detection rate for fuzzy defuzzification methods 126

Table 5.5 Benchmarking proposed approach and Pandey approach 127

Table 5.6 Feature enhancement rates for each filter type 128

Table 5.7 Refinement rates from each mask radius of the partial filters 133

Table 5.8 Refinement rates of the partial filters 133

Table 5.9 Benign and malignant refinement rates for each mask radius 134

Table 5.10 Tumor classification rate for fuzzy defuzzification methods 147

Table 5.11 Benchmarking proposed approach and Jain approach 149

Table 5.12 Data overlap rate for fuzzy variable of mean 150

xvi

Page 19: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

List of Abbreviations

ANFIS Adaptive Neuro-Fuzzy Inference System

BN Bayesian Networks

CAD Computer Aided Diagnosis

CPFIS Characteristic-point-based Fuzzy Inference System

CT Computed Tomography

DroG Derivative of Gaussian

FAM Fuzzy Associative Memory

fBm fractional Brownian motion

FD Fractal Dimension

FL Fuzzy Logic

FLAIR Fluid-attenuated Inversion-recovery

FPCM Fuzzy Possibilities C-Mean

FT Fractal Theory

GD Gradient Decent

GMM Gaussian Mixture Models

ICA Independent Component Analysis

LSE Least-Squares Estimator

MF Membership Functions

MO Morphological Operations

MRI Magnetic Resonance Imaging

NN Neural Network

PCA Principal Component Analysis

xvii

Page 20: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

PSNR Peak Signal-to-Noise Ratio

PTPSA Piecewise Triangular Prism Surface Area

RBF Radial Basis Function

ROI Region of Interest

ROS Region of Suspicious

SGLD Spatial Grey Level Dependency

SOM Self-organizing Map

STA Statistical or Texture Analysis Methods

SVM Support Vector Machine

TM Template Matching

WA Wavelet Approaches

WBC Wisconsin Breast Cancer

WDBC Wisconsin Diagnostics Breast Cancer

xviii

Page 21: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

Chapter 1 Introduction

1.1 Introduction

Bone cancer is a case where abnormal cells grow rapidly without any order and destroy the

healthy tissues. Bone metastasis occurs when the cancer cells lose the ability to control

abnormal cells growth and spread to other parts of the body through the bloodstream. The

trend can cause great morbidity including debilitating pain and pathologic fractures (Yao et

al., 2006). It will threaten human's life dangerously. Primary prevention seems impossible

since the causes of this disease still remain unknown as bone cancer is not contagious and

inherited through faulty gene. Hence, early detection at the level of expert recognition of a

medical specialist is more reliable to improve the bone cancer prognosis.

The conventional X-ray image is a useful tool with the highest sensitivity for detecting early

bone cancer and their distributions in bones. It is yielding a significant improvement in bone

cancer survival. The strength of bone x-ray image lies in its unequalled ability to detect bone

cancers in early stages, before tumors have invaded and destroyed nearby healthy tissues and

organs. Through its abilities to detect the density of soft tissue contrast, bone x-ray image is

capable to show the location, size and shape of bone tumor, as well as monitor the progression

of malignant tumor.

At the earliest possible stage of bone tumors, when they are small and difficult to recognize,

the medical experts manually check for the conventional radiographic features of cartilage to

find the distributed abnormalities in bones. The diagnosis requires human expert's cognitive,

which is due to the long term experiences and knowledge of medical expert by visually

I

Page 22: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

inspecting the bone x-ray images. The basic studies and clinical applications towards the

development of modern computerized scheme are carried out for the detection and

characterization of lesions radiographic images. This is not only designed to provide an

effective second reader information to the radiologists in the diagnosis of x-ray images, but it

also has the capability to diagnose the presence of lesion on medical images of healthy people

for bone cancer control.

The diagnosis process involves several levels of uncertainty and imprecision and it has been

the major challenge in the field of computer vision. The ultimate challenge is the integration

of knowledge and experience of medical experts with intelligent computer to produce output

of computerized analysis and characterization of medical images for diagnosing purposes.

Current studies toward the investigation for detection and classification of bone lesion is

based on fuzzy logic technique. Fuzzy logic is applied to deal with the problem of knowledge

representation in an uncertain and imprecise interpretation that heavily relies on domain

knowledge and expert analysis which therefore rule out the conventional diagnosis methods.

In this research, it first uses fuzzy logic for tumor detection and then the detected region is

enhanced to extract the desired features for tumor classification. The abnormalities are

decoded to tell whether the tumor is benign or malignant. Expert knowledge is utilized to set

the fuzzy parameters of membership functions based on individual images, and then come up

with rules of data selection and extraction.

2

Page 23: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

1.2 Research Problem

Diagnostics on bone tumors researches are relatively rare. The clinical symptoms are usually

unspecific and therefore most tumors are discovered accidentally during routine radiological

exams. Reading of bone x-ray image is generally done by medical experts visually, to detect

and interpret any abnormalities present, as benign or malignant. This is a labour intensive task

as it requires multiple reading of a single x-ray image in order to increase reliability.

The different diagnoses of bone tumors in pathology are difficult and can be based on the

radiological findings, for example define and diffuse the structure of tumor region in the x-ray

images. The abnormalities presented on x-ray images can be extremely small and difficult to

recognize. It can lead to potential misidentification for the medical doctors who have less

experience and do not have specialization on bone tumor diagnosis.

An individual abnormal region may manifest itself differently depending on a benignancy or

malignancy of tumor as tumor appears in different sizes, various densities and irregular

shapes. The variable distributions of tumors appear in bone x-ray images have presented

ambiguity in the field of medical diagnosis. This will cause fuzziness in human perception.

Many bone x-ray images exhibit poor contrast with non-uniform background illumination. In

particular, the abnormal cell boundaries are not sufficiently sharp to be readily extracted. A

major element of this error lies in the failure of the reader to detect signs of abnormality, in

which high intensity pixels in the form of white patches scattering in the image can have a

number of interpretations.

3

Page 24: INTERPRETATION OF PLAIN X-RAY IMAGES USING FUZZY … of Plain -Ray images... · pengimejan awal untuk mendiagnos tumor tulang. Biasanya, imej x-ray digunakan untuk membantu pakar

1.3 Research Objectives

This research is primarily aimed at the investigation of technique for the interpretation of

plain x-ray images that serves as a diagnostic aid for medical doctors who have less

experience in detecting and classifying the bone tumor. The specific objectives of this

research constitute an important achievement of the long term work outlined as follows:

" To investigate the potential of fuzzy logic and adopt fuzzy logic to develop an x-ray

interpretation method that will be able to detect the bone tumors with various densities

and classify the abnormalities present, as benign and malignant tumors.

" To develop an image enhancement method that will be able to provide the best

separation to distinguish between tumor and its surrounding soft tissue background.

" To identify the appropriate and efficient linguistic variables from domain knowledge

to deal with reasoning into the use of approximate information and uncertainty to

generate decisions in the fuzzy detection and fuzzy classifier.

" To validate the proposed method in term of accuracy through the comparison against

Mamdani's fuzzy inference methods.

1.4 Scope

The overall scope of work reported in this research is focused on techniques for tumor

diagnosis operated semi automatically in uncertainty environment. The detection of tumor is

done simultaneously with normal and abnormal features recognition using fuzzy logic

method. The regions of suspicious with various densities are extracted to differentiate whether

the desired location is normal or abnormal class. Then the abnormal region is selected for

patial enhancement and feature generator as the knowledge of the extent of tumor is important

4