graf 2

62
Bahan Kuliah Matematika Diskrit 1 Graf (bagian 2)

Upload: tenia-wahyuningrum

Post on 19-Jun-2015

492 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Graf 2

Bahan Kuliah Matematika Diskrit

1

Graf (bagian 2)

Page 2: Graf 2

2

8 . T e r h u b u n g (C o n n e c te d )

D u a b u a h s im p u l v 1 d a n s im p u l v 2 d ise b u t te r h u b u n g jik a te rd a p a t lin ta sa n d a ri v 1 k e v 2 .

G d ise b u t g r a f te r h u b u n g (c o n n e c te d g ra p h ) jik a u n tu k se tia p p a sa n g s im p u l v i d a n v j d a la m h im p u n a n V te rd a p a t lin ta sa n d a ri v i k e v j.

J ik a tid a k , m a k a G d ise b u t g r a f ta k -te r h u b u n g (d isc o n n e c te d g ra p h ) . C o n to h g ra f ta k -te rh u b u n g :

1

2

3

4

5

6

78

Page 3: Graf 2

3

Graf berarah G dikatakan terhubung jika graf tidak berarahnya terhubung (graf tidak berarah dari G diperoleh dengan menghilangkan arahnya).

Dua simpul, u dan v, pada graf berarah G disebut terhubung

kuat (strongly connected) jika terdapat lintasan berarah dari u ke v dan juga lintasan berarah dari v ke u.

Jika u dan v tidak terhubung kuat tetapi terhubung pada graf

tidak berarahnya, maka u dan v dikatakan terhubung lemah (weakly coonected).

Page 4: Graf 2

4

Graf berarah G disebut graf terhubung kuat (strongly connected graph) apabila untuk setiap pasang sim pul sem barang u dan v di G , terhubung kuat. Kalau tidak, G disebut graf terhubung lem ah .

graf berarah terhubung lemah graf berarah terhubung kuat

1

2

3 4

1

2 3

Page 5: Graf 2

5

8 . U p a g r a f ( S u b g r a p h ) d a n K o m p l e m e n U p a g r a f

M i s a l k a n G = ( V , E ) a d a l a h s e b u a h g r a f . G 1 = ( V 1 , E 1 ) a d a l a h u p a g r a f ( s u b g r a p h ) d a r i G j i k a V 1 V d a n E 1 E . K o m p l e m e n d a r i u p a g r a f G 1 t e r h a d a p g r a f G a d a l a h g r a f G 2 = ( V 2 , E 2 ) s e d e m i k i a n s e h i n g g a E 2 = E - E 1 d a n V 2 a d a l a h h i m p u n a n s i m p u l y a n g a n g g o t a - a n g g o t a E 2 b e r s i s i a n d e n g a n n y a .

( a ) G r a f G 1 ( b ) S e b u a h u p a g r a f ( c ) k o m p l e m e n d a r i u p a g r a f ( b )

1

2

3

4 5

6

1

6

5

31

2

3

52

Page 6: Graf 2

6

K o m p o n e n g r a f ( c o n n e c te d c o m p o n e n t ) a d a la h ju m la h m a k s im u m u p a g r a f t e r h u b u n g d a la m g r a f G . G r a f G d i b a w a h in i m e m p u n y a i 4 b u a h k o m p o n e n .

1

2 3 4

5

6 7

8

9

10

11

12

13

Page 7: Graf 2

7

Pada graf berarah, komponen terhubung kuat (strongly connected component) adalah jumlah maksimum upagraf yang terhubung kuat. Graf di bawah ini mempunyai 2 buah komponen terhubung kuat:

2 3

4

5

1

6

Page 8: Graf 2

8

9. U pagraf R entang (Spanning Subgraph )

U pagraf G 1 = (V 1, E 1) dari G = (V , E ) dikatakan upagraf rentang jika V 1 =V (yaitu G 1 m engandung sem ua sim pul dari G ).

(a) graf G , (b) upagraf rentang dari G , (c) bukan upagraf rentang dari G

1

2 3

4 5

1

2 3

4 5

1

2 3

Page 9: Graf 2

9

1 0 . C u t - S e t

C u t - s e t d a r i g r a f t e r h u b u n g G a d a l a h h i m p u n a n s i s i y a n g b i l a d i b u a n g d a r i G m e n y e b a b k a n G t i d a k t e r h u b u n g . J a d i , c u t - s e t s e l a l u m e n g h a s i l k a n d u a b u a h k o m p o n e n .

P a d a g r a f d i b a w a h , { ( 1 , 2 ) , ( 1 , 5 ) , ( 3 , 5 ) , ( 3 , 4 ) } a d a l a h c u t - s e t . T e r d a p a t b a n y a k c u t - s e t p a d a s e b u a h g r a f t e r h u b u n g . H i m p u n a n { ( 1 , 2 ) , ( 2 , 5 ) } j u g a a d a l a h c u t - s e t , { ( 1 , 3 ) , ( 1 , 5 ) , ( 1 , 2 ) } a d a l a h c u t - s e t , { ( 2 , 6 ) } j u g a c u t - s e t , t e t a p i { ( 1 , 2 ) , ( 2 , 5 ) , ( 4 , 5 ) } b u k a n c u t - s e t s e b a b h i m p u n a n b a g i a n n y a , { ( 1 , 2 ) , ( 2 , 5 ) } a d a l a h c u t - s e t .

( a ) ( b )

1

3 4

5

2

6

21

3

5

4

6

Page 10: Graf 2

Contoh lain cut set

10

1

2 3

4

5

e1

e2

e3

e4

e5

Himpunan cut set {(e1, e4)}{(e2, e4)}{(e1, e3)}{(e5)}

{(e3, e5)} bukan cut set, sebab e5 merupakan himpunan potong (cut set)

Page 11: Graf 2

11

11. Graf Berbobot (Weighted Graph)

Graf berbobot adalah graf yang setiap sisinya diberi sebuah harga (bobot).

a

b

cd

e

10 12

8

15 911

14

Page 12: Graf 2

Beberapa Graf Khusus

12

a . G r a f L e n g k a p ( C o m p l e t e G r a p h )

G r a f l e n g k a p i a l a h g r a f s e d e r h a n a y a n g s e t i a p s i m p u l n y a m e m p u n y a i s i s i k e s e m u a s i m p u l l a i n n y a . G r a f l e n g k a p d e n g a n n b u a h s i m p u l d i l a m b a n g k a n d e n g a n K n . J u m l a h s i s i p a d a g r a f l e n g k a p y a n g t e r d i r i d a r i n b u a h s i m p u l a d a l a h n ( n – 1 ) / 2 .

K 1 K 2 K 3 K 4 K 5 K 6

Page 13: Graf 2

13

b . G r a f L i n g k a r a n

G r a f l i n g k a r a n a d a l a h g r a f s e d e r h a n a y a n g s e t i a p s i m p u l n y a b e r d e r a j a t d u a . G r a f l i n g k a r a n d e n g a n n s i m p u l d i l a m b a n g k a n d e n g a n C n .

Page 14: Graf 2

14

c. Graf Teratur (Regular Graphs)

Graf yang setiap simpulnya mempunyai derajat yang sama disebut graf teratur. Apabila derajat setiap simpul adalah r, maka graf tersebut disebut sebagai graf teratur derajat r. Jumlah sisi pada graf teratur adalah nr/2.

Page 15: Graf 2

Latihan

Rinaldi M/IF2091 Strukdis15

Berapa jumlah maksimum dan jumlah minimum simpul pada graf sederhana yang mempunyai 16 buah sisi dan tiap simpul berderajat sama dan tiap simpul berderajat ≥ 4 ?

Page 16: Graf 2

16

Jawaban: Tiap simpul berderajat sama -> graf teratur.

Jumlah sisi pada graf teratur berderajat r adalah e = nr/2. Jadi, n = 2e/r = (2)(16)/r = 32/r.

Untuk r = 4, jumlah simpul yang dapat dibuat adalah maksimum, yaitu n = 32/4 = 8.

Untuk r yang lain (r > 4 dan r merupakan pembagi bilangan bulat dari 32):r = 8 -> n = 32/8 = 4 -> tidak mungkin membuat graf sederhana.r = 16 -> n = 32/16 = 2 -> tidak mungkin membuat graf sederhana.

Jadi, jumlah simpul yang dapat dibuat adalah 8 buah (maksimum dan minimum).

Page 17: Graf 2

17

d. Graf Bipartite (Bipartite Graph)

Graf G yang himpunan simpulnya dapat dipisah menjadi dua himpunan bagian V1 dan V2, sedemikian sehingga setiap sisi pada G menghubungkan sebuah simpul di V1 ke sebuah simpul di V2 disebut graf bipartit dan dinyatakan sebagai G(V1, V2).

V1 V2

Page 18: Graf 2

18

Graf G di bawah ini adalah graf bipartit, karena simpul-simpunya dapat dibagi menjadi V1 = {a, b, d} dan V2 = {c, e, f, g}

G

graf persoalan utilitas (K3,3), topologi bintang

H 2 H 3

W G E

H 1

a b

c

de

f

g

Page 19: Graf 2

19

Page 20: Graf 2

Representasi Graf

Rinaldi M/IF2091 Strukdis20

1. Matriks Ketetanggaan (adjacency matrix)

A = [aij], 1, jika simpul i dan j bertetangga aij = { 0, jika simpul i dan j tidak bertetangga

Page 21: Graf 2

21

C o n to h :

4321 54321 4321

4

3

2

1

0110

1011

1101

0110

00000

00100

01011

00101

00110

5

4

3

2

1

4

3

2

1

0110

0001

1101

0010

(a ) (b ) (c )

4321

4

3

2

1

0210

2112

1101

0210

1

32

4

1

23

4

5

1

2 3

4

1

2

4

3

e1

e2e3

e4

e5e6

e7

e8

Page 22: Graf 2

22

Derajat tiap simpul i: (a) Untuk graf tak-berarah

d(vi) =

n

jija

1

(b) Untuk graf berarah,

din (vj) = jumlah nilai pada kolom j =

n

iija

1

dout (vi) = jumlah nilai pada baris i =

n

jija

1

Page 23: Graf 2

23

a b c d e

15810

151411

149

811912

1012

e

d

c

b

a

a

b

cd

e

10 12

8

15 911

14

Page 24: Graf 2

24

2. Matriks Bersisian (incidency matrix)

A = [aij], 1, jika simpul i bersisian dengan sisi j aij = { 0, jika simpul i tidak bersisian dengan sisi j

e1 e2 e3 e4 e5

4

3

2

1

10000

11100

00111

01011

1 2

3

4

e1

e2 e3e4

e5

Page 25: Graf 2

25

3. Senarai Ketetanggaan (adjacency list)

Simpul Simpul Tetangga Simpul Simpul Tetangga Simpul Simpul Terminal 1 2, 3 1 2, 3 1 2 2 1, 3, 4 2 1, 3 2 1, 3, 4 3 1, 2, 4 3 1, 2, 4 3 1 4 2, 3 4 3 4 2, 3 5 -

(a) (b) (c)

1

32

4

1

23

4

5

1

2 3

4

Page 26: Graf 2

Graf Isomorfik

26

Diketahui matriks ketetanggaan (adjacency matrices) dari sebuah graf tidak berarah. Gambarkan dua buah graf yang yang bersesuaian dengan matriks tersebut.

Page 27: Graf 2

27

Jawaban:

Dua buah graf yang sama (hanya penggambaran secara geometri berbeda) isomorfik!

1

1

2 3

345

5 4

2

Page 28: Graf 2

Graf Isomorfik

28

Dua buah graf yang sama tetapi secara geometri berbeda disebut graf yang saling isomorfik.

Dua buah graf, G1 dan G2 dikatakan isomorfik jika terdapat

korespondensi satu-satu antara simpul-simpul keduanya dan antara sisi-sisi keduaya sedemikian sehingga hubungan kebersisian tetap terjaga.

Dengan kata lain, misalkan sisi e bersisian dengan simpul u dan v di G1,

maka sisi e’ yang berkoresponden di G2 harus bersisian dengan simpul u’ dan v’ yang di G2.

Dua buah graf yang isomorfik adalah graf yang sama, kecuali penamaan

simpul dan sisinya saja yang berbeda. Ini benar karena sebuah graf dapat digambarkan dalam banyak cara.

Page 29: Graf 2

29

( a ) G 1 (b ) G 2 ( c ) G 3

G a m b a r 6 .3 5 G 1 is o m o rf ik d e n g a n G 2 , te ta p i G 1 t id a k is o m o rf ik d e n g a n G 3

3

4

1 2

d c

a b

v w

x y

Page 30: Graf 2

30

(a) G1 (b) G2

Gambar 6.36 Graf (a) dan graf (b) isomorfik [DEO74] edcba zvwyx

AG1 =

e

d

c

b

a

01000

10101

01011

00101

01110

AG2 =

z

v

w

y

x

01000

10101

01011

00101

01110

z

d

c

a

b

e

x

v w

y

Matriks ketetanggaan

Page 31: Graf 2

31

( a )

( b )

G a m b a r 6 . 3 8 ( a ) D u a b u a h g r a f i s o m o r f i k , ( b ) t i g a b u a h g r a f i s o m o r f i k

Page 32: Graf 2

32

D a r i d e f i n i s i g r a f i s o m o r f i k d a p a t d i k e m u k a k a n b a h w a d u a b u a h g r a f i s o m o r f i k m e m e n u h i k e t i g a s y a r a t b e r i k u t [ D E O 7 4 ] : 1 . M e m p u n y a i j u m l a h s i m p u l y a n g s a m a . 2 . M e m p u n y a i j u m l a h s i s i y a n g s a m a 3 . M e m p u n y a i j u m l a h s i m p u l y a n g s a m a b e r d e r a j a t t e r t e n t u

N a m u n , k e t i g a s y a r a t i n i t e r n y a t a b e l u m c u k u p m e n j a m i n . P e m e r i k s a a n s e c a r a v i s u a l p e r l u d i l a k u k a n .

( a ) ( b )

x

u

v

w

y

Page 33: Graf 2

Latihan

33

Apakah pasangan graf di bawah ini isomorfik?

a

b

c

d

e

f

g

h u

v

w

t

p

q

r

s

Page 34: Graf 2

Latihan

34

Apakah pasangan graf di bawah ini isomorfik?

a b

cd

e f

p q

rs

tu

Page 35: Graf 2

Latihan

35

Gambarkan 2 buah graf yang isomorfik dengan graf teratur berderajat 3 yang mempunyai 8 buah simpul

Page 36: Graf 2

36

Jawaban:

Page 37: Graf 2

Graf Planar (Planar Graph) dan Graf Bidang (Plane Graph)

37

Graf yang dapat digambarkan pada bidang datar dengan sisi-sisi tidak saling memotong (bersilangan) disebut graf planar,

jika tidak, maka ia disebut graf tak-planar. K4 adalah graf planar:

Page 38: Graf 2

38

K5 adalah graf tidak planar:

Page 39: Graf 2

39

Graf planar yang digambarkan dengan sisi-sisi yang tidak saling berpotongan disebut graf bidang (plane graph).

(a) (b) (c)

Tiga buah graf planar. Graf (b) dan (c) adalah graf bidang

Page 40: Graf 2

Aplikasi Graf Planar

40

Persoalan utilitas (utility problem)

(a) (b)

(a) Graf persoalan utilitas (K3,3), (b) graf persoalan utilitas bukan graf planar.

H 2 H 3

W G E

H 2 H 3

W G E

H 1H 1

Page 41: Graf 2

Aplikasi Graf Planar

41

Perancangan IC (Integrated Circuit)

Tidak boleh ada kawat-kawat di dalam IC-board yang saling bersilangan dapat menimbulkan interferensi arus listrik malfunction

Perancangan kawat memenuhi prinsip graf planar

Page 42: Graf 2

Latihan

42

Gambarkan graf (kiri) di bawah ini sehingga tidak ada sisi-sisi yang berpotongan (menjadi graf bidang). (Solusi: graf kanan)

Page 43: Graf 2

43

Sisi-sisi pada graf bidang membagi bidang datar menjadi beberapa wilayah (region) atau muka (face).

Graf bidang pada gambar di bawah initerdiri atas 6 wilayah (termasuk wilayah terluar):

R1

R2

R3

R5

R4

R6

e2 e3 e4

e1 e5 e6 e7 e8 e9

e10 e11

Page 44: Graf 2

44

Hubungan antara jumlah simpul (n), jumlah sisi (e), dan jumlah wilayah (f) pada graf bidang:

n – e + f = 2 (Rumus Euler)

Pada Gambar di atas, e = 11 dan n = 7, f = 6, maka 7 – 11 + 6 = 2.

R1

R2

R3

R5

R4

R6

e2 e3 e4

e1 e5 e6 e7 e8 e9

e10 e11

Page 45: Graf 2

Latihan

45

Misalkan graf sederhana planar memiliki 24 buah simpul, masing-masing simpul berderajat 4. Representasi planar dari graf tersebut membagi bidang datar menjadi sejumlah wilayah atau muka. Berapa banyak wilayah yang terbentuk?

Page 46: Graf 2

Jawaban:

46

Diketahui n = jumlah simpul = 24, maka jumlah derajat seluruh simpul = 24 4 = 96.

Menurut lemma jabat tangan, jumlah derajat = 2 jumlah sisi,

sehinggajumlah sisi = e = jumlah derajat/2 =

96/2 = 48

Dari rumus Euler, n – e + f = 2, sehingga f = 2 – n + e = 2 – 24 + 48 = 26 buah.

Page 47: Graf 2

47

Pada graf planar sederhana terhubung dengan f buah wilayah, n buah simpul, dan e buah sisi (e > 2) selalu berlaku:

e 3n – 6

Ketidaksamaan yang terakhir dinamakan ketidaksamaan Euler,

yang dapat digunakan untuk menunjukkan keplanaran suatu graf sederhana

kalau graf planar, maka ia memenuhi ketidaksamaan Euler, sebaliknya jika tidak planar maka ketidaksamaan tersebut tidak dipenuhi.

Page 48: Graf 2

48

Contoh: Pada K4, n = 4, e = 6, memenuhi ketidaksamaan Euler, sebab

6 3(4) – 6. Jadi, K4 adalah graf planar.

Pada graf K5, n = 5 dan e = 10, tidak memenuhi ketidaksamaan Euler sebab

10 3(5) – 6. Jadi, K5 tidak planar

K4 K5 K3,3

Page 49: Graf 2

49

Teorema Kuratoswki Berguna untuk menentukan dengan tegas keplanaran suat graf.

(a) (b) (c)

Gambar (a) Graf Kuratowski pertama (K5) (b) Graf Kuratowski kedua (K3, 3) (c) Graf yang isomorfik dengan graf Kuratowski kedua

Page 50: Graf 2

50

Sifat graf Kuratowski adalah: 1. Kedua graf Kuratowski adalah graf teratur. 2. Kedua graf Kuratowski adalah graf tidak-planar 3. Penghapusan sisi atau simpul dari graf Kuratowski

menyebabkannya menjadi graf planar. 4. Graf Kuratowski pertama adalah graf tidak-planar

dengan jumlah simpul minimum, dan graf Kuratowski kedua adalah graf tidak-planar dengan jumlah sisi minimum.

Page 51: Graf 2

51

TEOREMA Kuratowski. Graf G bersifat planar jika dan hanya jika ia tidak mengandung upagraf yang isomorfik dengan salah satu graf Kuratowski atau homeomorfik (homeomorphic) dengan salah satu dari keduanya.

G1 G2 G3

Gambar Tiga buah graf yang homemorfik satu sama lain.

v

x

y

Page 52: Graf 2

52

Contoh: Kita gunakan Teorema Kuratowski untuk memeriksa keplanaran graf. Graf G di bawah ini bukan graf planar karena ia mengandung upagraf (G1) yang sama dengan K3,3.

Graf G tidak planar karena ia mengandung upagraf yang sama dengan K3,3.

a bc

def

a bc

def

GG 1

Page 53: Graf 2

53

Graf G tidak planar karena ia mengandung upagraf (G1) yang homeomorfik dengan K5 (dengan membuang simpul-simpul yang berderajat 2 dari G1, diperoleh K5).

G G1 K5

Gambar Graf G, upagraf G1 dari G yang homeomorfik dengan K5.

a

b

c

d

efg

h

a

b

c

d

efg

h

ii

a

c

eg

h

Page 54: Graf 2

Latihan

54

Perlihatkan dengan teorema Kuratowski bahwa graf Petersen tidak planar.

1

2

3

4

5

6 7

89

1 0

(a) G ra f P eter se n , G (b ) G1

(c) G2

(d ) K3 ,3

1

2 4 6

3 5

Page 55: Graf 2

Jawaban:

55

1

2

3

4

5

6 7

89

1 0

1

2

3

4

5

6 7

89

1

2

3

4

5

6

(a) G ra f P eter se n , G (b ) G1

(c) G2

(d ) K3 ,3

1

2 4 6

3 5

Gambar (a) Graf Petersen (b) G1 adalah upagraf dari G (c) G2 homeomorfik dengan

G1 (d) G2 isomorfik dengan

K3,3

Page 56: Graf 2

Lintasan dan Sirkuit Euler

56

Lintasan Euler ialah lintasan yang melalui masing-masing sisi di dalam graf tepat satu kali.

Sirkuit Euler ialah sirkuit yang melewati masing-masing sisi tepat satu

kali..

Graf yang mempunyai sirkuit Euler disebut graf Euler (Eulerian graph). Graf yang mempunyai lintasan Euler dinamakan juga graf semi-Euler (semi-Eulerian graph).

Page 57: Graf 2

57

Contoh. Lintasan Euler pada graf (a) : 3, 1, 2, 3, 4, 1 Lintasan Euler pada graf (b) : 1, 2, 4, 6, 2, 3, 6, 5, 1, 3 Sirkuit Euler pada graf (c) : 1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1 Sirkuit Euler pada graf (d) : a, c, f, e, c, b, d, e, a, d, f, b, a Graf (e) dan (f) tidak mempunyai lintasan maupun sirkuit Euler

(a) dan (b) graf semi-Euler (c) dan (d) graf Euler (e) dan (f) bukan graf semi-Euler atau graf Euler

12

3 4

1 2

34

5 6

1

2 3

45

6 7

a

b

e

d

c

f

ba

c d

1 2

3

4 5 e

(a) (b) (c)

(d) (e) (f)

Page 58: Graf 2

58

TEOREMA. Graf tidak berarah memiliki lintasan Euler jika (graf semi-Euler) dan hanya jika terhubung dan memiliki dua buah simpul berderajat ganjil atau tidak ada simpul berderajat ganjil sama sekali.

TEOREMA. Graf tidak berarah G adalah graf Euler (memiliki sirkuit Euler) jika dan hanya jika setiap simpul berderajat genap.

Page 59: Graf 2

Lintasan dan Sirkuit Hamilton

59

Lintasan Hamilton ialah lintasan yang melalui tiap simpul di dalam graf tepat satu kali.

Sirkuit Hamilton ialah sirkuit yang melalui tiap simpul di dalam graf

tepat satu kali, kecuali simpul asal (sekaligus simpul akhir) yang dilalui dua kali.

Graf yang memiliki sirkuit Hamilton dinamakan graf Hamilton,

sedangkan graf yang hanya memiliki lintasan Hamilton disebut graf semi-Hamilton.

Page 60: Graf 2

60

(a) (b) (c)

(a) graf yang memiliki lintasan Hamilton (misal: 3, 2, 1, 4) (b) graf yang memiliki sirkuit Hamilton (1, 2, 3, 4, 1) (c) graf yang tidak memiliki lintasan maupun sirkuit Hamilton

1 2

34

1

3

2

4

1 2

34

Page 61: Graf 2

61

(a) (b)

(a) Dodecahedron Hamilton, (b) graf yang mengandung sirkuit Hamilton

Page 62: Graf 2

62

Beberapa graf dapat mengandung sirkuit Euler dan sirkuit Hamilton sekaligus, mengandung sirkuit Euler tetapi tidak mengandung sirkuit Hamilton, dan sebagainya..

(a) (b)

(a) Graf Hamilton sekaligus graf Euler (b) Graf Hamilton sekaligus graf semi-Euler

6

5

4

1

3

2

5

1 2

34