development of long pulse nd:yag laser...

28
DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEM MUHAMAD FAKARUDDIN BIN SIDI AHMAD UNIVERSITI TEKNOLOGI MALAYSIA

Upload: dophuc

Post on 14-Aug-2019

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEM

MUHAMAD FAKARUDDIN BIN SIDI AHMAD

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEM

MUHAMAD FAKARUDDIN BIN SIDI AHMAD

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Science (Physics)

Faculty of Science

Universiti Teknologi Malaysia

DECEMBER 2012

Page 3: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

iii

To my beloved mother, family,

lecturers, and friends

Page 4: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

iv

ACKNOWLEDGEMENT

Thanks to Almighty ALLAH, the Most Gracious and the Most Merciful

for giving me strength, keredaanNya and time to complete this work. With His

blessing may this work be beneficial for the whole of humanity.

I was honoured to have Professor Dr. Noriah Bidin as my main supervisor,

Dr. Yaacob Mat Daud and Dr. Rahman Tamuri as my co-supervisors. I would like

to express my thanks and sincere gratitude for their support, guidance, patience,

comments, suggestion and encouragement throughout my research. Without their

suggestions and criticisms, this would have not been the same as it is presented

now.

I would like to acknowledge the help and kind assistance of the following

person, Pn. Norhasimah Yaacob, En. Iskandar Abdul Aziz and En. Rashdan Rani.

for assisting in lab work; En. Ganesan Krishnan, En. Faizal Mansor, En. Royston

Uning and Cik Atiqah Ismail for their assistance, guidance and ideas as my

colleague. I am also grateful to all staff Physics Department, UTM who share

their ideas, comment, and support along my research.

I would also like to take this opportunity to thank the Government of

Malaysia through IRPA scholarship and Universiti Teknologi Malaysia for

granting this project through vot 79389. Without this financial support, this

project would not be possible.

Page 5: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

v

ABSTRAK

Laser Nd:YAG yang mempunyai tempoh denyutan tinggi dapat dijana dengan

teknik pengujaan yang sesuai. Matlamat kajian adalah untuk menghasilkan pembekal

kuasa bervoltan tinggi untuk laser sistem. Dalam kajian ini, teknik rangkaian pembentuk

denyut berganda telah dibina bagi menghasilkan bentuk denyut segi empat and laser

berdenyutan panjang pada kuasa yang malar. Pemacu lampu kilat telah direka dengan

mengubah-ubah tenaga masukan. Lampu kilat bergas xenon telah digunakan sebagai

penguja bagi Kristal laser. Pemacu lampu kilat yang dihasilkan mempunyai lima litar

elektronik utama iaitu litar pengawal isyarat, pembekal kuasa simmer, litar pencetus

penyalaan, pembekal kuasa pengecas capasitor dan litar pembentuk denyut berganda.

Pembinaan pemacu lampu kilat dimulakan dengan menghasilkan litar pengawal isyarat.

Litar ini menghasilkan isyarat bervoltan rendah bagi mengaktifkan beberapa komponen

elektonik seperti silicon controlled rectified (SCR) dan transistor. Litar pencetus

penyalaan digunakan untuk mencetus nyalaan bagi gas xenon dalam lampu kilat. Arus

elektrik rendah dibekalkan kepada lampu kilat oleh pembekal kuasa simmer supaya

lampu kilat berada dalam keadaan simmering mode. Pembekal kuasa pengecas kapasitor

digunakan untuk membekal kuasa elektrik kepada kapasitor pada tempoh tertentu. Radiasi

sinaran dari lampu kilat digunakan untuk menguja kristal Nd:YAG. Hasilnya merupakan

cahaya laser Nd:YAG yang mempunyai panjang gelombang 1064 nm, tempoh denyutan

selama 650 mikro saat dan berkuasa 250 mili Joule.

Page 6: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

vi

ABSTRACT

The Nd:YAG laser with long pulse duration can be produced by using an

appropriate pumping scheme. The purpose of this study is to construct a high voltage

power supply for laser system. In this attempt multiple-mesh pulse forming technique

was performed to obtain electrical pump pulses with a more rectangular shape and long

normal-mode laser pulses at constant power. The flashlamp driver was designed with

variable input energy. A linear xenon flashlamp was selected as an optical pump for

Nd:YAG laser crystal. The developed flashlamp driver consists of five major electronic

circuits. These are signal controller device, simmer power supply (SPS), trigger pulse

ignition circuit, capacitor charging power supply (CCPS) and multiple-mesh LC pulse

forming network (MPFN). The construction of the flashlamp driver started with the

design of a signal controller. The controller generated a small voltage to activate the

electronic components such as silicon controlled rectified (SCR) and transistor. The

ignition circuit was used to ignite xenon gases responsible to for forming ionized spark

streamer between the two electrodes of the flashlamp. A low dc current was induced by

the simmer power supply to sustain the flashlamp in simmering mode. The capacitor

charging power supply was used to supply electrical power to capacitor within specific

time. Radiation emitted by flashlamp was used to pump the Nd:YAG crystal. As a result

a powerful Nd:YAG laser beam was generated having fundamental wavelength of 1064

nm, 650 microsecond pulse duration with maximum output energy of 250 mJ.

Page 7: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

ACKNOWLEDGEMENT iv

ABSTRAK v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS xiv

LIST OF APPENDIX xvi

1 INTRODUCTION

1.1 Introduction 1

1.2 Flashlamp Driver 2

1.3 Problem Statement 4

1.4 Research Objective 4

1.5 Research Scope 5

1.6 Thesis Outline 6

2 THEORY

2.1 Introduction 7

2.2 Laser Oscillator 8

2.3 Solid State Laser Materials 15

2.3.1 Nd:YAG crystal 16

2.4 Flashlamp 18

2.4.1 Optical Characteristics of Xenon Flashlamp 20

Page 8: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

viii

2.4.2 Electrical Characteristics Xenon Flashlamp 22

2.5 Flashlamp Driver 23

2.5.1 Pulse Forming Network (PFN) 23

2.5.2 Charging Power Supply (CPS) 28

2.6. Triggering Techniques of Flashlamp for Solid-State Laser 31

2.6.1 External Triggering 31

2.6.2 Series Injection Triggering 32

2.6.3 Simmer Mode Triggering 34

3 METHODOLOGY

3.1 Introduction 35

3.2 Development of Flashlamp Driver 37

3.2.1 Construction of Signal Controller 38

3.2.2 Construction of Simmer Power Supply and 41

Ignition Circuit

3.2.2.1 Development of Ignition Circuit 42

3.2.2.2 Development of Simmer 44

Power Supply (SPS)

3.2.3 Construction of Pulse Power Supply (PPS) 45

3.2.3.1 Development of Capacitor Charging 46

Power Supply (CCPS)

3.2.3.2 Construction of Pulse Shaper Device 47

3.3 Development of Laser oscillator 49

3.3.1 Xenon Flashlamp 49

3.3.2 Nd:YAG Crystal rod 50

3.3.3 Rear Mirror 50

3.3.4 Output Coupler 51

3.3.5 Flow Tube 52

3.3.6 Ceramic Reflector 53

3.3.7 Cooling System 53

3.4 Measurement Equipments 55

3.4.1 Infrared Card 55

3.4.2 Digital Oscilloscope 56

Page 9: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

ix

3.4.3 High Voltage Probe 57

3.4.4 Photodiode BPX65 57

3.4.5 Energy and Power meter 58

3.4.6 Spectrum Analyzer 59

3.4.7 Digital Voltmeter 59

4 FLASHLAMP DRIVER AND LASER CHARACTERAZATION

4.1 Introduction 60

4.2 Characterization of FLD 61

4.2.1 Output and Operation of Signal Controller 61

4.2.2 Output Ignition circuit 63

4.2.3 The Output of Simmer Power Supply 64

4.2.4 Output Pulse Power Supply 65

4.2.5 Output Charging Power Supply 65

4.2.6 Emission Spectrum of Flashlamp 66

4.3 Characterization of Nd:YAG Laser 67

4.3.1 Emission spectrum of Nd:YAG Crystal 68

4.3.2 Emission spectrum of Nd:YAG Laser 69

4.3.3 Energy of Laser 69

4.3.4 Pulse duration of Laser 71

4.4 Summary 72

5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion 73

5.2 Recommendation 74

REFERENCES 76

APPENDIX A 82

Page 10: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

x

LIST OF TABLE

TABLE NO. TITLE PAGE

3.1 List of electronic components for controller circuit 41

3.2 List of components for ignition circuit 43

3.3 Electronics components for simmer power supply 44

3.4 List of components for capacitor charging power supply 47

3.5 List of components for multiple-mesh pulse forming network (mPFN) 48

4.1 Relationship between input energy and laser energy 70

4.2 Relationship between input energy and laser pulse duration 71

Page 11: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

xi

LIST OF FIGURE

FIGURE NO. TITLE PAGE

2.1 (a) Relative populations in two energy level as given the 9

Boltzmann relations at thermal equilibrium

(b) Inverted population difference required for optical

amplification

2.2 Laser oscillator system for pulse solid-state laser 10

2.3 Typical cavity geometry for solid-state laser 12

2.4 Typical cavity geometry for solid-state laser 13

2.5 Typical cooling system for Nd:YAG laser 14

2.6 Energy level for Nd:YAG atomic system 17

2.7 Absorption band of Nd:YAG laser crystal 18

2.8 Common flashlamp type. (a) Linear. (b) Helical 19

2.9 Spectral emissions from xenon flashlamp in high-current density 21

2.10 Spectral emissions from xenon flashlamp in low-current 21

density cw operation

2.11 Single mesh pulse forming network (PFN) discharge circuit 24

2.12 Multiple mesh pulse forming network 27

2.13 High voltage charging power supply circuits for pulsed laser 30

2.14 External triggering method 32

2.15 Series injection triggering method 33

2.16 Simmer mode circuits for operating flashlamp 34

3.1 Flowchart of the research progress 36

3.2 Block diagram of Nd:YAG laser system 37

3.3 Circuit diagram of signal controller 39

3.4 Block diagram of simmer power supply and ignition circuit 42

3.5 Schematic diagrams for ignition circuit 43

Page 12: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

xii

3.6 Circuit diagram of simmer power supply 44

3.7 Block diagram for Pulse Power Supply (PPS) 45

3.8 CCPS circuit diagram 46

3.9 Multiple-mesh pulse forming network (mPFN) circuit diagram 48

3.10 Linear xenon flashlamp 49

3.11 Nd:YAG crystal 50

3.12 Rear mirror a) mirror container 51

b) rear mirror on kinematic mirror mount

3.13 Output coupler a) mirror container 52

b) output coupler on kinematic mirror mount

3.14 The flow tube located in laser pumping chamber 52

3.15 Ceramic reflector of laser chamber 53

3.16 The block diagram of cooling system 54

3.17 Infrared Card for beam detection a) IR card 56

b) Red beam spot as infrared radiation illuminate the IR card

3.18 Tektronix TDS 3054 C Digital oscilloscope 56

3.19 Tektronix P6015A High Voltage Probe 57

3.20 Power/energy meter 58

3.21 WaveStar spectrum analyzer 59

3.22 Digital voltmeter 59

4.1 Output pulse from SIGNAL 2 for ignition circuit 61

4.2 Output pulse from SIGNAL 1 and SIGNAL 3 62

a) output of SIGNAL 1 used to trigger the SCR,

b) SIGNAL 3 (upper trace) is off before SIGNAL 1 is active

4.3 High voltage output pulse of ignition circuit 63

4.4 Output of simmer power supply 64

a) 600 volt dc voltage produced by simmer power supply,

b) Voltage drop across flashlamp during simmer operation

4.5 Voltage waveform of discharging process 65

4.6 Output from CCPS 66

a) Output ripple voltage after bridge rectifier,

b) Channel 1 shows signal to turn off the triac, channel 2 is

an output ripple voltage of CCPS which closed by triac

4.7 Emission spectrum of Flashlamp 67

Page 13: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

xiii

4.8 Emission spectrum of Nd:YAG 68

4.9 Spectrum of Nd:YAG laser 69

4.10 Graph of input energy versus output energy of laser 70

4.11 Graph of input energy against pulse duration of laser 72

Page 14: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

xiv

LIST OF SYMBOL

K0 – Flashlamp impedance

V0 – Charging voltage

Vscnd – Secondary voltage

I – Current

Ipc – Peak current

tr – Rise time

tf – Fall time

RL – Flashlamp resistance

Z0 – Circuit impedance

l – Flashlamp arc length between electrodes

d – Internal flashlamp bore diameter

E0 – Electrical input energy

α – Damping parameter

C – Capacitance

L – Inductance

LC – Inductor capacitor network

PFN – Pulse forming network

mPFN _ Multi-mesh pulse forming network

SCR – Silicon control rectifier

DC – Direct current

AC – Alternating current

CCPS – Capacitor Charging power supply

CW _ Continuous wave

SPS – Simmer power supply

PPS – Pulse power supply

RM – Rear mirror

OC – Output coupler

Page 15: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

xv

FLD _ Flashlamp driver

IR _ Infra red

UV _ Ultraviolet

tp _ Pulse duration

Zn _ Network impedance

LT _ Total inductance

CT _ Total capacitance

n _ number of mesh

Page 16: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

xvi

xvi

LIST OF APPENDIX

APPENDIX TITLE PAGE

A Basic language program for FLD controller 82

Page 17: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

CHAPTER 1

INTRODUCTION

1.1 Introduction

Laser is abbreviation of light amplification of radiation by stimulate emission

radiation. In 1960, Maiman was successful demonstrated the first solid state laser. He

used pink ruby crystal as active medium and helical flashlamp as optical pumping

source. The system invented by Maiman was able to generate laser beam with output

wavelength of 694 nm. In 1964, Geusic et al had discovered the best host for

neodymium ions called yttrium aluminum garnet (YAG). Later on, Nd:YAG become

the most versatile solid-state lasers.

Nd:Yag laser pose a very important characteristic since it’s active laser

crystal has a good thermal, optical and mechanical properties. It also shows a great

flexibility compared to other laser system. The size, shape and type of the active

material can be chosen in order to achieve particular performance of laser. The active

material can be chosen with different gain which will produce different output. The

output power of solid state laser can be increased by introducing an amplifier.

Page 18: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

2

The operation mode of laser system depends on laser application need. Laser

can be operated in continuous or pulse modes. Pumping technique employed will

determine the mode operation of laser. External energy is needed to excite the atoms

inside the laser active materials. Many energy sources can be selected as pumping

energy. However, most solid-state lasers use optical pumping source. Lasing process

occur inside laser resonator and the laser output depends on the laser material

properties.

Flashlamp is a good optical pumping source for solid state laser. It has output

spectrum which cover wide range of wavelength. Flashlamp commonly emit both

line and continuum component of light emission wavelength and highly depend on

current density flow through it. For Nd: YAG laser rod, xenon flashlamp usually

employed as a pumping source. Xenon flashlamp has good efficiency in converting

the electrical input energy to radiation in the 0.2 to 1.0 μm regions compare to others.

The radiation emitted by xenon flashlamp is matched with absorption band of Nd:

YAG (Fountain, 1970).

1.2 Flashlamp Driver

Flashlamp driver is used to supply electrical energy into flashlamp. Electrical

to optical energy transformation occurs inside the flashlamp. Optical energy supplied

by flashlamp will be used as pumping source for laser gain medium. In optical

pumping application, the flashlamp driver is coupled of a various type of flashlamp

such as xenon, krypton and argon (Oliver and Barnes, 1969; Mavroyannakis, 1971;

Vitel et al., 1993). The choice of flashlamp is dependent on laser active medium. For

generating Nd:YAG laser, flashlamp which filled with xenon gas is the right

selection and showed the best performance among others (Goncz and Mitchell, 1967;

Newell and O’Brien, 1968; Davies et al., 1968). Xenon flashlamp is suitable for

pulse mode laser pumping and high energy operation.

Page 19: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

3

Markiewicz and Emmett (1966) presented a good model in designing

flashlamp driver with a detail explanation and an empirical formula. They illustrated

single electrical pulse shaper or single mesh Pulse Forming Network (PFN). Their

model composed of energy storage capacitor and pulse shaper inductor. The

flashlamp was applied as a load and a switch. No external semiconductor or other

switch is presented. The energy from storage capacitor was discharged to the

flashlamp and inductor was acted as electrical pulse shaper. In 1977, David and

Thun-Shi presented a PFN circuits with resistive losses. Their design focus on

pumping energy optimization on Nd:glass laser system.

The energy transmission in flashlamp application can be controlled by

introducing semiconductor switch. The switch is electronically monitored by

controller system. Several researches has been conducted to improve the application

of flaslamp. In 2000, Arya et al. had studied the influence of simmer current on

flashlamp impedance and performance of a flashlamp-pumped Nd:YAG laser

operating in the quasi-CW mode. The system efficiency increases with simmer

current up to a certain value and then remained nearly constant for further increases

in simmer current. Later on, Hong et al. (2002) developed a new real time multi-

discharge method. This study showed a technology which was possible to produce

various pulses with the aid of a program integrated in one-chip microprocessor. In

2003, Mazzinghia and Margherib developed ultra short Nd: YAG laser pulse with

less than 200 μs. flashlamp pumped pulse Nd: YAG lasers are widely used because a

lamp is much more cost-effective than laser diode as a pumping source (Yagi et al.,

2005).

It is essential to completely understand the optical and electrical characteristic

of the flashlamp source. This is important in order to design and construct the power

supply for laser system based on flashlamp pumped.

Page 20: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

4

1.3 Problem Statement

A suitable optical energy and pumping technique for atom excitation inside

the gain medium must be applied to generate laser light especially for long pulse

laser. Longer pump pulse is required and optical energy supplied must be matched

with the absorption band of the gain medium. Thus, a well designed flashlamp driver

or optical pump system is needed in order to provide appropriate optical energy for

Nd:YAG crystal. The optical energy supplied will be used as pumping source to

generate long pulse laser.

1.4 Research Objective

The main objective of this research is to develop flashlamp driver for

Nd:YAG laser system which can generate relatively long pulse laser duration in

range of hundred microseconds. In this attempt several power supplies and auxiliary

subsystems were constructed including:

1) Construction of electrical pulse shaper based on multiple-mesh technique of

pulse forming networks

2) Construction of simmer power supply.

3) Ignition circuit design to initiate the electric spark inside the flashlamp.

4) Controller device design based on microcontroller to control operation of

laser system.

5) Cooling device installation to maintain the temperature of the laser.

Page 21: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

5

6) Assembly of flashlamp driver and Nd:YAG laser resonator to produce laser

light.

1.5 Research Scope

In this study, power supply or flashlamp driver for xenon flashlamp was

constructed. Laser resonator using two plane mirrors was designed and developed.

The xenon flashlamp of 4 mm bore diameter and 7 mm arc length was used as

pumping source. Nd:YAG crystal rod with diameter of 4 mm and 7 mm length was

applied. The PIC16F877 microchip microcontroller is used as laser system

controller. The setup of microcontroller is programmed using micro basic compiler

software. The controller will manage the operation of simmer power supply, ignition

circuit, PFN device and capacitor charging power supply.

The driver is operated in a single and repetitive mode. The repetitive mode is

adjusted corresponding to the PIC16F877 microcontroller program. The outputs of

microcontroller, either in single or repetitive mode, are connected to trigger Silicon

Controlled Rectified (SCR). This SCR acts as a switch which control discharging

process of energy storage capacitor. A high voltage probe is used to characterize the

voltage of discharging process. The optical properties of the flashlamp and Nd:YAG

laser are measured by spectrum analyzer, photodiode detector, and energy meter.

Page 22: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

6

1.6 Thesis Outline

This thesis composes of five chapters. The first chapter is about an

introduction and overview of solid state laser. It briefly describes the history and

performance of laser. Several previous related researches regarding the flashlamp

driver are reviewed. Moreover, the objective and scope for this research are also

addressed clearly.

Chapter II covers theories related to the study. General principle and basic

arrangement in generate laser beam are included. Several methods for designing the

laser oscillator are discussed. The electrical and optical properties of xenon

flashlamp are also described in detail since these are important for optical pumping

source. The criteria of solid state material also state briefly.

Chapter III explains the design and testing method of the flashlamp driver.

The development of flashlamp driver (FLD) and alignment of laser oscillator are

discussed.

Chapter IV will cover the results of the laser system construction. The output

produced from each of the flashlamp driver subsystem and Nd:YAG laser system are

noted.

Chapter V will review about the performance and output developed laser

system. Conclusions of research finding and suggestion for future study are briefly

stated.

Page 23: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

76

REFERENCES

Arya, R., Thomas, J. M., Bhujle, A. G., and Bhawalkar, D. D. (2000). Effect of Simmer

Current on Flashlamp Impedance and Their Combined Influence on the Output of a

Quasi-CW Nd:YAG Laser. IEEE Journal of Quantum Electronics. 36(7):872-878.

Barnes N.P and Walsh B.M. (1999). Amplified Spontaneous Emission – Application to

Nd:YAG Lasers. Journal of Quantum Electronics, 35(1): 101-109

Bostanjoglo, G., Hodgson, N., and Weber, H. (1994). Design of variable reflectivity

mirrors and unstable resojnators for Nd:YAG lasers with high average power. Pure

Applied Optics, 3(1994): 497-506.

Brown, A. J. W. and Fisher, C. H. (1993). A 6.5-J Flashlamp-Pumped Ti:Al2O3 Laser.

IEEE Journal of Quantum Electronics. 29(9):2513-2517.

Brown, D. C., and Nee, T. N. (1977). Design of Single Mesh Flashlamp Driving Circuits

with Resistive Losses. IEEE Transactions on Electron Devices. 24(11):1285-1287.

Carvalho, J. C., Hollister., Calif. (1993). Electronic Pulse Width Controller for

Flashlamp Pumped Lasers. US Patent; 5,255,277.

Csele, M. (2004). Fundamentals of Light Sources And Lasers. New Jersey: John Wiley

& Sons, Inc

Davies M.B., Sharman P., and Wright J.K. Comparision of the Performance of Krypton

and Xenon Filled Flashtubes for Pumping Nd3+

doped YAG laser. IEEE Journal of

Quantum Electronics: 424-425, 1968.

Page 24: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

77

Dishington, R. H., Hook, W. R., Hilberg, R. P. (1974). Flashlamp Discharge and Laser

Efficiency. Applied Optics. 13(10): 2300-2312.

Dishington, R. H. (1977). Flashlamp drive circuit optimization for laser. Applied Optics.

16(6): 1578-1583.

Edward G. C. (1979). Pulse Forming Network Investigation. Texas Tech University:

Master Thesis.

Fountain, WM.D., Osterink, L. M., and Foster, J. D. (1970), Comparison of Kr and Xe

Flashlamps for Nd:YAD Lasers. IEEE Journal of Quantum Electronics. 6(11):684-

687.

Fang, T. C. and Lee, J. F. (1986). Transient arc self-inductance and simmer effect in

linear flashlamps for laser pumping. Applied Optics. 25(1): 92-96.

Goncz, J. H. (1965). Resistivity of Xenon Plasma. Journal of Applied Physics. 36(3):

742-743.

Goncz J.H and Mitchel W.J Jr. Comparison of the Output Spectra of Krypton and

Xenon Filled Flashtubes. IEEE Journal of Quantum Electronics: 330-331, 1967.

Hirth, A., Meyer, R., and Schetter, K. (1980). On The Proper Choice of the Preionization

Mode of Linear Flashlamps. Optics Communications. 35(2):25-258.

Hohlfeld, R. G., Manning, W., and MacLennan, D. A. (1983). Self-inductance effect in

linear flashtubes: an extension to the Markiewicz and Emmett theory. Applied

Optics. 22(13):1986-1991.

Page 25: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

78

Hong, J.H. et al. (2002). Long pulse generation technology of solid-state laser adopting

a new real time multi-discharge method. Optics & Laser Technology 34 (2002) 203

– 207

Hosffstädt, A. (1997). Design and Performance of a High-Avrage-Power Flashlamp-

Pumped Ti:Shapphire Laser and Amplifier. IEEE Journal of Quantum Electronics.

33(10):1850-1863.

Hug, W. F., and Lee, R. C. (1976). Trigger Reliability of Xenon Flashlamps. IEEE

Transactions on Electron Devices. 23(10):1166-1169.

ILC Technology. (1986). An Overview of Flashlamps and CW Arc Lamps.

Sunnyvale, CA: Technical Bulletin 3.

Inall, E. K. (1976). An improved method of triggering flashlamp powered from an

energy storage inductor. J. Phys. E: Sci. Instrum. 9:213-215.

J. Jess and H.W. Schussler. (1965) On the Design of Pulse-Forming Networks. IEEE

Transaction on Circuit Theory. 12(3):393-400.

Kaminskii, A.A. (1990), Laser Crystals Their Physics and Properties 2nd

Edition. New

York: Springler-Verlag.

Knight, R.C., Dewhurst, R. J., and Ramsden, S. A. (1980). Efficient burst-mode

operation of a very high repetition-rate Nd:YAG laser. J. Phys. E: Sci. Instrum.

13:1339-1342.

Koechner W. (2006), Solid State Laser Engineering 6th

Edition. New York: Springer-

Verlag.

Page 26: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

79

Koechner, W. and Bass, M. (2003) “Solid-State Laser, A Graduate Text.” New York

Springer-Verlag.

Kretchmer, C., Noble, L., and Reed, L. (1974). Optical Pumps for Nd:YAG lasers:

Simmer Mode Flashlamp Operation. IEEE Journal of Quantum Electronics.

9(10):760-761.

Kuhn, K. J. (1998). “Laser Engineering.” New Jersey: Prentice-Hall.

Kushner, M. J. (1985). Arc expansion in xenon flashlamps. Journal of Applied Physics.

57(7): 2486-2500.

Liu, K., Li, J., and Pan, Y. (2003). A Fault Analysis and Design Consideration of Pulse-

Power Supply for High-Power Laser. IEEE Transactions on Plasma Science.

31(2):216-220.

McLeod, A. D. (2003). Design Considerations for Triggering Flashlamps. PerkinElmer:

Optoelectronics.

Markiewicz, J. P., and Emmett, J.L. (1966). Design of Flashlamp Driving Circuits. IEEE

Journal of Quantum Electronics. 2(11):707-711.

Marotta, A. and Argüello, C. A. (1976). A simmered pre-pulsed flashlamp dye laser. J.

Phys. E: Sci. Instrum. 9(6):478-481.

Mass, B. (1993). Switching Power Supply for High-Voltage Flash Lamp. US Patent;

1993.

Mavroyannakis, E. G. (1971). Electrical Resistivity of Noble Gas Pulse Discharges.

IEEE Transactions on Electron Devices. 18(2): 115-118.

Page 27: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

80

Microchip Technology Inc. (2001). PIC16F87X Data Sheet. USA:Datasheet

Moo, C. S., Lin, T. F., and Chuang, T.C. (1999). Designing an Ignitor for Short-Arc

Xenon Lamps. IEEE Journal of Quantum Electronics. 23(29):2513-2518. Proc of

Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. Volume

1:612 - 617

Moo, C. S., Lin, T. F., and Chuang, T.C. (2002). Proc of An Electronic Gear for Short-

Arc Xenon Lamps. Power Conversion Conference, 2002. PCC Osaka 2002. Volume

3:1468 – 1472.

Motorola (1989). Thyristor Devices Data Book. USA: Application Book.

Newell P.B and O’Brien J.D. Spectra of Xenon and Krypton Arcs. IEEE Journal of

Quantum Electronics: 291-293, 1968.

Noriah Bidin (2002). Teknologi Laser. Malaysia: Penerbit Universiti Teknologi

Malaysia.

Oliver, J., and Barnes, F. (1969). A Comparison of Rare-Gas Flashlamp. IEEE Journal

of Quantum Electronics. 5(5):232-237.

Oliver, J., and Barnes, F. (1969). Rare-Gas Pumping Efficiencies for Neodymium Laser.

IEEE Journal of Quantum Electronics. 5(5):225-231.

Oliver, J. R. and Barnes, F. S. (1971). Rear Gas Flashlamps: The State of The Art and

Unsolved Problems. Proc. Of The IEEE. 59(4):638-644.

Perkin Optoelectronics (2001). High Performance Flash and Arc Lamps. PerkinElmer:

Brochure.

Page 28: DEVELOPMENT OF LONG PULSE Nd:YAG LASER SYSTEMeprints.utm.my/id/eprint/37812/1/MuhamadFakaruddinSidiAhmadMFS2012.pdfdenyut berganda telah dibina bagi menghasilkan bentuk denyut segi

81

Piero Mazzinghia and Fabrizio Margherib (2003). A short pulse, free running, Nd:YAG

laser for the cleaning of stone cultural heritage. Optics and Lasers in Engineering.

39 (2003) 191–202.

Rodman, J. C. and Noel, S. (1999). Flashlamp Pulse Shaper and Method. US Patent

5,883,471.

Slifvast, W. T. (2004). Laser Fundamentals 2nd

Edition. New York: Cambridge

University Press.

Svelto, O. (1998). Principles of Lasers 4th

Edition. New York: Springer

Science+Business Media. Inc.

Thomas, L. F (2003). Electronic Fundamentals 6th

edition. New Jersey: Pearson Prentice

Hall.

Tursov, K. K. (1999). Transverse-discharge flashlamp operation: a surface model of gas

breakdown as a first step towards representing discharge ignition. J. Phys. D: Apply.

Phys. 32: 845-854.

Tursvo, K. K. (1994). Application of an extremely-low-inductance high-voltage

capacitance generator to transverse-discharge flashlamp excitation. J. Phys. D: Apply.

Phys. 27: 1076-1081.

Vitel, Y., Siyacoun, A., Giry, L., and Louvet, G. (1993). The contimuum absorption of

argon, krypton and xenon dense plasmas produced in flashlamps. J. Phys. B: At.

Mol. Opt. Phys. 26:4333-4342.

Winstanley , P.A. (1997). The Role of Pulse Power in Flashlamp Pumped Laser. IEEE

Colloqium on Pulse Power ’97 (Digest No:1997/075). March 19. 4/1 – 4/3.