cadastre survey (sghu 2313) -...

145
CADASTRE SURVEY (SGHU 2313) WEEK 2-IMPLEMENTATION OF CADASTRE SURVEY SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1

Upload: vuongnhan

Post on 08-Sep-2018

240 views

Category:

Documents


0 download

TRANSCRIPT

CADASTRE SURVEY (SGHU 2313)

WEEK 2-IMPLEMENTATION OF CADASTRE SURVEY

SR DR. TAN LIAT CHOON07-5530844

016-4975551

1

OUTLINE

• Kerja Di Lapangan

• Mengenalpasti Kawasan Ukur

• Pengenalpastian Datum Dan Menjalankan Kerja Terabas

• Jenis Tanda-Tanda Sempadan

• Dinding Dua Tuan

2

DEFINISI UKUR TANAH

3

4

Ukur Tanah atau kini dikenali Geomatik diistilah sebagai sains, seni danteknologi dalam menterjemah posisi relatif titik di atas atau di bawahpermukaan bumi dalam mewujud titik atau menterjemah butiran dansebagainya bagi direkod dalam bentuk peta atau pelan.

Umumnya juga disebut sebagai suatu disiplin dalam mengukur dan memungut maklumat fizikal bumi dan diproses ke dalam pelbagai output.

Definisi Ukur Tanah

5

• Memeta bumi; di atasnya dan di bawah aras laut.• Menyedia carta navigasi untuk diguna di udara, darat dan

laut.• Mewujud sempadan hartanah individu dan awam.• Membangun bank data guna tanah dan maklumat sumber

semulajadi – pengurusan persekitaran.• Mengukur fakta bumi; saiz, bentuk, graviti, medan

magnetik bumi.• Menyedia carta untuk bulan dan planet.

Pentingnya Ukur Tanah

6

• Ukur kawalan• Ukur topografi• Ukur kadaster / sempadan tanah• Ukur hidrografi• Ukur laluan / binaan / kejuruteraan• Ukur perlombongan• Ukur industri• Ukur satelit / fotogrammetri / remote sensing• Ukur geodetik / GPS

Pengkelasan Jenis Ukur

7

Beberapa teknologi baru telah dibangunkan dalam penawanandan pemprosesan data spatial iaitu:

• Elektronik Total Station (TS)

• Global Positioning System (GPS-GNSS)

• Sistem Fotogrammetri Digital

• Sistem Maklumat Geografi (GIS)

Teknologi Baru untuk Ukur dan Pemetaan

Cabang Geomatik

Ukur Kadaster

Ukur Kejuruteraan

Ukur Geodesi

Fotogrametri

Ukur Topografi

Ukur Hidrografi

8

Disiplin dalam Bidang Ukur Tanah / Geomatik

Pada asasnya semua bentuk pengukuran dijalankan adalahterbahagi kepada dua jenis iaitu :

i. Ukur Tanah / ButiranPengukuran di atas tanah yang melibatkan kawasan dan butiransama ada semulajadi ataupun buatan manusia yang bertujuanuntuk merekod saiz, bentuk dan kandungan di permukaan bumiyang dipersembahkan semula dalam bentuk pelan dansebagainya.

ii. Ukuran Pemancangan / Penandaan (Setting-out)Merupakan pengukuran untuk menentukan kedudukan strukturbinaan atau kedudukan lot sempadan tanah yang dicadangkanditanda betul di atas tanah sepertimana di atas pelan. 9

Keperluan Ilmu Ukur

PROSES PENGUKURAN

10

• Menentukan tujuan ukur.• Menentukan kejituan ukuran yang perlu.• Menentukan kaedah pengukuran dan peralatan yang

dikehendaki.

11

Peninjauan

• Cerapan bering /sudut• Cerapan jarak• Cerap tinggi - Ukur Aras• Global Positioning System (GPS)• Hitungan dan Pelarasan• Koordinat

12

Cerapan Data Pengukuran

• Peta• Pelan• Gambarajah• Lukisan berskala• Data digital• Lain-lain cara mengikut kesesuaian tujuan ukur

13

Persembahan Ukuran

PERANCANGAN KERJALUAR

14

15

• Keperluan Peralatan Kerjaluar / Pengukuran

• Dokumen / Sumber Maklumat Kerjaluar

• Tenaga Manusia

• Kenderaan

Perancangan Sebelum Kerjaluar

16

• Handheld GPS / Sat. Nav.• Kompas prismatik (arah)• Total Station dan prizam• Pita ukur dan rantai (lama)• Mesin kira• Skala dan peralatan tulis• Parang dan penggali• Piket dan paku

• Payung

• Beg kerjaluar

• Tali dan pelambab

• Walkie – talkie

Keperluan Peralatan Kerjaluar

Kalibrasi Peralatan Ukur

• Selepas servis

• Penggantian salah satu unit dalam sistem alat

• Apabila berlaku kecacatan akibat jatuh

• Bacaan jarak pada posisi sama tidak konsisten

17

Kalibrasi Peralatan Ukur

Bagi memastikan peralatan yang digunakan untukmencerap jarak dan mendapatkan koordinat relatif di ataspermukaan bumi berada dalam keadaan baik, peralatanperalatan tersebut perlu dilakukan kalibrasi sekurang-kurangnya setiap 6 bulan sekali untuk alat total station atauEDM dan sekurang-kurangnya 1 tahun sekali bagi alat GNSS.

18

Kaedah Kalibrasi Total Station dan Peralatan GNSS

i. Data-data berdigit bagi jarak piawai pillar (*.med dan*.gnss) dan sijil jarak piawai pillar (*.pdf) hendaklah dimuatturun secara dalam talian (on-line) daripada sistem yangtelah dibangunkan.

ii. Fail kalibrasi yang dihasilkan secara berdigit di lapanganhendaklah dimuat naik ke dalam sistem yang telahdibangunkan untuk tujuan validasi data dan seterusnyakelulusan.

iii. Bagi kalibrasi yang dibuat secara manual pula, data-datacerapan hendaklah dimasukkan ke dalam sistem melalui keyboard entry untuk validasi data dan kelulusan. 19

Kaedah Kalibrasi Total Station dan Peralatan GNSS

iv. Sistem akan mengeluarkan sijil kalibrasi (*.edm dan *.gnss) yangtelah diluluskan dan hendaklah dimuat turun dan seterusnyadisertakan bersama-sama fail ASCII yang lain semasa membuatpenghantaran kerja.

v. Format fail berdigit *.edm dan *.gnss yang dikeluarkan oleh sistemadalah seperti berikut :

•JE_2009_01_01di mana;J - NegeriE - Tapak EDM (G-Tapak GNSS)2009 - Tahun01 - ID Tapak01 - Nombor Siri Sijil EDM 20

21

• Arahan Ukur / Kerja• Buku kerjaluar dan diari kerjaluar (jika perlu)• Surihan Pelan• Pelan Lokasi• Pelan Akui (PA)• Senarai semak (Check list) Pengukuran

Tenaga Manusia• Pegawai Kerjaluar• Pembantu ( minima 2 orang )

Kenderaan• Yang Sesuai

Keperluan Dokumen Kerjaluar

22

Kenalpasti lokasi lot / kawasan diukur

• Tinjauan• Pelan lokasi• Penduduk tempatan• Bantuan dari tuan tanah• Maklumat dari kakitangan pejabat• Pengukuran terdahulu

Perancangan Semasa Kerjaluar

23

• Pada setiap kali pengukuran kawasan lot baru

• Menentukan kedudukan yang tepat kawasan pengukuran

• Tiada pertindihan kawasan

• Untuk mendapatkan koordinat rujukan

• Berasaskan kepada Pelan Akui / Geran Hakmilik

Mendapatkan Datum

Merupakan titik atau garisan rujukan bagi menentukan arahtitik atau garisan lain.

Nilai asas yang boleh dijadikan rujukan (Datum):-• Tanda Sempadan (Pelan Akui / NDCDB)• Cerapan Matahari• Bering dari kompas• Bering anggapan

24

Apa Itu Datum

i. Dua Tanda UkurDua tanda bersebelahan dari pengukuran terdahulu yang telahdibuktikan dalam kedudukan asal dan cerapan matahari.

ii. Tiga Tanda Ukur3 tanda ukur dari pengukuran terdahulu dan 2 daripadanyabersebelahan dan dibuktikan dalam kedudukan asal.

iii. Mana-mana 2 tanda ukur dari pengukuran terdahulu yangdibuktikan dalam kedudukan asal dengan GPS.

25

Asas Penentuan Datum Untuk Ukuran Kadaster

26

Setiap kerja ukuran baru hendaklah dilaksanakanberasaskan datum yang memuaskan iaitu:

• 2 tanda yang bersebelahan dari ukuran terdahulu, yangmana kedudukan asal tanda-tanda tersebut telahdibuktikan dengan ukuran terus atau terabas danhitungan (cerapan matahari).

˚

˚

˚

˚

˚

27

• 3 tanda ukuran terdahulu, 2 daripadanya bersebelahan,yang dibuktikan dengan ukuran sudut dan jarak ataudengan terabas dan hitungan, berada dalam kedudukanasal.

˚

˚

˚

˚

˚4

3

2

1

i. Jarak melebihi 30m (PKPUP 5 & 6/2009).

ii. Sudut dalam antara dua garisan tidak lebih 10” (PKPUP5 & 6/2009).

iii. Had anjakana. Garisan < 40m, bering melebihi 01’ dan jarakmelebihi 0.015m.b. Garisan > 40m, bering melebihi 30” dan jarakmelebihi 0.006m bagi setiap 20m, dengan anjakanmaksimum 0.050m.

28

Syarat-Syarat Datum

Datum Ukuran

Ia adalah satu keperluan utama bagi setiap ukuran baru untukmembolehkan penentuan asas planimetri ukuran dan nilai koordinat.Setiap ukuran kadaster hendaklah berasaskan kepada datum yangmemuaskan yang terdiri daripada:

i. tanda-tanda Cadastral Reference Mark (CRM) yang ditentududukanseperti berikut:(a) sekurang-kurangnya dua tanda CRM yang berjarak tidak kurangdaripada 30 meter dibuat cerapan serentak dengan kaedah MyRTKnetbagi tanda pertama dan kaedah statik bagi tanda kedua; atau(b) sekurang-kurangnya dua tanda CRM yang berjarak tidak kurangdaripada 30 meter dibuat cerapan serentak dengan kaedah statik bagikedua-dua tanda. Penentuan koordinat tanda CRM pertama bolehmelalui pasca pemprosesan Virtual Reference Station (VRS) atauseperti yang dinyatakan di Pekeliling KPUP Bil. 6 Tahun 1999; 29

30

GNSS 1(MyRTKnet)

CRM 1

CRM 2

GNSS 2(Statik)

DUA ALAT GNSS

DATUM 1

(a) Sekurang-kurangnya dua tanda CRM yang berjarak tidak kurang daripada 30 meter dibuat cerapan serentak dengan kaedah MyRTKnet bagi tanda pertama dan kaedah statik bagi tanda kedua; atau

31

CRM 1

CRM 2

GNSS 1(Statik)

GNSS 2(Statik) DUA ALAT GNSS

DATUM 2

(b) Sekurang-kurangnya dua tanda CRM yang berjarak tidak kurang daripada 30 meterdibuat cerapan serentak dengan kaedah statik bagi kedua-dua tanda: atau

Datum Ukuran

(c) sekurang-kurangnya dua tanda Cadastral Reference Markbaru yang berjarak tidak kurang daripada 30 meter dibuatcerapan dengan kaedah MyRTKnet bagi kedua- dua tanda dalamsatu initialisasi. Proses yang sama perlu diulang dalam initialisasikedua; atau(d) sekurang-kurangnya dua tanda Cadastral Reference Markyang berjarak tidak kurang daripada 75 meter dibuat cerapandengan kaedah MyRTKnet masa hakiki bagi kedua-dua tandadalam dua initialisasi; atau(e) sekiranya dua tanda Cadastral Reference Mark lamadigunakan maka tanda-tanda tersebut hendaklah dibuktikankedudukannya dengan tanda ketiga dengan ukuran sudut danjarak sama ada dari Cadastral Reference Mark lama atau NDCDBberhampiran; atau 32

33

CRM 1

CRM 2

initialisasi 1

initialisasi 1

GNSS 1(MyRTKnet)

GNSS 1(MyRTKnet)

SATU ALAT GNSSDATUM 3

(c) Sekurang-kurangnya dua tanda CRM baru yang berjarak tidak kurang daripada 30meter dibuat cerapan dengan kaedah MyRTKnet bagi kedua-dua tanda dalam satuinitialisasi. Proses yang sama perlu diulang dalam initialisasi kedua; atau

34

CRM 1

CRM 2

Initialisasikedua (2 epok)

Initialisasipertama (2 epok)

GNSS 1(MyRTKnet)

GNSS 1(MyRTKnet)

SATU ALAT GNSS

DATUM 4

(d) Sekurang-kurangnya dua tanda CRM yang berjarak tidak kurang daripada 75 meter dibuat cerapan dengan kaedah MyRTKnet masa hakiki atau statik bagi kedua-dua tanda dalam dua initialisasi; atau

35

CRM 1

CRM 2

DATUM 5

(e) Sekiranya dua tanda CRM lama digunakan maka tanda-tanda tersebut hendaklahdibuktikan kedudukannya dengan tanda ketiga dengan ukuran sudut dan jarak samaada dari CRM lama atau NDCDB berhampiran; atau

Datum Ukuran

(f) dua tanda ukuran dari NDCDB yang berjarak tidak kurangdaripada 40 meter yang mana kedudukan asal tanda-tandatersebut telah dibuktikan dengan ukuran terus atau terabas danhitungan, beserta dengan cerapan astronomi untuk azimut ataucerapan MyRTKnet (cerapan MyRTKnet hanya untukmembuktikan tanda sempadan berada dalam kedudukan asalseperti yang ditetapkan di para 4.15 tetapi nilai bearing dan jarakyang terhasil tidak digunapakai); atau

(g) dua tanda ukuran bersebelahan dari NDCDB yang diperakuikedudukannya dan dibuktikan dengan tanda ketiga denganukuran sudut dan jarak atau dengan terabas dan berada dalamkedudukan asal.

36

37

NDCDB

NDCDB

DATUM 6

(f) Dua tanda ukuran dari NDCDB yang berjarak tidak kurang daripada 40 meter yang mana kedudukan asal tanda-tanda tersebut telah dibuktikan dengan ukuran terus atau terabas dan hitungan, beserta dengan cerapan astronomi untuk azimut atau cerapan MyRTKnet; atau

38

NDCDBNDCDB

sudut

NDCDB

DATUM 7

(g) Dua tanda ukuran bersebelahan dari NDCDB yang diperakui kedudukannya dandibuktikan dengan tanda ketiga dengan ukuran sudut dan jarak atau denganterabas dan berada dalam kedudukan asal.

Datum Geosentrik Malaysia (GDM2000)

GDM2000 bermakna datum di mana sistem koordinatnyaadalah berasaskan International Terrestrial Reference Frame2000. Origin bagi sistem koordinat GDM2000 adalah dipusat jisim bumi atau dengan terma lain sebagai geosentrikdan berdasarkan kepada epok terkini.

39

Sistem Unjuran Koordinat

Semua pengukuran di Semenanjung Malaysia mestilahmenggunakan Sistem Koordinat Cassini Geosentrikmanakala Sistem RSO Geosentrik digunakan bagi WilayahPersekutuan Labuan.

40

SEMPADAN

41

42

Tanda sempadan yang dijumpai berkeadaan tegak tetapiterlalu tinggi dari permukaan bumi boleh dianggapberkedudukan betul, kecuali dapat dibuktikan dengan caralain boleh digunakan sebagai datum dan pengukur perlumenurunkan tanda tersebut tanpa dianjakkan daripangkalnya.

Tanda sempadan yang dijumpai condong dari tapaknyaboleh dianggap kedudukannya betul kecuali dapatdibuktikan dengan cara lain, boleh digunakan sebagaidatum dan pengukur hendaklah terlebih dahulumenegakkan tanda sempadan tersebut sebelum ianyadigunakan.

Kenalpasti Keadaan Tanda Sempadan

43

Jenis Tanda Sempadan Untuk Penandaan

Tanda-tanda sempadan yang dibenarkan adalah:

(a) batu konkrit, tiang konkrit, batu granit dan paip besimengikut saiz yang ditetapkan oleh Jabatan;

(b) paku dan pepaku besi dalam konkrit;

(c) tanda atas batu iaitu tanda lubang dengan satu anakpanah dipahat menunjuk ke arah lubang tersebut; dan

(d) sebarang tanda lain yang dibenarkan oleh Jabatan,melalui ketetapan yang dikeluarkan dari semasa ke semasa.

44

Jenis Tanda Sempadan Untuk Penandaan

Batu Konkrit

• Batu konkrit bertetulang yang panjangnya tidak kurang600 milimeter (mm) dengan garispusat tidak kurang 75mm yang mempunyai tanda tebuk bagi titik stesen. Bagibatu konkrit yang ditanam oleh JUPEM, satu pengenalanbertulis “JUP” dicetak di bahagian atas permukaannya.Manakala bagi batu bernombor, nombor siri berkenaandicetak menggantikan tulisan “JUP” tersebut. Saizcetakan nombor siri mestilah mengikut saiz yangditetapkan.

45

Jenis Tanda Sempadan Untuk Penandaan

Batu Konkrit

• Bagi batu konkrit yang ditanam oleh JTB, permukaanatasnya tiada mempunyai apa-apa pengenalan, manakalabatu konkrit bernombor hendaklah dibeli daripadaJUPEM Negeri yang berkenaan. Sekiranya JTB bercadanguntuk mencetak sendiri batu bernombor tersebut makanombor sirinya hendaklah terlebih dahulu dipohondaripada JUPEM Negeri yang berkenaan. Harga bagisetiap batu bernombor yang dibeli oleh JTB dari JUPEMNegeri adalah RM 5.00.

46

47

Batu Konkrit

Jenis Tanda Sempadan Untuk Penandaan

Tiang Konkrit

• Tiang konkrit bertetulang yang panjangnya 1200 mmhingga 1800 mm berbentuk silinder dengan garispusattidak kurang 70 mm dan mempunyai tanda tebuk bagititik stesen.

Batu Granit

• Batu granit berbentuk empat segi dengan ukuran 80 mmlebar, 120 mm panjang dan 600 mm tinggi yangmempunyai tanda tebuk bagi titik stesen.

48

49

Tiang Konkrit

Jenis Tanda Sempadan Untuk Penandaan

Paip Besi• Paip besi yang panjangnya tidak kurang 900 mm dengan

bergarispusat di antara 25 mm hingga 50 mm dan sebaik-baiknya disalut tar atau disadur dengan logam supaya tahankarat dan lubang paip di bahagian atas mestilah ditutupsebaik-baiknya dengan konkrit yang mempunyai tanda bagititik stesen.

Paku• Paku (nail) yang panjangnya tidak kurang 55 mm dengan

bergaris pusat 8 mm. Kepala paku hendaklah bergaris pusat15 mm dan mempunyai penutup bergarispusat 46 mm sertamempunyai tanda bagi titik stesen.

50

51

Paip Besi

Paku

Jenis Tanda Sempadan Untuk Penandaan

Pepaku Besi

• Pepaku besi (iron spike) yang panjangnya tidak kurang 100mm dengan bergaris pusat 12 mm. Kepala pepakuhendaklah bergarispusat 25 mm dan mempunyai tandabagi titik stesen.

Tanda Atas Batu (mark on rock)

• Ditandakan di atas permukaan batu dengan cara menebuklubang sebagai tanda titik stesen dan satu penunjuk anakpanah dipahat menghala ke lubang tersebut.

52

53

Pepaku Besi

Tanda Atas Batu

Jenis Tanda Sempadan Untuk Penandaan

Singkatan dan simbol yang digunakan bagi tanda-tandasempadan hendaklah sebagaimana yang ditetapkan olehJabatan.

i. Penandaan sempadan hendaklah menggunakan jenis- jenistanda sempadan yang dibenarkan.

ii. Tanda Cadastral Reference Mark boleh berupa paip besiberkonkrit atau pepaku berkonkrit. Tanda sempadan yangsedia ada juga boleh digunakan untuk tujuan yang disebutkan.Walaupun begitu, nombor tanda kawalan ukur kadaster perludicetak pada apa sahaja tanda yang digunakan.

54

Jarak Antara Tanda Sempadan

Tanda-tanda di atas sempadan lurus hendaklah ditanampada sela yang tidak melebihi 300 meter jika tanda-tandatersebut saling nampak atau pada sela tidak melebihi 200meter jika tidak saling nampak.

Garisan-garisan sempadan yang mengikut lengkunganhendaklah ditandakan di hujung perentas supaya jaraknormal dari lengkung tersebut ke garisan perentas tidakmelebihi 0.2 meter.

Jarak minimum antara tanda sempadan adalah 0.1meter.

55

56

57

58

59

Area

60

61

62

63

64

DINDING DUA TUAN

65

Dinding Dua Tuan

66

Dinding Dua Tuan

67

Dinding Dua Tuan

68

CADASTRE SURVEY (SGHU 2313)

WEEK 2-IMPLEMENTATION OF CADASTRE SURVEY

SR DR. TAN LIAT CHOON07-5530844

016-4975551

69

OUTLINE

• Field practice

• Identification of survey location

• Datum determination and carrying out traverse

• Type of boundary marks

• Party Wall

70

LAND SURVEYING DEFINITION

71

72

Land surveying or Geomatic is the technique, profession, and science ofdetermining the terrestrial or three-dimensional position of points and thedistances and angles between them.

Generally, it is also referredto as a discipline inmeasuring and collecting thephysical information of theearth and is processed intovarious outputs.

Land Surveying Definition

73

• To map the earth; above and below the sea level.

• To provide navigation charts for use in air, land and sea.

• To creating individual and public property boundaries.

• To develop land use data bank and natural resourceinformation - environment management.

• To measuring the facts of the earth; size, shape, gravity,earth magnetic field.

• To set up chart for the moon and the planet.

The Importance of Land Surveying

74

• Control survey• Topography survey• Cadastre / Boundary survey• Hydrography survey• Route / Construction / Engineering survey• Mining survey• Industry survey• Satellite / Photogrammetri / Remote Sensing survey• Geodetic / GPS survey

Classes of Survey

75

Some new technologies have been developed in captivity andprocessing of spatial / data namely:

• Electronics Total Station (TS)

• Global Positioning System (GPS-GNSS)

• Digital Photogrammetry System

• Geographic Information System (GIS)

New Technology for Survey and Mapping

Land Surveying / Geomatic

Cadaster Survey

Engineering Survey

Geodesy Survey

Photogrammetry

Topography Survey

Hydrography Survey

76

Discipline in Land Surveying / Geomatic

Basically all forms of measurement are divided into two types:

i. Detail SurveyA detail survey is used to determine and locate the featuresand improvements on a parcel of land. The word 'features'here means both natural and man-made structures on a pieceof land – such as vegetation, types of soil, buildings, landutilities, fences and boundaries, roads, land marks and so on.

ii. Setting-out SurveyMeasurement for determining the position of the roads /buildings structure or position of the proposed land boundaryare marked correctly on the ground as on the plan.

77

The Need of Surveying

SURVEYING PROSESES

78

• Determine the purpose of survey.• Determine the accuracy of survey needed.• Determine the method and instruments needed.

79

Field Identification

• Bearing/Angle• Distance• Height – Levelling Survey• Global Positioning System (GPS)• Computation and Adjustment• Coordinates

80

Obtaining Survey Data

• Map• Plan• Diagram• Scaled drawing• Data digital• Other method of presentation followed suitability of survey

purpose.

81

Presentation of Survey

SURVEY PLANNING

82

83

• Fieldwork and survey instrument requirement

• Fieldwork documents information

• Man power / worker

• Transportation / mobilization

Planning Before Fieldwork

84

• Handheld GPS / Sat. Nav.• Prismatic compass

(direction)• Total Station and prism• Survey tape and chain (old) • Calculator• Scale ruler and writing aids• Parang and digger• Peg and nail

• umbrella

• Fieldwork bag

• pelambab

• Walkie – talkie

Fieldwork Survey Instrument

Calibration of Survey Equipment

• After service instrument

• Replacement of part in instrument

• After any bad incident happen on instrument

• Distance reading at same position not consistent

85

Calibration of Survey Equipment

To ensure the instrument used to measure distances andobtain relative coordinates on the surface of the earth is ingood condition, the instrument should be calibrated at leastonce every 6 months for total station or EDM and at leastonce a year for GNSS instrument.

86

Total Station and GNSS Instrument Calibration Method

i. The digital data for the pillar distance (*.med and*.gnss) and certificate of pillar distance (*.pdf) must bedownloaded online from the system that has beendeveloped.

ii. A calibration file that generated digitally in the fieldshould be uploaded into a system that has beendeveloped for the purposes of data validation andapproval.

iii. For manual calibrations, the observation data shall beentered into the system via key board entry forvalidation of data and approval. 87

Total Station and GNSS Instrument Calibration Method

iv. The system will issue a calibration certificate (*.edm and*.gnss) which has been approved and should bedownloaded and subsequently attached together withASCII file when submitting surveyed work via JUPEM2U.

v. The digital file formats *.edm and *.gnss are as follows:

•JE_2009_01_01where;J – StateE - EDM Test Base (G – GNSS Test Base)2009 - Year01 – Test Base ID01 - EDM Certificated Serial Number

88

89

• Fieldwork instruction• Field book (Digital or hardcopy)• Sketch plan• Location plan• Certified Plan (CP)• Check list

Human Resource• Field surveyor• Field assistant (minimum 2 person)

Transportation• Suitability (depend on site condition)

Fieldwork Document Requirement

90

Identify lot location / area of survey

• Field identification• Location plan• Local people• Help from land owner• Information from related officer• Previous survey done

Planning When Doing Fieldwork

91

• Each time before a new survey start

• Determine the exact survey location

• No overlapping / encroachment of survey area

• Getting reference coordinates

• Base on Certified Plan / Title search

Getting Datum

Datum is a reference system or an approximation of theEarth's surface against which positional measurements aremade for computing locations. Horizontal datum are used fordescribing a point on the Earth's surface, in latitude andlongitude or another coordinate system.

Basic value can be used as datum :-

• Boundary mark (certified Plan / NDCDB)• Solar observation• Bearing from compass• Assumed bearing

92

What is Datum

i. Two Survey Marks2 survey marks side by side from previous survey where provenin good position with solar observation.

ii. Three Survey Marks3 survey marks from previous survey where 2 of them side byside and proven in good position.

iii. 2 survey marks from previous survey which proven in goodposition by GPS.

93

Basic of Datum Determination for Cadastre Survey

94

Every new survey work should be done based onsatisfactory datum i.e:

• 2 survey marks side by side from previous surveywhere proven in good position with solarobservation.

˚

˚

˚

˚

˚

95

• 3 survey marks from previous survey where 2 ofthem side by side and proven in good position.

˚

˚

˚

˚

˚4

3

2

1

i. Distance more than 30m (PKPUP 5 & 6/2009).

ii. Internal angle between two lines not more than 10”(PKPUP 5 & 6/2009).

iii. Displacement limita. Line < 40m, bearing more than 01’ and distancemore than 0.015m.b. Line > 40m, bearing more than 30” and distancemore than 0.006m for each 20m, with maximumdisplacement of 0.050m.

96

Terms For Datum

Survey Datum

For new survey to determine of the coordinates. Each cadastralsurveys should be based on good datum :

i. Cadastral Reference Mark (CRM) as follows:

(a) at least two CRM where distance not less than 30 meters withsimultaneous observations using MyRTKnet method for the first CRMand static method for second CRM; or

(b) at least two CRM that not less than 30 meters made simultaneousobservations with static methods for both CRM. Determination of firstCRM coordinates can be through post-processing using VirtualReference Station (VRS);

97

98

GNSS 1(MyRTKnet)

CRM 1

CRM 2

GNSS 2(Static)

TWO GNSS INSTRUMENTS

DATUM 1

(a) at least two CRM where distance not less than 30 meters with simultaneous observationsusing MyRTKnet method for the first CRM and static method for second CRM; or

99

CRM 1

CRM 2

GNSS 1(Static)

GNSS 2(Static) TWO GNSS

INSTRUMENTS

DATUM 2

(b) at least two CRM that not less than 30 meters made simultaneous observations withstatic methods for both CRM. Determination of first CRM coordinates can be throughpost-processing using Virtual Reference Station (VRS);

Survey Datum

(c) at least two new CRM that not less than 30 meters of theobservations both made by the MyRTKnet method in oneinitialization. The same process should be repeated in thesecond initialization; or

(d) at least two CRM that not less than 75 meters of theobservations made by the real time MyRTKnet method for bothCRM in two initialization; or

(e) if two existing CRM have been used then these CRMs shall beproofed in good position with third mark by angle and distancemeasurements with either existing CRM or nearby NDCDB; or

100

101

CRM 1

CRM 2

Initialization 1

Initialization 1

GNSS 1(MyRTKnet)

GNSS 1(MyRTKnet)

ONE GNSS INSTRUMENT

DATUM 3

(c) at least two new CRM that not less than 30 meters of the observations both made by theMyRTKnet method in one initialization. The same process should be repeated in thesecond initialization; or

102

CRM 1

CRM 2

Second Initialization

First Initialization

GNSS 1(MyRTKnet)

GNSS 1(MyRTKnet)

ONE GNSS INSTRUMENT

DATUM 4

(d) at least two CRM that not less than 75 meters of the observations made by the real timeMyRTKnet method for both CRM in two initialization; or

103

CRM 1

CRM 2

DATUM 5

(e) if two existing CRM have been used then these CRMs shall be proofed in good positionwith third mark by angle and distance measurements with either existing CRM or nearbyNDCDB; or

Survey Datum

(f) two survey marks from NDCDB that distance not less than 40meters where the original position of these marks have beenproved by direct measurement or traverse and calculation withsolar observations for azimuth or MyRTKnet observations; or

(g) two marks next to good NDCDB and proofed by the thirdmark with angle and distance or with traverse and is in itsoriginal position.

104

105

NDCDB

NDCDB

DATUM 6

(f) two survey marks from NDCDB that distance not less than 40 meters where theoriginal position of these marks have been proved by direct measurement or traverseand calculation with solar observations for azimuth or MyRTKnet observations; or

106

NDCDBNDCDB

angle

NDCDB

DATUM 7

(g) two marks next to good NDCDB and proofed by the third mark with angle anddistance or with traverse and is in its original position.

Datum Geosentrik Malaysia (GDM2000)

GDM2000 means coordinate system datum is based on theInternational Terrestrial Reference Frame 2000. The origin ofGDM2000 coordinate system is at the centre of the earth orgeocentric and based on the latest epoch.

107

Coordinate Projection System

All survey in Peninsular Malaysia must use the GeocentricCassini Coordinate System, while Federal Territory ofLabuan used RSO Geocentric System.

108

BOUNDARY

109

110

The boundary mark found to be straight but too high fromthe surface of the earth may be deemed correct, unlessotherwise proved to be used as datum and the surveyorshould lower the boundary mark without being removedfrom its base.

The boundary marks found tilted from the site may beconsidered to be correct unless otherwise proved to beused as datum and the surveyor shall first uphold the markbefore it can be used.

Identify Boundary Mark Condition

111

Types of Boundary

The need to indicate boundaries on the ground came longbefore the practice of title registration, survey, mapping, orconveyancing.

A boundary is a surface which defines where onelandowner’s property ends and the next begins.

The legal boundary is an infinitesimally thin surfaceextending from the centre of the earth to the infinite in thesky and is essentially an abstract concept.

Exceptions lie in three-dimensional property rights or stratatitles where the boundary may be horizontal as well. 112

Types of Boundary

There are three categories of fixed/specific boundaries:

(i) Defined on the ground prior to development andidentified.

(ii) Identified after development.(iii) Defined by surveys to specified standards.

A fixed boundary is one that has been accuratelysurveyed so that any lost corner monument can be replacedprecisely from the measurements.

113

Types of Boundary

There are also three categories of general boundaries:

(i) The situation where the ownership of the boundary feature is notestablished, so that the boundary may be one side of a hedge orthe other or down the middle.

(ii) The indeterminate edge of a natural features.(iii) The situation where the boundary is regarded as approximate so

that the register may be kept free from boundary disputes.

The third type of general boundary is suitable in the determinationof actual forest or watershed boundaries, or even lot parcels in somecountries using aerial photographs or space satellite techniques todefine an accurate boundary line that it can be mapped in the registeror document of title.

114

Types of Boundary

The actual physical location of a boundary line is normallydemarcated by:

(i) Point features such as pegs the straight line between whichmarks the divide between two properties.

(ii) Linear features such as walls, hedges and fences.

Such an approach works equally well with three-dimensionalproperties such as apartments since their construction definestheir effective limits. In the case of strata titles, the ownership ofparts of buildings can be defined and guaranteed withdetermination of where, within the walls and floors, one set ofproperty rights changes into another.

115

Types of Boundary

Advantage of fixed boundaries:

• Landowners can have confidence in where their propertylimits lie since these are formally recognized within thesystem.

Disadvantages of general boundaries:

• The precise line of the legal boundary between adjoiningparcels is left undetermined.

• The ownership of the land can be guaranteed up to thebounding feature, the ownership of which is left uncertain.

116

Types of Boundary

Information about the location of parcels and their boundaries is an important part of a land information

system, the only differences being the precision with which the location of boundaries is recorded and the extent to

which this information can be used as legal evidence.

117

Boundary Marks

Section 5 National Land Code 1965:

• Boundary mark includes any survey stone, iron pipe orspike, wooden peg or post, concrete post or pillar orother mark used for the purpose of marking boundaries.

118

Boundary Marks Section 114 National Land Code 1965 (Implied conditionsaffecting all alienated land):

• The proprietor will, take all reasonable steps to prevent theirdamage, destruction or unlawful removal.

• The proprietor will if any of them are damaged, destroyed orunlawfully removed, give immediate notice of the fact to theLand Administrator, or to the penghulu having jurisdiction in thearea in which the land is situated.

• The proprietor will, if so required by the Land Administrator, paythe cost of repairing or, as the case may be, replacing any ofthem which may have been damaged, destroyed or unlawfullyremoved.

• The proprietor will, if so required by the Land Administrator, athis own expense clear any boundary line between any of them.

119

Types of Boundary Mark

Boundary marks allowed are as follow :

(a) concrete stone, concrete post, granite stone and ironpipe followed size fix by JUPEM;

(b) nail and iron spike in concrete;

(c) mark on rock i.e a mark which punch on rock with anarrow shown to the hole; and

(d) any marks that allowed by JUPEM from time to time.

120

Types of Boundary Mark

Concrete Stone

• Concrete stone with length not less than 600 millimeters(mm) with diameter not less than 75 mm which has apunctuation marks for station points. For concrete stoneplanted by JUPEM, a written introduction of "JUP" ismarked on top of its surface. Whereas for numberedstones, the serial number is marked in place of the word"JUP". The size of the serial number print must be inaccordance with the specified size.

121

Types of Boundary Mark

Concrete Stone

• For concrete stone planted by JTB, its upper surface doesnot have any identification, while numbered concretestones should be purchased from the respective StateJUPEM. If the JTB intends to mark the numbered stonethemselves then the serial number shall be applied fromrespective State JUPEM. The price for each numberedstone purchased by JTB from State JUPEM is RM 5.00.

122

123

Batu Konkrit

Types of Boundary Mark

Concrete Post

• Concrete post with length 1200 mm to 1800 mm inselinder and diameter not less than 70 mm which has apunctuation marks for station points.

Granite Stone

• Granite stone in square with size 80 mm wide, 120 mmlong and 600 mm high which has a punctuation marks forstation points.

124

125

Tiang Konkrit

Types of Boundary Mark

Iron Pipe• Iron pipe with length not less than 900 mm and diamater

between 25 mm to 50 mm and cover by metal to preventfrom rust and the hole on top of the pipe should covered byconcrete which has a punctuation marks for station points.

Nail• Nail with length not less than 55 mm and diameter 8 mm. Top

head of nail with diamater 15 mm and a cover with diameter46 mm which has a punctuation marks for station points.

126

127

Paip Besi

Paku

Types of Boundary Mark

Iron Spike

• Iron spike with length not less than 100 mm anddiamater 12 mm. Head of iron spike with diameter 25mm which has a punctuation marks for station points.

Mark On Rock

• Marked on rock surface with a hole which has apunctuation marks for station points with a arrowpunched showing direction to the hole.

128

129

Pepaku Besi

Tanda Atas Batu

Type Of Boundary Mark

Abbreviations and symbols used for boundary marks shallbe as prescribed by the Department.

i. Should use the permitted type of boundary marks allowedby Department.

ii. Cadastral Reference Mark can be from iron pipe inconcrete or iron spike in concrete. The existing boundarymarks can be used as Cadastral Reference Mark. Serialnumber of Cadastral Reference Mark is generated bysystems and based on the survey file number.

130

Distance Between Boundary Mark

The marks on the boundary line should be planted atintervals of not more than 300 meters away if marks visibleeach other or at intervals of not more than 200 meters ifthey are not visible.

Boundaries lines shall be marked follow the curve at theend of the chord so normal distance from the curve to thechord line does not exceed 0.2 meters.

Minimum distance between two boundary marks is 0.1meter.

131

132

133

134

135

Area

136

137

138

139

140

PARTY WALL

141

Party Wall

142

Party Wall

143

Party Wall

144

T H A N K YO U

145