copyrightpsasir.upm.edu.my/id/eprint/68519/1/fbsb 2018 9 ir.pdf · pengkelasan semula bahan buangan...

40
UNIVERSITI PUTRA MALAYSIA BIOREMEDIATION OF VEGETABLE OILY BALLAST WASTEWATER UNDER TEMPERATE CONDITION USING ANTARCTIC BACTERIA MARYAM ABUBAKAR FBSB 2018 9

Upload: votram

Post on 22-Aug-2019

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

UNIVERSITI PUTRA MALAYSIA

BIOREMEDIATION OF VEGETABLE OILY BALLAST WASTEWATER UNDER TEMPERATE CONDITION USING ANTARCTIC BACTERIA

MARYAM ABUBAKAR

FBSB 2018 9

Page 2: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

i

BIOREMEDIATION OF VEGETABLE OILY BALLAST WASTEWATER

UNDER TEMPERATE CONDITION USING ANTARCTIC BACTERIA

By

MARYAM ABUBAKAR

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfillment of the Requirements for the Degree of Master of Science

December 2017

Page 3: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

ii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos,

icons, photographs, and all other artwork, is copyright material of Universiti Putra

Malaysia unless otherwise stated. Use may be made of any material contained within

the thesis for non-commercial purposes from the copyright holder. Commercial use

of material may only be made with the express, prior, written permission of

Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Page 4: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

iii

DEDICATION

This thesis is dedicated to my parents Engr Abubakar Magaji Gusau and Hajiya

Fatima Abubakar Magaji for their love, prayers and assistance towards the success of

thesis.

Page 5: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment

of the requirement for the degree of Master of Science

BIOREMEDIATION OF VEGETABLE OILY BALLAST WASTEWATER

UNDER TEMPRATE CONDITION USING ANTARCTIC BACTERIA

By

MARYAM ABUBAKAR

December 2017

Chairman : Associate Professor Mohd Yunus Abd Shukor, PhD

Faculty : Biotechnology and Biomolecular Sciences

Spills of vegetable oily waste especially palm oil as a result of ballast water

discharge from vegetable oil tankers in temperate waters are of environmental

concern because they cause serious effects on marine life and coastal environments.

The ongoing reclassification of oil palm ballast waste as a hazardous substance by

the European Union will seriously affect the Malaysian economy. Biodegradation by

indigenous cold-tolerant microorganisms is an important and potentially remediating

process solving this current problem. This study aims to investigate the

biodegradability of vegetable oil (palm oil) under the influence of a cold-tolerant

bacteria (Rhodococcus erythropolis ADL36) previously isolated from Antarctica.

The strain was cultured at different oil concentrations, temperature, pH, salinity, and

inoculum size under simulated conditions of oily ballast waste water. Furthermore,

the influences of the independent variables were optimised using response surface

methodology (RSM). A Plackett-Burman screening was carried out prior to RSM.

Three factors namely temperature, oil concentration and inoculum size appears to be

the most significant factors among the five while two factors; pH and salinity show

non-significant effect on the degradation of palm oil. The results of the research have

shown that maximum growth and biodegradation occurred at 1% (v/v) of the oil, at

25oC, pH 6.8, 2% of NaCl and an inoculum size of 5% (v/v) after OFAT. The

difference in the peaks of the oil component was seen in the GCMS result.

Moreover, the results of RSM showed that oil concentration, temperature and

inoculum size showed significant effects on the biodegradation of the oil. Out of the

eight primary models utilize, the modified Gompertz model was the best in modeling

the bacterial growth. Based on the growth rate constants obtained from the primary

modelling, a secondary modelling was carried out using various models such as

Luong, Yano, Tessier-Edward, Aiba, Haldane, Monod, and Han and Levenspiel. The

best model was Haldane giving the calculated value for the Haldane’s constants such

as maximal growth rate ( max), half saturation constant for maximal growth (Ks) and

Page 6: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

ii

growth inhibition constant (Ki) tolerated were 0.74±0.12 day-1, 1.23±0.14 palm oil

(% v/v), and 3.12±0.16 palm oil (% v/v), respectively. In conclusion, the results

indicated the efficiency of such a system as a potential treatment for oily ballast

wastewater (vegetable oil).

Page 7: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Master Sains

BIOREMEDIASI MINYAK SAYURAN AIR SISA BUANGAN DIBAWAH

KEADAAN SUHU SEJUK DENGAN MENGGUNAKAN BAKTERIA

ANTARTIKA

Oleh

MARYAM ABUBAKAR

Disember 2017

Pengerusi : : Profesor Madya Mohd Yunus Abd Shukor, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Pencemaran dari tumpahan sayur-sayuran berminyak terutamanya kelapa sawit

akibat pelepasan air balast dari kapal pembawa minyak sayuran di perairan yang

sejuk menjadi kebimbangan kepada alam sekitar kerana ia menyebabkan kesan yang

serius terhadap kehidupan laut dan persekitaran pantai. Pengkelasan semula bahan

buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan

Eropah akan memberi kesan serius kepada ekonomi Malaysia. Biodegradasi oleh

mikroorganisma yang toleran kepada suhu sejuk adalah proses pemulihan yang

penting dan berpotensi untuk menyelesaikan masalah semasa ini. Kajian ini

bertujuan untuk mengkaji kebolehpenguraian minyak sayuran (minyak kelapa sawit)

di bawah pengaruh bakteria yang toleran pada suhu sejuk (Rhodococcus sp. strain

ADL36) yang sebelum ini dipencilkan dari Antartika. Strain ini ditumbuhkan pada

kepekatan minyak, suhu, pH, saliniti dan saiz inokulum yang berbeza di bawah

keadaan simulasi air sisa balast berminyak. Selain itu, pengaruh pembolehubah

bebas dioptimumkan menggunakan kaedah permukaan respon (RSM). Penyaringan

Plackett-Burman telah dijalankan sebelum RSM. Tiga faktor iaitu suhu, kepekatan

minyak dan saiz inokulum menjadi faktor yang paling penting di antara lima

manakala dua faktor; pH dan kemasinan menunjukkan kesan yang tidak signifikan

terhadap penguraian minyak kelapa sawit. Keputusan menunjukkan bahawa

pertumbuhan maksimum dan biodegradasi berlaku pada 1% (v /v) minyak, pada

suhu 25oC, pH 6.8, 2% NaCl dan saiz inokulum 5% (v /v) selepas RSM. Perbezaan

di puncak-puncak komponen minyak dilihat dalam pemerhatian berasaskan GCMS.

Selain itu, keputusan RSM menunjukkan kepekatan minyak, suhu dan saiz inokulum

menunjukkan kesan yang ketara terhadap biodegradasi minyak. Daripada lapan

model utama yang digunakan, model Gompertz yang diubahsuai adalah yang terbaik

dalam memodelkan pertumbuhan bakteria. Berdasarkan pemalar kadar pertumbuhan

Page 8: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

iv

yang diperoleh dari pemodelan primer, pemodelan sekunder dilakukan dengan

menggunakan pelbagai model seperti Luong, Yano, Tessier-Edward, Aiba, Haldane,

Monod, dan Han dan Levenspiel. Model terbaik adalah Haldane yang memberikan

nilai-nilai pemalar Haldane seperti kadar pertumbuhan maksima (max), pemalar

ketepuan tepu untuk pertumbuhan maksimum (Ks) dan kepekatan yang merencat

pertumbuhan (Ki) pada 0.74 ± 0.12 hari-1, 1.23 ± 0.14 minyak sawit (% v /v), dan

3.12 ± 0.16 minyak sawit (% v /v), masing-masing. Kesimpulannya, hasil kajian

telah menunjukkan kecekapan bakteria ini yang berpotensi dalam merawat air

kumbahan balast berminyak (minyak sayuran).

Page 9: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

v

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and Most Merciful. All thanks and praises

are due to Allah (SWT) for giving me the opportunity to successfully conduct this

research. May all blessings be upon His Prophet and Messenger, Muhammad

(SAW).

The successful completion of this research was made possible with the support and

assistance of many important people. First and foremost, I would like to express

profound gratitude to my supervisor Assoc Prof. Dr. Mohd Yunus Abd Shukor and

my co-supervisors; Dr Adeela Yasid and Dr. Siti Aqlima Ahmad Whom accepted

me as their student and offered me mentorship, moral support and care. This work

would not have been possible without their guidance and involvement. Equally, I

wish to express my appreciation to all my colleagues in the Bioremediation Lab for

the contributions they rendered during the conduct of this research.

Words cannot express my gratitude to my husband Dr. Abbas Sani Dahiru for the

support and encouragement towards the success of this research. He was always

beside me during the happy and hard moments to motivate me. I thought that it is

impossible to continue, you helped me to keep things in perspectives. I greatly value

his contributions and deeply appreciate his belief in me. Equally, my profound

gratitude goes to my brothers, sisters, friends and family members for their concern

and prayers which serves as a source of inspiration to me. My heart felt regard goes

to my father inlaw, mother in law for their love, prayers and support.

Last and not the least is my lovely daughter Ramlat I really appreciate you for

bearing with me and making the house lively despite my busy academic schedules.

Maryam Abubakar, 2018.

Page 10: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

Page 11: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

vii

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has

been accepted as fulfilment of the requirement for the degree of Master of Science.

The members of the Supervisory Committee were as follows:

Mohd Yunus Shukor, PhD

Associate Professor

Faculty Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia

(Chairperson)

Nur Adeela Yasid, PhD

Senior Lecturer

Faculty of Biotechnology

Universiti Putra Malaysia

(Member)

Siti Aqlima Ahmad, PhD

Senior Lecturer

Faculty of Biotechnology and Biomolecular Sciences

Universiti Putra Malaysia

(Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date :

Page 12: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

viii

Declaration by graduate student

I hereby confirm that:

this thesis is my original work;

quotations, illustrations and citations have been duly referenced;

this thesis has not been submitted previously or concurrently for any other degree

at any institutions;

intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia

(Research) Rules 2012;

written permission must be obtained from supervisor and the office of Deputy

Vice-Chancellor (Research and innovation) before thesis is published (in the

form of written, printed or in electronic form) including books, journals,

modules, proceedings, popular writings, seminar papers, manuscripts, posters,

reports, lecture notes, learning modules or any other materials as stated in the

Universiti Putra Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia

(Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: Date:

Name and Matric No : Maryam Abubakar, GS44411

Page 13: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

ix

Declaration by Members of Supervisory Committee

This is to confirm that:

the research conducted and the writing of this thesis was under our supervision;

supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:

Name of Chairman

of Supervisory

Committee:

Associate Professor

Dr. Mohd Yunus Shukor

Signature:

Name of Member

of Supervisory

Committee:

Dr. Nur Adeela Yasid

Signature:

Name of Member

of Supervisory

Committee:

Dr. Siti Aqlima Ahmad

Page 14: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xv

CHAPTER

1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem statement 3

1.3 Objectives 3

2 LITERATURE REVIEW 4

2.1 Biodegradation 4

2.2 Degradation of Fats and Oils by Lipases 4

2.3 Oil-Degrading Bacteria 5

2.4 Aerobic Biodegradation 5

2.5 Vegetable Oil 6

2.5.1 Properties of Vegetable Oil 7

2.5.2 Industrial Uses of Vegetable Oils 7

2.5.3 Biodegradation Characteristics of Vegetable Oils 8

2.6 Marine Pollution 9

2.6.1 Vegetable oil pollution 9

2.7 Remedies for Oil Spill in Marine Water 11

2.7.1 Physical Remediation Methods 11

2.7.2 Chemical Remediation Methods 13

2.7.3 Thermal Remediation Method 14

2.7.4 Bioremediation Method 14

2.8 Remedies for Oil Spill in Arctic Waters 15

2.8.1 Mechanical Recovery 15

2.8.2 Use of Dispersants 16

2.8.3 In-situ Burning 16

2.9 Methods of Optimisation of Vegetable Oil-Degrading Capacity

in Microorganisms 17

2.9.1 One Factor at a Time 17

2.9.2 Experimental Designs and Statistical Optimisations 17

2.10 Bioremediation of Ballast Water through Biodispersion 19

2.11 Growth Kinetics of Bacteria 20

Page 15: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

xi

3 MATERIALS AND METHODS 28

3.1 Experimental Approach 28

3.2 Source and Maintenance of bacteria 28

3.3 Media Preparation 29

3.4 Growth Determination 29

3.5 Determination of Oil Degradation 30

3.6 Gas Chromatographic Analysis of Palm Oil Degradation 30

3.7 Optimization of Factors Affecting Oil Degradation Using OFAT 31

3.7.1 Optimization of Substrate Concentration 31

3.7.2 Optimization of Inoculum Size 31

3.7.3 Optimization of the Medium pH 31

3.7.4 Optimization of Temperature 31

3.7.5 Optimization of the Salinity 32

3.8 Optimization Using Statistical Approach 32

3.8.1 Plackett – Burman Factorial Design (PBFD) 32

3.8.2 Central Composite Design (CCD) and Response

Surface Methodology (RSM) 32

3.9 Modelling the Kinetics of Growth on palm oil 33

3.9.1 Fitting of the data 33

3.9.2 Statistical analysis 33

4 RESULTS AND DISCUSSIONS 35

4.1 One Factor at a Time (OFAT) 35

4.1.1 Effect of initial Substrate Concentration 35

4.1.2 Effect of Temperature 36

4.1.3 Effect of pH 37

4.1.4 Effect of Salt Concentration 38

4.1.5 Effect of Inoculum Size 39

4.2 GCMS Analysis 40

4.3 Statistical Optimizations 44

4.3.1 Selection of Significant Variables by Plackett–Burman

Design 44

4.3.2 Response Surface Methodology (RSM) 46

4.4 Kinetic Modelling of Growth 53

4.4.1 Growth on palm oil modelled using primary models 53

4.4.2 Growth on palm oil modelled using secondary models 60

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS 65

66

84

87

REFERENCES

APPENDICES

BIODATA OF STUDENT

Page 16: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

xii

LIST OF TABLES

Table Page

2.1 Bacterial growth models used in this study 22

2.2 Various mathematical models developed for degradation kinetics

involving substrate inhibition

24

4.1 GCMS analysis of 1% palm oil 42

4.2 GCMS analysis of control palm oil 43

4.3 Coded and actual values of significant factors used in plackett-

Burman factorial design

44

4.4 Experimental sdesign matrix of Plackett-Burman and the response 45

4.5 Analysis of ANOVA for the Model of Factors in Placket-Burman 45

4.6 Coded and actual values of significant factors used in central

composite design (CCD)

46

4.7 CDD experimental matrix generated by Design expert and

corresponded responses (actual and predicted)

46

4.8 Analysis of variance (ANOVA) for Response Surface Quadratic

Model

47

4.9 Comparison of the optimized condition between OFAT and RSM of

4% palm oil

53

4.10 Statistical analysis of the various fitted models 58

4.11 Bacterial growth coefficients at various palm oil as modelled using the

modified Gompertz model

59

4.12 Statistical analysis of kinetic models 64

Page 17: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

xiii

LIST OF FIGURES

Figure Page

2.1 Hydrolysis of TAG by lipase (Edmund, 2001) 4

2.2 Global vegetable oil production. Source: USDA, AMI 6

3.1 A schematic overview of the experimental stages 28

4.1 Effect of Palm oil Concentration (sole carbon source) on the growth

of Rhodococcus erythropolis ADL36. Error bars represent mean ±

standard deviation of triplicates.

36

4.2 Effect of temperature on the growth of Rhodococcus erythropolis

ADL36. Error bars represent mean ± standard deviation of triplicates

37

4.3 Effect of pH on the growth of Rhodococcus erythropolis ADL36.

Error bars represent mean ± standard deviation of triplicates

38

4.4 Effect of Salinity on the growth of Rhodococcus erythropolis ADL36.

Error bars represent mean ± standard deviation of triplicates

39

4.5 Effect of Inoculum size on the growth of Rhodococcus erythropolis

ADL3. Error bars represent mean ± standard deviation of triplicates

40

4.6 Inoculated Gas chromatographic analysis of fatty acids from

utilization of 1% (v/v) palm oil by the culture of Rhodococcus

erythropolis ADL36 after 7 days of inoculation with (a) uninoculated

(control) and (b) treated

41

4.7 Model diagnostic plots (a) predicted versus actual (b) studentized

residue versus predicted (c) normal plots of residue (d) outlier T

versus run

49

4.8 3D and 2D surface response view showing the interaction between oil

concentration and temperature

50

4.9 3D and 2D surface response view showing the interaction between

temperature and inoculum size

51

4.10 3D and 2D surface response view showing the interaction between oil

concentration and inoculum size

52

4.11 The bacterial growth curves of Rhodococcus sp. strain ADL36 at

various concentrations of palm oil over time after RSM optimization.

The error bars represent mean ± standard deviation of three replicates

54

Page 18: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

xiv

4.12 Growth profile of Rhodococcus sp. strain ADL36 on palm oil fitted

according to the Huang model

54

4.13 Growth profile of Rhodococcus sp. strain ADL36 on palm oil fitted

according to the Baranyi-Roberts model

55

4.14 Growth profile of Rhodococcus sp. strain ADL36 on palm oil fitted

according to the modified Gompertz model

55

4.15 Growth profile of Rhodococcus sp. strain ADL36 on palm oil fitted

according to the Buchanan-3-phase model

56

4.16 Growth profile of Rhodococcus sp. strain ADL36 on palm oil fitted

according to the modified Richards model.

56

4.17 A. Growth profile of Rhodococcus sp. strain ADL36 on palm oil

fitted according to the modified Schnute model

57

4.18 Growth profile of Rhodococcus sp. strain ADL36 on palm oil fitted

according to the modified Logistics model

57

4.19 Growth profile of Rhodococcus sp. strain ADL36 on palm oil fitted

according to the von Bertalanffy model

58

4.20 Fitting experimental data with the Luong model 60

4.21 Fitting experimental data with the Yano model 61

4.22 Fitting experimental data with the Teissier model 61

4.23 Fitting experimental data with the Aiba model 62

4.24 Fitting experimental data with the Haldane model 62

4.25 Fitting experimental data with the Monod model 63

4.26 Fitting experimental data with the Han-Levenspiel model 63

Page 19: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

xv

LIST OF ABBREVIATIONS

% Percent

CCD Central composite design

cm Centimetre

dH2O Distilled water

et al and friends

G Gram

h Hour

kpa Kilopascal

L Liter

M Molar

min Minute

mL Mililiter

MSM Minimal salt medium

NA Nutrient agar

sec Second

ºC Degree Celcius

OD Optical density

RPM Rotation per minute

RSM Response surface method

µL Microlitre

µm Micrometer

mm Millimeter

Page 20: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

1

CHAPTER 1

1 INTRODUCTION

1.1 Research Background

More than 80% of commercial goods shipments are transported through Sea globally

(Ibrahim & El-Naggar 2012). In addition to the intentional shipment, over 12 billion

tons of ballast water is moved through massive coastal and sea areas annually

(Wattayakorn, 2012). Ships are made purposely to the transportation of goods such

as oil through aquatic. However, if the ship is travelling without the goods or has

discharged goods in one port on its way to other port of call, In other to achieve the

required safe, functional conditions that include keeping the ship sufficiently in the

water to make sure effective propeller and rudder procedure also to avoid the bow

developing from the water, mostly in heavy oceans, Ballast may be carried on board.

A good weight-to-volume ratio is taken in a detached or empty cargo tanks which

are used only for ballast water and when a container is parting a port any residue that

is pumped into the ballast tanks that may be disturbed up, is released again in the

next port when takings on cargo. Hazardous nature of oil spill can effectively be

tackled through enforcing proper regulations in the best good working condition, but

can never be removed completely.

Vegetable or petroleum oil spills are considered as serious contaminants in marine

environments, due to their toxicity to marine organisms (El-Masry et al. 2004). Only

few oil spills in Arctic waters have been reported (Singsaas & Lewis 2011). Though,

with an increase in the activities of oils such as production, exploration, and

transport there is an increased risk for future occurrence. Various Arctic areas are

remote with inadequate infrastructure to support spill response. Additionally, oil spill

response in an extremely low temperature and darkness is much difficult. The

physical treatment of fats containing wastewaters is considered inadequate and hence

is costly while biological treatment provides the most efficient means that eliminate

fats and oil using lipases enzyme (Manan et al. 2014). These enzymes otherwise

known as triacylglycerol acylhydrolases are produced by many microorganisms

where they catalyse the synthesis or hydrolysis of fats (Shabtai et al. 1992).

According to the U.S. Environmental Protection Agency (USEPA), the release of

edible fats, oils, and greases (FOGs) into the environment does not constitute danger

to the environment or human health, However, it is required by regulation that

FOGs be treated by the same safety and spill response practices applied to petroleum

oils due to its definition under the general definition of ‘‘oil’’ as specified by 40

CFR 112.2 and Clean Water Act Section 311(a)(1), (USEPA 1997). It is evident

from the literature that discharges of FOGs into open seas, coastlines, or river bodies

can be as harmful as spills of petroleum oil, resulting in environmental and economic

damage (Bucas and Saliot 2002).

Page 21: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

2

Therefore, it is important to identify effective bacteria that degrade lipids through

culture-dependent technique. The lipid- degrading bacteria usually produce

triacylglycerol acylhydrolases which influences the structural arrangements of fats

and oil such as oleic acid and Tween 20, olive and palm oils (El-Masry et al. 2004).

El-Bestawy et al. (2005) reported many pathways through which triacylglycerol

acylhydrolases are produced and secreted by microorganisms (Nizam & Zuhan,

2008). Margesin and Schinner (2001) stated that hydrocarbon polluted environments

are categorized based on extreme temperatures, pH, and salinity. Despite such

extreme environmental conditions, microorganisms thrive and adapt to the

environment thereby utilising the oils as potential energy means.

The vegetable oil spill is the most common form of environmental pollution in the

United States which attracts many scientific attentions in the field of its toxicology

and the probable degradation response under aerobic and anaerobic conditions (Al-

Darbi et al. 2005). Palm oil pollution in the European seas has reached the limelight

as it has been proven to be the cause of deaths of dogs and animals consuming the

cold precipitated washed palm oil residues from oily ballast wastewater discharge

into the sea (Cudmore, 2017). The rise in the number of pollution cases in the

European waters is an alarming issue as the European Union has recently tried to ban

the use of palm oil in biodiesel production and pollution cases involving palm oil

will only make the ban a reality in the near future (Tornero et al., 2016).

Thus, ways to remediate oily ballast wastewater containing palm oil is in urgent

demand. In addition to bio treatment, many techniques used to remedy marine oil

spills involve mechanical and chemical methods. Boben and Yanting (1996)

recommended using in-situ burning as the primary means of response to the major

oil spill occurrence. However, these methods are expensive and not practical to treat

oily ballast wastewater that contains mainly palm oil and small amounts of minerals

in seawater. The treatment of oily ballast wastewater tends to focus on tropical and

subtropical regions, and concerns on the reduction of invasive microorganisms

chiefly phytoplankton and hence treatment usually involve filtration and UV

treatment (Tsolaki & Diamadopoulos, 2009). With the increasing problem in oily

ballast wastewater containing toxic hydrocarbon and lipid wastes, the use of

microorganism is being developed (Ganti et al., 2003) but is still limited. Further

aggravating this issue is that biological treatment for oily ballast wastewater in cold

seas, especially in the European waters centring on palm oil, is absence due to the

difficulty in finding suitable microorganisms to treat the waste before being

discharged. The ongoing reclassification of oil palm ballast waste as a hazardous

substance by the European Union will seriously affect Malaysian economy (Höfer &

Mez 2008) being the second world most palm oil production and exportation after

Indonesia.

Considering the facts discussed above, this research was conducted to address the

issue of oily ballast wastewater treatment using microorganisms as an alternative to

physicochemical methods. More specifically, this study aims to investigate the

aerobic biodegradability of palm oil under a simulated oily ballast wastewater

Page 22: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

3

conditions. Furthermore, refined commercial palm oil was selected for this study

which is one of the main sources of vegetable oil (Przybylski et al., 2005).

1.2 Problem statement

This is the first attempt to use an Antarctic diesel-degrader as a candidate for the

subtropical conditions remediation of oily ballast wastewater-containing palm oil as

a major pollutant under marine environment. Major issues that can hamper the

successfulness of this study include the ability of the bacterium to degrade high

concentration of palm oil in the simulated oily ballast wastewater. Another issue is

whether the degradation of oil palm can be effective under high salts and cold

conditions that are present in the Atlantic seas. The degradation will be carried out

under controlled conditions that can be found in the oily ballast wastewater.

As of now, there is no attempt in studying the possibility of using cold region

microbes in remediating oily ballast wastewater from palm oil tankers. This is the

first such study, and the effect of environmental factors in palm oil biodegradation

needs to be studied and optimized under cold conditions.

1.3 Objectives

The general objective of the study is to remediate oily ballast wastewater under

temperate condition using Antarctic bacteria.

The specific objectives of the study are;

1. To investigate the biodegradability of palm oil under simulated oily ballast

wastewater conditions by Rhodococcus erythropolis ADL36 using one factor

at a time (OFAT).

2. To optimize the degradation condition using response surface methodology

(RSM).

3. To determine the growth parameters of the bacteria in utilizing the oil using

kinetic models.

Page 23: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

66

6 REFERENCES

AbdEl-Mongy, Shukor, M., A., M.,S., Hussein, S., Ling A., P., K., Shamaan, N., A.

& Shukor, M.,Y. (2015) Isolation and characterization of a molybdenum-

reducing, phenol- and catechol-degrading Pseudomonas putida strain amr-12

in soils from Egypt. Scientific Study & Research Chemistry & Chemical

Engineering, Biotechnology, Food Industry 16, 353–369.

Abou-Shanab R., A., I., Khalafallah, M., A., Emam, N., F., Aly, M., A., Abou-Sdera

S., A., Matter, I., A. (2012) Characterisation and identification of carbofuran-

utilising bacteria isolated from agricultural soil. Chemistry and Ecology 28,

193–203.

Adhvaryu, A., Erhan, S., & Perez, J. (2002). Wax appearance temperatures of

vegetable oils determined by differential scanning calorimetry: effect of

triacylglycerol structure and its modification. Thermochimica acta, 395, 191-

200.

Agarry, S., Audu, T., & Solomon, B. (2009). Substrate inhibition kinetics of phenol

degradation by Pseudomonas fluorescence from steady state and wash-out

data. International Journal of Environmental Science and

Technology:(IJEST), 6, 443.

Ahmad, S., A., Ahamad, K., N., E., K., Johari, W., L.,W., Halmi, M., I., E., Shukor,

M.,Y., Yusof, M.,T. (2014) Kinetics of diesel degradation by an acrylamide-

degrading bacterium. Rendiconti Lincei 25, 505–512.

Ahmad, S., A., Shamaan, N., A., Arif, N., M., Koon, G., B., Shukor, M.,Y., A.,

Syed, M., A. (2012) Enhanced phenol degradation by immobilized

Acinetobacter sp. strain AQ5NOL 1. World Journal of Microbiology and

Biotechnology 28, 347–352. doi:10.1007/s11274-011-0826-z.

Aiba, S., Shoda, M., Nagatani, M., (1968) Kinetics of product inhibition in alcohol

fermentation. Biotechnology and Bioengineering 10, 845–864.

Akdemir, B., K., P., Ü., B., & Aytaç, S. (2006). A research on determining some

performance values by using proportional mixture of vegetable oils and

diesel fuel at a diesel engine. JOTAF/Tekirdağ Ziraat Fakültesi Dergisi, 3,

16-24.

Akpor, O., & Muchie, M. (2010). Remediation of heavy metals in drinking water

and wastewater treatment systems: Processes and applications. International

Journal of Physical Sciences, 5, 1807-1817.

Al-Darbi, M., M., Saeed, N.,O., Islam, M., R., Lee, K. (2005) Biodegradation of

natural oils in seawater. Energy Sources 27, 19–34.

Page 24: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

67

Aluyor, E., O., Obahiagbon, K., O., & Ori-jesu, M. (2009). Biodegradation of

vegetable oils: A review. Scientific Research and Essays, 4, 543-548.

Anastácio, A., & Carvalho, I. S. (2013). Phenolics extraction from sweet potato

peels: Key factors screening through a Placket–Burman design. Industrial

Crops and Products, 43, 99-105.

Anbu, P., Annadurai, G., & Hur, B. (2013). Production of alkaline protease from a

newly isolated Exiguobacterium profundum BK-P23 evaluated using the

response surface methodology. Biologia, 68, 186-193.

Ballast Water Treatment Through Biodispersion Maritime Reporter, May 2002

Babák, L., Šupinová ,P., Burdychová, R. (2012) Growth models of Thermus

aquaticus and Thermus scotoductus. Acta Universitatis Agriculturae et

Silviculturae Mendelianae Brunensis 60, 19–26.

Baharum, S., Salleh, A., Razak, C., Basri, M., Rahman, M., & Rahman, R. (2003).

Organic solvent tolerant lipase by Pseudomonas sp. strain S5: stability of

enzyme in organic solvent and physical factors effecting its production.

Annals of microbiology, 53, 75-84.

Bajaj, M., Gallert, C., & Winter, J. (2009). Phenol degradation kinetics of an aerobic

mixed culture. Biochemical Engineering Journal, 46, 205-209.

Balba, M., Al-Daher, R., Al-Awadhi, N., Chino, H., & Tsuji, H. (1998).

Bioremediation of oil-contaminated desert soil: the Kuwaiti experience.

Environment International, 24, 163-173.

Banat, I., M. (1995). Biosurfactants production and possible uses in microbial

enhanced oil recovery and oil pollution remediation: a review. Bioresource

technology, 51, 1-12.

Baranyi, J., Roberts, T., A. (1994) A dynamic approach to predicting bacterial

growth in food. International Journal of Food Microbiology 23, 277–294.

Barbato, M. (2014). Polluted marine ecosystems: reservoir of microbial resources for

hydrocarbon bioremediation.

Barsic, N., & Humke, A. (1981). Performance and emissions characteristics of a

naturally aspirated diesel engine with vegetable oil fuels: SAE Technical

Paper.

Baş, D., & Boyacı, İ. H. (2007). Modeling and optimization I: Usability of response

surface methodology. Journal of food engineering, 78, 836-845.

Page 25: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

68

Batista, S., Mounteer, A., Amorim, F., & Totola, M. (2006). Isolation and

characterization of biosurfactant/bioemulsifier-producing bacteria from

petroleum contaminated sites. Bioresource technology, 97, 868-875.

Bakhshi, Z., Najafpour, G., Kariminezhad, E., Pishgar, R., Mousavi, N. &

Tagghizade, T. (2011). Growth kinetic models for phenol biodegradation in a

batch culture of Pseudomonas putida. Enviromental technology.1835-1841.

Bayat, A., Aghamiri, S. F., Moheb, A., & Vakili‐Nezhaad, G. R. (2005). Oil spill

cleanup from sea water by sorbent materials. Chemical engineering &

technology, 28, 1525-1528.

Berekaa, M. M. (2013). Towards efficient crude oil degradation by Pseudomonas sp.

strain-O2: Application of Plackett-Burman design for evaluation of

cultivation conditions. African Journal of Microbiology Research, 7, 4722-

4729.

Bernal, C., Diaz, I., & Coello, N. (2006). Response surface methodology for the

optimization of keratinase production in culture medium containing feathers

produced by Kocuria rosea. Canadian journal of microbiology, 52, 445-450.

Board, M., Board, O. S., & National Research Council. (2003). Oil in the sea III:

inputs, fates, and effects. national academies Press.

Boben, M. E., & Yanting, Y. (1996). In-situ burning-one method of effective oil spill

response in the south china sea. Paper presented at the SPE Health, Safety

and Environment in Oil and Gas Exploration and Production Conference.

Bolker, B., M. (2008) ‘Ecological Models and Data in R.’ (Princeton University

Press: Princeton, N.J)

Boon, B,, Laudelout, H. (1962) Kinetics of nitrite oxidation by Nitrobacter

winogradskyi. The Biochemical Journal 85, 440–447.

Bouchez, M., Blanchet, D., Bardin, V., Haeseler, F., & Vandecasteele, J.-P. (1999).

Efficiency of defined strains and of soil consortia in the biodegradation of

polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation, 10, 429-

435.

Bucas, G., Saliot, A. (2002) Sea transport of animal and vegetable oils and its

environmental consequences. Marine Pollution Bulletin 44, 1388–1396.

doi:10.1016/S0025-326X(02)00303-X.

Buchanan, R., L. (1993) Predictive food microbiology. Trends in Food Science and

Technology 4, 6–11.

Page 26: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

69

Buist, I., Potter, S., Nedwed, T., & Mullin, J. (2011). Herding surfactants to contract

and thicken oil spills in pack ice for in situ burning. Cold Regions Science

and Technology, 67, 3-23.

Burnham, K., P., Anderson, D.,R. (2002) ‘Model Selection and Multimodel

Inference: A Practical Information-Theoretic Approach.’ (Springer Science

& Business Media)

Campo, P., Zhao, Y., Suidan, M.,T., Venosa, A., D., Sorial., G.,A. (2007)

Biodegradation kinetics and toxicity of vegetable oil triacylglycerols under

aerobic conditions. Chemosphere 68, 2054–2062.

doi:10.1016/j.chemosphere.2007.02.024.

Changyi, Z., Qingyuan, L. & Guocheng, S. (2009). Isolation. characterization and

study on the properties of a strain for degradation of o offshore petroleum

hydrocarbons. jounal of jimei University 14, 24-28.

Chapman, H., Purnell, K., Law, R. J., & Kirby, M. F. (2007). The use of chemical

dispersants to combat oil spills at sea: A review of practice and research

needs in Europe. Marine pollution bulletin, 54, 827-838.

Chhatre, S., Purohit, H., Shanker, R., & Khanna, P. (1996). Bacterial consortia for

crude oil spill remediation. Water Science and Technology, 34, 187-193.

Choi, N. C., Choi, J. W., Kim, S. B., & Kim, D. J. (2008). Modeling of growth

kinetics for Pseudomonas putida during toluene degradation. Applied

microbiology and biotechnology, 81, 135-141.

Christofi, N., & Ivshina, I. (2002). Microbial surfactants and their use in field studies

of soil remediation. Journal of Applied Microbiology, 93, 915-929.

Clausen, J., Robb, J., Curry, D., & Korte, N. (2004). A case study of contaminants

on military ranges: Camp Edwards, Massachusetts, USA. Environmental

pollution, 129, 13-21.

Clemente, R., Escolar, Á., & Bernal, M. P. (2006). Heavy metals fractionation and

organic matter mineralisation in contaminated calcareous soil amended with

organic materials. Bioresource technology, 97, 1894-1901.

Coelho, G., Clark, J., & Aurand, D. (2013). Toxicity testing of dispersed oil requires

adherence to standardized protocols to assess potential real world effects.

Environmental pollution, 177, 185-188.

Collins, C. M., Racine, C. H., & Walsh, M. E. (1994). The physical, chemical, and

biological effects of crude oil spills after 15 years on a black spruce forest,

interior Alaska. Arctic, 164-175.

Page 27: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

70

Dahalan, F. A. (2007) Biodegradation Of Diesel By A Locally Isolated

Acinetobacter Sp. Universiti Putra Malaysia.

Dave, D., & Ghaly, A. E. (2011). Remediation technologies for marine oil spills: A

critical review and comparative analysis. American Journal of Environmental

Sciences, 7, 423.

Dawson, R. M. C., Elliott, D. C., Elliott, W. H., Jones, K. M. (1969) ‘Data for

biochemical research.’ (Oxford University Press, London).

Debois, A. P. & Smith, V. J. 2010 Antimicrobial free fatty acids: activities,

mechanisms of action and biotechnological potential. Applied microbiology

Biotechnology. 85, 1629-1642.

de Carvalho, C.C.C.R. and da Fonseca M.M.R. (2005). Degradation of hydrocarbons

and alcohols at different temperatures and salinities by Rhodococcus

erythropolis DCL14. FEMS Microbiol Ecol 51, 389-399.

Delaune, R., Lindau, C., & Jugsujinda, A. (1999). Effectiveness of “Nochar”

solidifier polymer in removing oil from open water in coastal wetlands. Spill

Science & Technology Bulletin, 5, 357-359.

Delille, D., Basseres, A., & Dessommes, A. (1998). Effectiveness of bioremediation

for oil-polluted Antarctic seawater. Polar Biology, 19, 237-241.

Du, R.Q., 2003. Biological Statistics. Higher Education Press, Beijing, Chinese.

pp.119–141.

Dupuy, H., Flick, G., Bailey, M., St. Angelo, A., Legendre, M., & Sumrell, G.

(1985). Direct sampling capillary gas chromatography of volatiles in

vegetable oils. Journal of the American Oil Chemists' Society, 62, 1690-

1693.

Eapen, S., Singh, S., & D'souza, S. (2007). Advances in development of transgenic

plants for remediation of xenobiotic pollutants. Biotechnology advances, 25,

442-451.

Edmund, W. L. (2001). Animal and Vegetable Fats, Oils, and Waxes. Biotechnology

in agriculture and processing, 34.

El-Bestawy, E., El-Masry, M. H., & El-Adl, N. E. (2005). The potentiality of free

Gram-negative bacteria for removing oil and grease from contaminated

industrial effluents. World Journal of Microbiology and Biotechnology, 21,

815-822.

El-Masry, M. H., El-Bestawy, E., & El-Adl, N. I. (2004). Bioremediation of

vegetable oil and grease from polluted wastewater using a sand biofilm

system. World Journal of Microbiology and Biotechnology, 20, 551-557.

Page 28: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

71

Erhan, S. Z., Sharma, B. K., & Perez, J. M. (2006). Oxidation and low temperature

stability of vegetable oil-based lubricants. Industrial Crops and Products, 24,

292-299.

Espeche, M. E., MacCormack, W. P., & Fraile, E. R. (1994). Factors affecting

growth of an n-hexadecane degrader Acinetobacter species isolated from a

highly polluted urban river. International biodeterioration & biodegradation,

33, 187-196.

Fakhfakh-Zouari, N., Haddar, A., Hmidet, N., Frikha, F., & Nasri, M. (2010).

Application of statistical experimental design for optimization of keratinases

production by Bacillus pumilus A1 grown on chicken feather and some

biochemical properties. Process Biochemistry, 45, 617-626.

Fingas, M. F., Kyle, D. A., Laroche, N., Fieldhouse, B., Sergy, G., & Stoodley, G.

(1995). The effectiveness testing of oil spill-treating agents. In The Use of

Chemicals in Oil Spill Response. ASTM International.

Fox, N., & Stachowiak, G. (2007). Vegetable oil-based lubricants—a review of

oxidation. Tribology international, 40, 1035-1046.

Fujikawa, H. (2010) Development of a new logistic model for microbial growth in

foods. Biocontrol Science 15, 75–80. doi:10.4265/bio.15.75.

Ganesan, D., Rajendran, A., & Thangavelu, V. (2009). An overview on the recent

advances in the transesterification of vegetable oils for biodiesel production

using chemical and biocatalysts. Reviews in Environmental Science and

Biotechnology, 8, 367-394.

Ganti, S., Wille, J. J., & Bakshi, A. 2003. On Site Bioremediation Of Oily Ballast

Waters Of Ships and Tankers. Poster Paper Presented at 2nd International

Ballast Water Treatment R&D Symposium, held at IMO Headquarters,

London from 21-23 July.

Garg, U. K., Kaur, M., Garg, V., & Sud, D. (2008). Removal of nickel (II) from

aqueous solution by adsorption on agricultural waste biomass using a

response surface methodological approach. Bioresource technology, 99,

1325-1331.

Gavrilescu, M. (2010). Environmental biotechnology: achievements, opportunities

and challenges. Dynamic biochemistry, process biotechnology and molecular

biology, 4, 1-36.

Ghanem, K. M., Al-Fassi, F. A., & Al-Hazmi, N. M. (2013). Optimization of

chloroxylenol degradation by Aspergillus niger using Plackett-Burman

design and response surface methodology. Biotechnol. Lett, 18, 7983-7994.

Page 29: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

72

Gibson, A. M., Bratchell, N., Roberts, T. A.(1987) The effect of sodium chloride and

temperature on the rate and extent of growth of Clostridium botulinum type

A in pasteurized pork slurry. Journal of Applied Bacteriology 62, 479–490.

Gompertz, B. (1825) On the nature of the function expressive of the law of human

mortality, and on a new mode of determining the value of life contingencies.

115, 513–585.

Gopinath, K. P., Kathiravan, M. N., Srinivasan, R., & Sankaranarayanan, S. (2011).

Evaluation and elimination of inhibitory effects of salts and heavy metal ions

on biodegradation of Congo red by Pseudomonas sp. mutant. Bioresource

technology, 102, 3687-3693.

Gopinath, S. C., Anbu, P., Lakshmipriya, T., Tang, T.-H., Chen, Y., Hashim, U., . . .

Arshad, M. (2015). Biotechnological aspects and perspective of microbial

keratinase production. BioMed research international, 2015.

Gorban, A. N., & Karlin, I. V. (2005). Invariant manifolds for physical and chemical

kinetics (Vol. 660): Springer Science & Business Media.

Gu, S. Y., & Ren, J. (2005). Process Optimization and empirical modeling for

electrospun poly (D, L‐lactide) fibers using response surface methodology.

Macromolecular materials and Engineering, 290, 1097-1105.

Häggblom, M., & Valo, R. J. (1995). Bioremediation of chlorophenol wastes.

Microbial transformation and degradation of toxic organic chemicals, 389-

434.

Haji, S., Benstaali, B., & Al-Bastaki, N. (2011). Degradation of methyl orange by

UV/H 2 O 2 advanced oxidation process. Chemical Engineering Journal,

168, 134-139.

Halmi, M. I. E., Shukor, M. S., Johari, W.L.W., Shukor, M.Y. (2014) Evaluation of

several mathematical models for fitting the growth of the algae Dunaliella

tertiolecta. Asian Journal of Plant Biology 2, 1–6.

Hammoud, A. H. (2001). Enhanced oil recovery rate using the weir skimmer.

Retrieved 0n 26th Febuary, 2010 from

http/www.epa.gov/oem/docs/oil/fss/fss06/hammoud.pdf.

Hamzah, A., Manikan, V., & AZIZ, N. (2017). Biodegradation of Tapis Crude Oil

Using Consortium of Bacteria and Fungi: Optimization of Crude Oil

Concentration and Duration of Incubation by Response Surface

Methodology. Sains Malaysiana, 46, 43-50.

Han, K., Levenspiel, O. (1988) Extended Monod kinetics for substrate, product, and

cell inhibition. Biotechnology and Bioengineering 32, 430–437.

Page 30: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

73

Hartmann, R., M., Garzon, N., N., Hartmann, E.,M ., Oliveira, A.,A.,M., & Bazzo,

E. (2013). Vegetable oil of Soybean, Sunflower and Tung as Alternative

Fuels for Compression Ignition Engines. International journal of

thermodynamics 16, 87 - 96.

Hazan, R., Que, Y. A., Maura, D., & Rahme, L. G. (2012). A method for high

throughput determination of viable bacteria cell counts in 96-well plates.

BMC microbiology, 12, 259.

Höfer, T. & Mez, L. (2008). United Nations’ Regulatory Policy under Changing

Advocacy Coalitions: The Case of The Maritime Transport of Renewable

Primary Products. The Journal of Transdisciplinary Environmental Studies,

7.

Holakoo, L. (2001). On the capability of rhamnolipids for oil spill control of surface

water. Concordia University.

Honary LAT (2004). Biodegradable/Biobased lubricants and Greases. Machinery

Lubrication Magazine Issue number 200109 Noria

Corporation,www.oilmaintainance.com.

Huang, L. (2013) Optimization of a new mathematical model for bacterial growth.

Food Control 32, 283–288.

Ibrahim, A. M. and El-Niggar, M. M. A. (2012). Ballast Water Review: Impacts,

Treatments and Management. Middle-East Journal of Scientific Research 12,

976-984.

IFAD, W. (2013). FAO (2013). The State of Food Insecurity in the World: The

multiple dimensions of food security.

Ji, Y., Ferronato, C., Salvador, A., Yang, X., & Chovelon, J.-M. (2014). Degradation

of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate:

implications for remediation of groundwater contaminated by antibiotics.

Science of the total environment, 472, 800-808.

Johnsen, A. R., Binning, P. J., Aamand, J., Badawi, N., Rosenbom, A. E. (2013) The

Gompertz function can coherently describe microbial mineralization of

growth-sustaining pesticides. Environmental Science and Technology 47,

8508–8514. doi:10.1021/es400861v.

Jung, U. J., Lee, M.-K., Park, Y. B., Kang, M. A., & Choi, M.-S. (2006). Effect of

citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA

levels in type-2 diabetic mice. The international journal of biochemistry &

cell biology, 38, 1134-1145.

Page 31: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

74

Kanchanasuta, S., Pisutpaisal, N. (2016) Waste utilization of palm oil decanter cake

on biogas fermentation. International Journal of Hydrogen Energy 41,

15661–15666. doi:10.1016/j.ijhydene.2016.04.129.

Karakasi, O. & Moutsatsou, A. (2010). Surface modification of high calcium fly ash

for its application in oil spill clean up. Fuel, 89, 3966-3970.

Kennedy, M. & Krouse, D. (1999). Strategies for improving fermentation medium

performance: A review. Industrial microbiology biotechnology, 23, 456-475.

Kim, H., Moon, S., Abug, A., Choi, S. C., Zhang, R., Oh, Y. S. (2012) Effect of

fermentation conditions on biohydrogen production from lipid-rich food

material. International Journal of Hydrogen Energy 37, 15062–15069.

doi:10.1016/j.ijhydene.2012.07.104.

Kiran, B., & Thanasekaran, K. (2011). Copper biosorption on Lyngbya putealis:

application of response surface methodology (RSM). International

biodeterioration & biodegradation, 65, 840-845.

Knowles, G., Downing, A. L., & Barrett, M. (1965). Determination of kinetic

constants for nitrifying bacteria in mixed culture, with the aid of an electronic

computer. Microbiology, 38, 263-278.

Kornegay, B. H. & Andrews, J. F. (1968). Kinetics of fixed-film biological reactors.

Journal (Water Pollution Control Federation), R460-R468.

Kubota, K., Koma, D., Matsumiya, Y., Chung, S.Y., & Kubo, M. (2008).

Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and

evaluation of their hydrocarbon-degradation by the 2, 6-DCPIP assay.

Biodegradation, 19, 749-757.

Kulkarni, M., & Chaudhari, A. (2006). Biodegradation of p-nitrophenol by P. putida.

Bioresource technology, 97, 982-988.

Lalman, J. A., & Bagley, D. M. (2000). Anaerobic degradation and inhibitory effects

of linoleic acid. water research, 34, 4220-4228.

Lamichhane, S., Krishna, K. B. & Sarukkalige, R. (2017). Surfactant-enhanced

remediation of polycyclic aromatic hydrocarbons: A review. Journal of

Environmental Management, 199, 46-61.

Latha, R., & Kalaivani, R. (2012). Bacterial degradation of crude oil by gravimetric

analysis. Advances in Applied Science Research, 3, 2789-2795.

Lee, K., Nedwed, T. & Prince, R. C. (2011). Lab tests on the biodegradation of

chemically dispersed oil should consider the rapid dilution; In Proceedings

Of The 2011 International Oil Spill Conference, Portland, Oregon;

Washington, DC: American Petroleum Institute; 2011.

Page 32: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

75

Lenth, R. V. (2009). Response-Surface Methods in R, using rsm. Journal of

Statistical Software, 32, 1-17.

Liu, Y. j. & Xiang, R. W. (2007). Application of Central Composite

Design/Response Surface Methodology in Pharmacy Experiment Design [J].

Chinese Journal of Modern Applied Pharmacy, 6, 007.

Liyanage, G. Y. & Manage, P. M. (2016). Isolation and characterisation of oil

degrading bacteria from coastal waters and sediments from three locations in

Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 44.

Loginova, E., Bartelt, N., Feibelman, P. & McCarty, K. (2009). Factors influencing

graphene growth on metal surfaces. New Journal of Physics, 11, 063046.

Long, J. H., Aziz, T. N., Francis, L. & Ducoste, J. J. (2012). Anaerobic co-digestion

of fat, oil, and grease (FOG): a review of gas production and process

limitations. Process Safety and Environmental Protection, 90, 231-245.

Loperena, L., Saravia, V., Murro, D., Ferrari, M. D. & Lareo, C. (2006). Kinetic

properties of a commercial and a native inoculum for aerobic milk fat

degradation. Bioresource technology, 97, 2160-2165.

López, S., Prieto, M., Dijkstra, J., Dhanoa, M. S., France, J. (2004) Statistical

evaluation of mathematical models for microbial growth. International

Journal of Food Microbiology 96, 289–300.

Lucas, A. M., Ruberto, S., Vazquez, A., Lobalbo, & Mac Cormack W. P. (2005).

Psychrotolerant Hydrocarbon-Degrading Rhodococcus strains isolated from

polluted Antarctic oils. Antarctic Science 17, 47–56

Luo, Q., Zhang, J. G., Shen, X. R., Sui, X. & Fan, Z. Q. (2013). Characterization

of a novel diesel oil-degrading Pseudomonas sp. strain F4. Fresenius Environ

Bullet, 22, 689–697.

Luong, J. H. T. (1987) Generalization of monod kinetics for analysis of growth data

with substrate inhibition. Biotechnology and Bioengineering 29, 242–248.

Margesin, R. & Shinner, F. (2001). Bioremediation of (natural attenuation and

biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing

area. Applied and Enviromental Microbiology, 67, 3127-3133.

Makadia, T. H., Adetutu, E. M., Simons, K. L., Jardine, D., Sheppard, P. J., & Ball,

A. S. (2011). Re-use of remediated soils for the bioremediation of waste oil

sludge. Journal of environmental management, 92, 866-871.

Manan, F. A., Ibrahim, Z., & Shahir, S. (2014). Plants in Antarctica: current and

future phytoremediation potential. Jurnal teknologi, 69, 59-65.

Page 33: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

76

Mandri, T., & Lin, J. (2007). Isolation and characterization of engine oil degrading

indigenous microrganisms in Kwazulu-Natal, South Africa. African Journal

of Biotechnology, 6.

Maritime connector. (2011) Palm oil spill in sea as barge sinks near Nagapattinam

port. News Maritime connector.

Mazlan, M. A. (2012). Biodegradation of Used Cooking Oil by Indigenous Bacteria

(Doctoral dissertation, Universiti Teknologi Malaysia).

McFarlin, K. M., Prince, R. C., Perkins, R., & Leigh, M. B. (2014). Biodegradation

of dispersed oil in arctic seawater at-1 C. PloS one, 9, e84297.

Mercurio, P., Burns, K. A., & Negri, A. (2004). Testing the ecotoxicology of

vegetable versus mineral based lubricating oils: 1. Degradation rates using

tropical marine microbes. Environmental pollution, 129, 165-173.

Misenheimer, T. J., Anderson, R. F., Lagoda, A. A., Tyler, D. D. (1965) Production

of 2-Ketogluconic Acid by Serratia marcescens. Applied Microbiology 13,

393–396.

Monod J (1949) The growth of bacterial cultures. Annual Review of Microbiology 3,

371–394. doi:10.1146/annurev.mi.03.100149.002103.

Moret, S. & Conte, L. S. (2000). Polycyclic aromatic hydrocarbons in edible fats and

oils: occurrence and analytical methods. Journal of chromatography A, 882,

245-253. .

Moorthy, I. M. G., & Baskar, R. (2013). Statistical modeling and optimization of

alkaline protease production from a newly isolated alkalophilic Bacillus

species BGS using response surface methodology and genetic algorithm.

Preparative Biochemistry and Biotechnology, 43, 293-314.

Motulsky, H. J., Ransnas, L. A. (1987) Fitting curves to data using nonlinear

regression: a practical and nonmathematical review. The FASEB journal :

official publication of the Federation of American Societies for Experimental

Biology 1, 365–374.

Mudge, S. M. (1995). Deleterious effects from accidental spillages of vegetable oils.

Spill Science & Technology Bulletin, 2, 187-191.

Mudge, S. M. (1997) Can vegetable oils outlast mineral oils in the marine

environment? Mar Pollut Bull 34, 213

Mulchandani, A., & Luong, J. (1989). Microbial inhibition kinetics revisited.

Enzyme and microbial technology, 11, 66-73.

Page 34: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

77

Mulherji S., Jagadevan S., Mohapatra G., & Vijay A. (2004). Biodegradation of

diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an

oil field. Bioresour Technol 95:281-286.

Mulligan, C. N. & Gibbs, B. F. (2004). Types, production and applications of

biosurfactants. Proceedings-Indian National Science Academy Part B, 70,

31-56.

Nagarajan, J., Nawawi N. M., & Ibrahim, Abdul Latif (2014). Rhodococcus UKMP-

5M, an endogenous lipase producing actinomycete from Peninsular

Malaysia. Biologia 69, 123—132.

Nee, C. W., Aziz, A. A. A., Salvamani, S., Shaharuddin, N. A., Shukor, M. Y., &

Syed, M. A. (2013) Characterization of azo dye-degrading Coriolopsis sp.

strain arf5. Bioremediation Science and Technology Research 1, 8–14.

Nizam, M. K. & Zuhan, M. (2008). Bioremediation of oil from domestic wastewater

using mixed culture: effects of inoculum concentration and agitation speed.

Universiti Malaysia Pahang.

Nkeiruka, N. C. & Tagbo, N. J. (2014) Continuous process design model simulation

for the anaerobic digestion of vegetable oil wastewater. American Journal of

Environmental Protection 3, 209.

Nweke CN, Nwabanne JT, Igbokwe PK (2014) Kinetics of batch anaerobic digestion

of vegetable oil wastewater. Open Journal of Water Pollution and Treatment

1, 1–10.

Okpokwasili, G. & Nweke, C. (2006). Microbial growth and substrate

utilizationkinetics. African Journal of Biotechnology, 5, 305-317.

Othman, A. R., Bakar, N.A., Halmi M. I. E., Johari W.l.W., Ahmad, S. A., Jirangon

H. & Shukor, M. Y. (2013). Kinetics of molybdenum reduction to

molybdenum blue by Baccilus sp. strain A.rzi. Biomed Res Int. DOI:

10.1155/2013/371058.

Palanisamy, N., Ramya, J., Kumar, S. & Vasanthi, N., Chandran, P. & Khan, S.

(2014). Diesel biodegradation capacities of indigenous bacterial species

isolated from diesel contaminated soil.Enviromental health science &

engineering 12, 142.

Pereira, M. G., Mudge, S. M., Latchford, J. (1998) Bacterial degradation of

vegetable oils. Chemistry and Ecology 14-15, 291–303.

Prendergast, D. P., & Gschwend, P. M. (2014). Assessing the performance and cost

of oil spill remediation technologies. Journal of Cleaner Production, 78,

233-242.

Page 35: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

78

Prince, R. C., Garrett, R. M., Bare, R. E., Grossman, M. J., Townsend, T., Suflita, J.

M., Braddock, J. F. (2003). The roles of photooxidation and biodegradation

in long-term weathering of crude and heavy fuel oils. Spill Science &

Technology Bulletin, 8(2), 145-156.

Przybylski, R., Mag, T., Eskin, N. A. M. & McDonald, B. E. (2005) Canola oil. In:

Shahidi F (ed) Bailey’s industrial oil and fat products, 6th edn, vol 2. Wiley,

Holbooken, NJ

Quintas, M. A., Brandao, T. R., & Silva, C. L. (2007). Modelling colour changes

during the caramelisation reaction. Journal of food engineering, 83, 483-491.

Raghuvanshi, S., Gupta, S. & Babu, B. V. (2012). Application of biofilter system

for removal of ethyl acetate: Column and kinetic studies

Ramadhas, A., Jayaraj, S. & Muraleedharan, C. (2004). Use of vegetable oils as IC

engine fuels—a review. Renewable energy, 29, 727-742.

Ravishankar, K., & Connor, J. (2008). Use Of Risk-Based Business Approach For

Characterization Of Environmental Remediation Liabilities In Upstream Oil

And Gas Production Facilities. Paper presented at the SPE International

Conference on Health, Safety, and Environment in Oil and Gas Exploration

and Production.

Reed, T. B., Graboski, M. S., & Gaur, S. (1992). Development and

commercialization of oxygenated diesel fuels from waste vegetable oils.

Biomass and bioenergy, 3, 111-115.

Refaat, A., Attia, N., Sibak, H. A., El Sheltawy, S., & ElDiwani, G. (2008).

Production optimization and quality assessment of biodiesel from waste

vegetable oil. International Journal of Environmental Science and

Technology:(IJEST), 5, 75.

Refaat, A., El Sheltawy, S., & Sadek, K. (2008). Optimum reaction time,

performance and exhaust emissions of biodiesel produced by microwave

irradiation. International Journal of Environmental Science and

Technology:(IJEST), 5, 315.

Reis, P., Holmberg, K., Watzke, H., Leser, M. E., Miller, R. (2009). Lipases at

interfaces: A review. Advances in Colloid and Interface Science 147–148 :

237–250.

Richards, F.J. (1959) A flexible growth function for empirical use. Journal of

Experimental Botany 10, 290–300.

Page 36: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

79

Ricker, F. J. (1979). Growth rates and models. ‘Fish Physiol.’ (Eds WS Hoar, JR

Brett, DJ Randall) Bioenergetics and Growth. pp. 677–743. (Academic Press:

New York)

http://www.sciencedirect.com/science/article/pii/S1546509808600345.

Ross, T., McMeekin, T. A. (1994) Predictive microbiology. International Journal of

Food Microbiology 23, 241–264.

Russell, D. J., & Carlson, B. A. (1978). Edible-oil pollution on Fanning Island.

Ryan, L. C., Mestrallet, M. G., Nepote, V., Conci, S., & Grosso, N. R. (2008).

Composition, stability and acceptability of different vegetable oils used for

frying peanuts. International journal of food science & technology, 43, 193-

199.

Sabullah, M. K., Rahman, M., Ahmad, S., Sulaiman, M., Shukor, M., Shamaan, N.

A., & Shukor, M. (2016). Isolation and characterization of a molybdenum-

reducing and glyphosate-degrading Klebsiella oxytoca strain Saw-5 in soils

from Sarawak. Agrivita, 38, 1.

Sadouk, Z., Hacene, H. & Tazerouti, A. (2008) Biosurfactants production from low

cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil &

Gas Science and Technology - Revue de l’IFP 63, 747–753.

Sahinkaya, E. & Dilek, F. (2007). Biodegradation kinetics of 2,4-dichlorophenol by

acclimated mixed cultures. Journal of Biotechnology. 4, 716-726.

Saifuddin, N., & Chua, K. H. (2006) Biodegradation of lipid-rich wastewater by

combination of microwave irradiation and lipase immobilized on chitosan.

Biotechnology 5, 315–323.

Salam, D. A., Suidan, M. T., Venosa, A. D. (2012) Effect of butylated

hydroxytoluene (bht) on the aerobic biodegradation of a model vegetable oil

in aquatic media. Environmental Science & Technology 46, 6798–6805.

Salam, D. A., Suidan, M. T., & Venosa, A. D. (2012). Effect of butylated

hydroxytoluene (BHT) on the aerobic biodegradation of a model vegetable

oil in aquatic media. Environmental science & technology, 46, 6798-6805.

Saravanan, P., Pakshirajan, K., & Saha, P. (2008). Growth kinetics of an indigenous

mixed microbial consortium during phenol degradation in a batch reactor.

Bioresource technology, 99, 205-209.

Sathishkumar, M., Binupriya, A. R., Baik, S. H., & Yun, S. E. (2008).

Biodegradation of crude oil by individual bacterial strains and a mixed

bacterial consortium isolated from hydrocarbon contaminated areas. Clean–

Soil, Air, Water, 36, 92-96.

Page 37: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

80

Schachter, O., & Serwer D. (2017) Marine pollution Problems and Remedies.

American journal of International Law. 84-111.

Schröder, M., Müller, C., Posten, C., Deckwer, W. D., & Hecht, V. (1997).

Inhibition kinetics of phenol degradation from unstable steady‐state data.

Biotechnology and bioengineering, 54, 567-576.

Şeker, Ş., Beyenal, H., Salih, B., & Tanyolac, A. (1997). Multi-substrate growth

kinetics of Pseudomonas putida for phenol removal. Applied microbiology

and biotechnology, 47, 610-614.

Shabtai, Y., & Daya-Mishne, N. (1992). Production, purification, and properties of a

lipase from a bacterium (Pseudomonas aeruginosa YS-7) capable of growing

in water-restricted environments. Applied and environmental microbiology,

58, 174-180.

Sharif, K., Rahman, M., Azmir, J., Mohamed, A., Jahurul, M., Sahena, F., & Zaidul,

I. (2014). Experimental design of supercritical fluid extraction–A review.

Journal of food engineering, 124, 105-116.

Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification,

characterization, and applications of lipases. Biotechnology advances, 19,

627-662.

Shashidhara, Y., & Jayaram, S. (2010). Vegetable oils as a potential cutting fluid—

an evolution. Tribology international, 43, 1073-1081.

Shon, H. K., Tian, D., Kwon, D. Y., Jin, C. S., Lee, T. J., & Chung, W. J. (2002).

Degradation of fat, oil, and grease (FOGs) by lipase-producing bacterium

Pseudomonas sp. strain D2D3. Journal of microbiology and biotechnology,

12, 583-591

Shukor, M. Y., Hassan, N. A. A., Jusoh, A. Z., Perumal, N., Shamaan, N. A.,

MacCormack, W. P. & Syed, M. A. (2009) Isolation and characterization of a

Pseudomonas diesel-degrading strain from Antarctica. Journal of

Environmental Biology 30, 1–6.

Sieuwerts, S., De Bok, F. A., Mols, E., De Vos, W. M., & van Hylckama Vlieg, J.

E. T. (2008). A simple and fast method for determining colony forming units.

Letters in applied microbiology, 47, 275-278.

Singh, R., Ong-Abdullah, M., Low, E.T. L., Manaf, M. A. A., Rosli, R., Nookiah,

R., & Halim, M. A. (2013). Oil palm genome sequence reveals divergence of

interfertile species in Old and New worlds. Nature, 500, 335-339.

Singsaas, I., & Lewis, A. (2011). Behaviour of oil and other hazardous and noxious

substances (HNS) spilled in Arctic waters (BoHaSA).

Page 38: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

81

Smith, D. W., & Herunter, S. M. (1989). Birds affected by a canola oil spill in

Vancouver Harbour, February, 1989. Spill Technology Newsletter, 10, 3-5.

South China morning post 2017. Hong Kong government struggles to clean up mess

as palm oil spill spreads.

Sriwongchai, S., Pokethitiyook, P., Pugkaew, W., Kruatrachue, M. & Lee, H.

(2012) Optimization of lipid production in the oleaginous bacterium

Rhodococcus erythropolis growing on glycerol as the sole carbon source.

African Journal of Biotechnology 11, 14440–14447.

Sugai, S. F., Lindstrom, J. E. & Braddock, J. F. (1997). Enviromental influences on

the microbial degradation of exxon valdez oil on the shorelines of prince

william sound. Alaska En. Science technology 31, 1564-1572.

Tamada, I. S., Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2012)

Toxicological evaluation of vegetable oils and biodiesel in soil during the

biodegradation process. Brazilian Journal of Microbiology 43, 1576–1581.

Tanaka, D., Takashima, M., Mizuta, A., Tanaka, S., Sakatoku, A., Nishikawa, A. &

Nakamura, S. (2010). Acinetobacter sp. Ud-4 efficiently degrades both edible

and mineral oils: isolation and characterization. Current microbiology, 60,

203-209.

Tavassoli, T., Mousavi, S., Shojaosadati, S., & Salehizadeh, H. (2012). Asphaltene

biodegradation using microorganisms isolated from oil samples. Fuel, 93,

142-148.

Teas, C., Kalligeros, S., Zanikos, F., Stournas, S., Lois, E., & Anastopoulos, G.

(2001). Investigation of the effectiveness of absorbent materials in oil spills

clean up. Desalination, 140, 259-264.

Teissier, G. (1942) Growth of bacterial populations and the available substrate

concentration. Review of Scientific Instruments 3208, 209–214.

Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2007). Effect of

Salinity, Temperature, pH and Crude Oil Concentration on Biodegradation of

Crude Oil by Pseudomonas aeruginosa World Journal of Biology and

Enviromental Sciences, 1, 52-57.

Tornero, Victoria, and Georg Hanke. (2016) "Chemical contaminants entering the

marine environment from sea-based sources: A review with a focus on

European seas." Marine pollution bulletin 112, 17-38.

Tseng, M. M. C., & Wayman, M. (1975). Kinetics of yeast growth: inhibition-

threshold substrate concentrations. Canadian journal of microbiology, 21,

994-1003.

Page 39: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

82

Tsolaki, Efi, and Evan Diamadopoulos. (2010) "Technologies for ballast water

treatment: a review." Journal of Chemical technology and Biotechnology 85,:

19-32.

USEPA (1997) Oil pollution prevention; non-transportation related onshore

facilities; rule. Fed Regist 62, 54507–54543

USEPA, (2011). National contingency plan product schedule. Retrieved on 8th

March fromhttp://www.epa.gov/emergencies/content/ncp/prod

uct_schedule.htm.

Velez, P., Johnsen, H. G., Steen, A., & Osikilo, Y. (2011). Advancing oil spill

preparedness and response techniques for Arctic conditions. Paper presented

at the International Oil Spill Conference Proceedings (IOSC).

Ventikos, N. P., Vergetis, E., Psaraftis, H. N., & Triantafyllou, G. (2004). A high-

level synthesis of oil spill response equipment and countermeasures. Journal

of hazardous materials, 107, 51-58.

Wadhwa, M., & Bakshi, M. (2013). Utilization of fruit and vegetable wastes as

livestock feed and as substrates for generation of other value-added products.

Rap Publication, 4.

Wang, G. G. (2003). Adaptive response surface method using inherited latin

hypercube design points. Transactions-American Society of Mechanical

Engineers Journal of Mechanical Design, 125, 210-220.

Whang, L. M., Liu, P. W. G., Ma, C. C. & Cheng, S. S. (2009). Application of

rhamnolipid and surfactin for enhanced diesel biodegradation-Effects of pH

and ammonium addition. Hazard Mater, 164, 1045–1050.

Wattayakorn, G. (2012). Petroleum pollution in the Gulf of Thailand: A historical

review.

Waugh, W. J., Smith, G. M., Bergman-Tabbert, D., & Metzler, D. R. (2001).

Evolution of cover systems for the uranium mill tailings remedial action

project, USA. Mine Water and the Environment, 20, 190-197.

Wu, J.Y., Yeh, K. L., Lu, W. B., Lin, C. L., & Chang, J. S. (2008) Rhamnolipid

production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-

contaminated site. Bioresource Technology 99, 1157–1164.

Xia, W., Li, J., Xia, Y., Song, Z., & Zhou, J. (2012) Optimization of diesel oil

biodegradation in seawater using statistical experimental methodology.

Water Science Technology. 66, 1301-1309.

Page 40: COPYRIGHTpsasir.upm.edu.my/id/eprint/68519/1/FBSB 2018 9 IR.pdf · Pengkelasan semula bahan buangan kelapa sawit yang berterusan sebagai bahan berbahaya oleh Kesatuan Eropah akan

© COPYRIG

HT UPM

83

Yacobucci B. D. & Schnepf, R. (2007). Ethanol and Biofuels: Agriculture,

Infrastucture and Market Constraints Related to Expanded production.

Washington, DC: US Congress research Service.

Yavari, S., Malakahmad, A., & Sapari, N. B. (2015). A review on phytoremediation

of crude oil spills. Water, Air and Soil Pollution, 226, 1.

Yusuf, I., Ahmad, S. A., Phang, L. Y., Syed, M. A., Shamaan, N. A., Khalil, K. A.,

Shukor, M. Y. (2016). Keratinase production and biodegradation of polluted

secondary chicken feather wastes by a newly isolated multi heavy metal

tolerant bacterium-Alcaligenes sp. AQ05-001. Journal of environmental

management, 183, 182-195.

Zahed, M. A., Aziz, H. A., Isa, M. H., Mohajeri, L., & Mohajeri, S. (2010). Optimal

conditions for bioremediation of oily seawater. Bioresource technology, 101,

9455-9460.

Zajic, J. E., & Supplisson, B. (1972). Emulsification and degradation of “Bunker C”

fuel oil by microorganisms. Biotechnology and Bioengineering, 14, 331-343.

Zielińska, A., & Nowak, I. (2017). Abundance of active ingredients in sea-buckth

Abou-Shanab orn oil. Lipids in health and disease, 16, 95.

Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van’t Riet K (1990).

Modeling of the bacterial growth curve. Applied and Environmental

Microbiology 56, 1875–1881.