static culture of spirulina platensis in modified … culture of spirulina platensis... · air sisa...

24
STATIC CULTURE OF Spirulina platensis IN MODIFIED SAGO EFFLUENT MEDIUM NURUL HANA MINARTI BINTI OMAR This project is submitted in partial fulfillment of the requirement for the Degree of Bachelor of Science with Honours (Resource Biotechnology) Faculty of Resource Science and Technology UNIVERSITY MALAYSIA SARAWAK 2010

Upload: vucong

Post on 06-Feb-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

STATIC CULTURE OF Spirulina platensis IN MODIFIED SAGO

EFFLUENT MEDIUM

NURUL HANA MINARTI BINTI OMAR

This project is submitted in partial fulfillment of

the requirement for the Degree of Bachelor of Science with Honours

(Resource Biotechnology)

Faculty of Resource Science and Technology

UNIVERSITY MALAYSIA SARAWAK

2010

Page 2: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

DECLARATION

I hereby declare that no portion of the work referred in this project has been

submitted in support of an application for another degree qualification of this or any

other university or institution of higher learning.

___________________________________

(Nurul Hana Minarti Binti Omar)

Resource Biotechnology

Department of Molecular Biology

Faculty of Resource Science and Technology

University Malaysia Sarawak

Page 3: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

i

ACKNOWLEDGEMENT

Above all, I would like to express my greatest sincere gratitude and

appreciation to my supervisor, Professor Dr. Kopli bin Bujang for his dedicated

supervision, comments, advice and patience throughout this project. My special

thanks is dedicated to Assoc. Prof. Dr. Cirilo Nalsco Hipolito as my examiner and

giving valuable guidelines for writing this report.

Besides that, I would like to express my appreciation to postgraduate students

of the Biochemistry laboratory, Faculty of Resource Science and Technology, Miss

Merlina Manggi, Miss Rubena Kamal and Mr Ugam Janggu.

Last but not least, I would also like to thank my family for their endless

corroboration and giving me the greatest support while the project is on-going and

not forgetting also my friends and course mates.

Page 4: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

ii

ABSTRACT

Effluent from Sago Mill is a polluting wastewater from the starch industries

in Sarawak. The pollution occurs due to the large quantity produced daily rather the

chemical components of the effluent. It is reported that for one kilogram (dry weight)

of starch produced, 20 L of wastewater is generated in the process. This wastewater

needs to be treated before to be discharged into nearby rivers. Therefore, in this

study we proposed to use this wastewater as a media for the cultivation of the alga

Spirulina platensis with the aim to make more attractive its production from an

economical point of view by decreasing the production cost. Spirulina platensis has

commercial importance due to overall nutritional qualities, especially high protein

(70% dry basis) and vitamin contents, particularly B12. To use the sago effluent as

the media for the growing of Spirulina, it needs to be modified. To produce modified

sago effluent (MSE), the sago effluent was pre-treated aerobically by the addition of

the commercial microbial consortium Bakwira MP300 with the aim to degrade the

remained organic materials. Upon cleaned-up the MSE was amended with sodium

bicarbonate (NaHCO3) at different concentrations (0, 4 and 8 g/L). MSE without

amendment of NaHCO3, was used as negative control. The Zarrouks medium being

the best medium for the growth of Spirulina as reported in the literature was used as

positive control to compare the effectiveness of the MSE as a culture medium.

Spirulina platensis was cultivated using MSE amended with and without NaHCO3.

The cultures were analyzed for pH, protein (Bradford method), reducing sugar (DNS

method), starch (Iodine method), total suspended solids (TSS) (APHA method), cell

biomass by dry cell weight (DCW), and OD. The cultures were carried out during 20

Page 5: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

iii

days and samples were withdrawn every two days for analysis. The experiment trial

was done by duplicate. The highest pH 10.52 observed was in the MSE amended

with 8 g/L NaHCO3 in the first trial and 9.34 for the second. The highest DCW

obtained after 20 days of cultivation observed was the Zarrouk’s medium with 1095

mg/L and in MSE with 0g/L NaHCO3 with 1445 mg/L in the first and second trial of

experiments respectively. Study on effect of NaHCO3 on the glucose content of

Spirulina, MSE without addition of NaHCO3 (0 g/L NaHCO3) achieved the highest

glucose content with 0.35 g/L in first trial of experiment after 20th

day of cultivation.

It was increased by 133.33% from day 0th

of cultivation with glucose content of 0.15

g/L. While, in second trial the MSE containing 4 g/L NaHCO3 was achieved the

highest glucose content on the 20th

day of cultivation with 0.13 g/L. An increased

was shown by 44.44% from the day 0th

of cultivation with glucose content of 0.09

g/L. Study on the effect of starch shows that the highest starch content for the first

trial of experiment on the 20th

day observed was the MSE containing 8 g/L of

sodium bicarbonate, NaHCO3 with 0.21 g/L of starch content. An increased was

shown by 2000% compare to day 0th

of cultivation with starch content of 0.01 g/L.

While, for the second trial of experiment the highest starch content was achieved in

MSE without the sodium bicarbonate amendment added, 0 g/L NaHCO3 with starch

content of 0.16 g/L on day 20th

of cultivation. An increased was shown by 128.57%

compare to day 0 of cultivation with starch content of 0.07 g/L. Study on effect of

NaHCO3 of Spirulina in Zarrouk’s medium was achieved the highest protein content

at 3.06% and 3.85% in first and second trials of experiments respectively. As

compared to medium of MSE with different concentration of NaHCO3 amendment,

the highest protein content observed was in MSE added with 8 g/L NaHCO3 with

Page 6: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

iv

2.31% of protein content in the first trial of experiment, while for the second trial the

highest protein content was achieved by MSE without addition of NaHCO3 (0 g/L

NaHCO3) with 2.92% of protein content.

Key words: Spirulina platensis, modified sago effluent, Zarrouk’s medium, static

culture, single cell protein, dry cell weight, protein content.

Page 7: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

v

ABSTRAK

Efluen dari Sagu Mill adalah pencemaran dari sisa-sisa industri kanji di

Sarawak. Pencemaran terjadi disebabkan oleh jumlah besar yang dihasilkan setiap

hari tetapi bukan komponen kimia dari sisa. Hal ini dilaporkan bahawa untuk satu

kilogram (berat kering) daripada tepung yang dihasilkan, 20 L air sisa yang

dihasilkan dalam proses. Air sisa ini perlu dirawat sebelum menjadi dibuang ke

sungai terdekat. Oleh kerana itu, dalam kajian ini menawarkan untuk menggunakan

air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk

membuat media yang lebih sesuai produksinya dari sudut pandang ekonomi dengan

cara menurunkan kos pengeluaran. Spirulina platensis mempunyai kepentingan

komersial kerana keseluruhan kandungan gizi yang tinggi, terutama protein tinggi

(isi 70% berat kering asa) dan vitamin, khususnya B12. Untuk menggunakan sisa

sagu sebagai media untuk pertumbuhan Spirulina, sisa sagu perlu diubah. Untuk

menghasilkan sagu efluen yang diubah (MSE), sagu efluen dirawat secara pra-

aerobik dengan penambahan konsortium mikroba komersial MP300 Bakwira

dengan tujuan untuk mendegradasi bahan organik tetap. Setelah dibersihkan, MSE

ditambah dengan natrium bikarbonat (NaHCO3) pada kepekatan yang berbeza (0, 4

dan 8 g / L). MSE tanpa perubahan NaHCO3, digunakan sebagai kawalan

negatif. Media Zarrouks menjadi media terbaik bagi pertumbuhan Spirulina yang

dilaporkan dalam laporan sebelum ini digunakan sebagai kawalan positif untuk

membandingkan keberkesanan MSE sebagai kultur media. Spirulina platensis yang

ditanamkan dengan menggunakan MSE yang ditambah dengan dan tanpa NaHCO3.

Kultur dianalisis pH, protein (Kaedah Bradford), kandungan gula (kaedah DNS),

Page 8: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

vi

kanji (kaedah Iodine), jumlah pepejal termendap (TSS) (kaedah Apha), sel biojisim

dengan berat sel kering (DCW), dan OD. Pengkulturan yang dilakukan selama 20

hari dan sampel dianalisis setiap dua hari. Sidang percubaan dilakukan dengan 2

kali percubaan. pH tertinggi 10.52 didapati pada MSE yanag ditambah dengan 8

g/L NaHCO3 pada eksperimen percubaan pertama dan 9.34 untuk yang kedua.

Berat kering (DCW) tertinggi yang diperolehi selepas 20 hari pengkulturan adalah

didapati dalam medium Zarrouk dengan 1095 mg/L dan dalam MSE dengan 0 g/L

NaHCO3 dengan 1445 mg/L masing-masing pada eksperimen percubaan pertama

dan kedua. Kajian terhadap kesan NaHCO3 pada kandungan glukosa Spirulina,

MSE tanpa NaHCO3 (0 g/L NaHCO3) mencapai kadar glukosa tertinggi dengan

0.34 g/L dalam eksprimen percubaan pertama selepas 20 hari pengkulturan.

Peningkatan menunjuk 133.33% dari hari ke-0 pengkulturan dengan kandungan

glukosa 0.15 g/L sehingga ke hari 20 pengkulturan. Manakala, dalam eksperiman

percubaan kedua MSE mengandungi 4 g/L NaHCO3 mencatat kandungan glukosa

yang tertinggi pada hari ke-20 pengkulturan dengan 0.13 g/L. Peningkatan tersebut

meunjukkan 44.44% dari hari ke-0 pengkulturan dengan kandungan glukosa 0.09

g/L. Kajian terhadap kandungan kanji dalam Spirulina menunjukkan kadar kanji

yang tertinggi bagi eksperimen percubaan pertama pada hari ke-20 adalah pada

MSE yang mengandungi 8 g/L natrium bikarbonat, NaHCO3 dengan 0.21 g/L kadar

kanji. Ini menunjukkan peningkatan sebanyak 2000% dari hari ke-0 pengkulturan

dengan kadar kanji 0.01 g/L. Manakala, untuk eksperiman percubaan kedua, kadar

kanji yang tertinggi yang didapati pada hari ke-20 adalah pada MSE tanpa

penambahan natrium bikarbonat iaitu 0 g/L NaHCO3 dengan kadar kanji dari 0.16

g/L. Peningkatan ditunjukkan oleh 128.57% pada hari ke-0 dari pengkulturan

Page 9: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

vii

dengan kadar kanji dari 0.07 g/L. Kajian terhadap kesan NaHCO3 pada Spirulina

didapati kandungan protein yang tertinggi dicatat oleh Zarrouk medium dengan

3.06% dan 3.85% dalam eksperimen percubaan pertama dan kedua masing-masing.

Perbandingan pada medium MSE yang ditambah dengan kepekatan NaHCO3,

kandungan protein yang tertinggi didapati dalam MSE yang ditambah dengan 8 g/L

NaHCO3 dengan peratus kandungan proteinnya adalah 2.31% dalam eksperimen

percubaan pertama, manakala, dalam eksperimen percubaan kedua pula kandungan

protein yang tertinggi dicatat oleh MSE tanpa penambahan NaHCO3 (0 g/L

NaHCO3) dengan peratus kandungan protein 2.92%.

Kata kunci: Spirulina platensis, sagu efluen yang diubah, media Zarrouk, kultur

statik, protein sel tunggal, berat sel kering, kandungan protein

Page 10: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

viii

TABLE OF CONTENTS

TITLE PAGE

ACKNOWLEDGEMENT i

ABSTRACT ii

TABLE OF CONTENTS viii

LIST OF ABBREVIATIONS xi

LIST OF FIGURES xiv

LIST OF TABLES xvi

CHAPTER 1: INTRODUCTION

1.1 Generel Overview 1

1.2 Objectives

3

CHAPTER 2: LITERATURE REVIEW

2.1 Sago 4

2.1.1 Sago Starch 4

2.1.2 Sago Effluent 4

2.2 Spirulina 6

2.2.1 Morphology and Characteristic 6

2.2.2 Nutritional value of Spirulina 8

2.2.2.1 Protein 8

2.2.2.2 Carbohydrate 8

2.2.2.3 Lipids 9

2.2.2.4 Vitamins 10

2.2.3 Application of Spirulina 10

2.2.3.1 Health Benefit Effects 10

2.2.3.1.1 Effects against Hyperlipidemia 10

2.2.3.1.2 Effects on Intestinal Flora 11

2.2.3.1.3 Effects against Vitamin A Deficiency 11

2.2.3.1.4 Potent Cancer-Fighting Phytonutrients 12

2.2.3.1.5 Boosting Immune System Function 12

2.2.3.2 Other Applications of Spirulina 14

2.2.3.2.1 Application of Spirulina in Biofixation

of Carbon Dioxide (CO2).

14

2.2.3.2.2 Application of Spirulina to Improve

Accumulation of Copper, Mercury and

Lead from Wastewater.

15

2.2.3.2.3 Application of Spirulina in Dairy

Industries

16

2.2.3.2.4 The use of Spirulina as Colouring

Compounds

16

2.2.4 Business Plan for Spirulina 17

2.3 Nutrient and Growth Factors of Spirulina platensis 18

2.3.1 Carbon Source 18

2.3.2 Nitrogen Source 19

2.3.3 Chemical Composition of Spirulina 19

2.4 Cultivation of Spirulina 21

Page 11: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

ix

2.4.1 pH of Medium 21

2.4.2 Effect of Sodium Bicarbonate (NaHCO3) 22

2.4.3 Influenced of Temperature 23

2.4.4 Effect of Light 23

2.4.5 Mixing rate of culture 24

2.5 Production of Spirulina

24

CHAPTER 3 MATERIALS AND METHODS

3.1 Materials 27

3.1.1 Microorganisms 27

3.1.1.1 Spirulina 27

3.1.1.2 Bakwira MP300 27

3.1.2 Inoculum 28

3.1.3 Modified Sago Effluent Medium 28

3.1.4 Zarrouk’s Medium 29

3.1.5 Concentration of Sodium Bicarbonate (NaCHO3) 31

3.1.6 Static Culture 31

3.1.7 Light Source 32

3.2 METHODS 33

3.2.1 Physical Characteristics 33

3.2.1.1 Total Suspended Solid (TSS) 33

3.2.1.2 Dry Cell Weight (between of biomass) 34

3.2.1.3 pH 35

3.2.2 Chemical Characteristics 35

3.2.2.1 Reducing sugar analysis-DNS Test 35

3.2.2.2 Starch content-Iodine test 36

3.2.2.3 Protein Content-Bradford method 36

3.2.3 Analytical procedure 37

3.2.3.1 Determination of the growth rate of the algae 37

3.2.4 Preparation of Sago Effluent as Growth Medium 38

3.2.4.1 Filtered Sago Effluent 38

3.2.4.2 Treatment of Modified Sago Effluent 39

3.2.5 Cultivation of Spirulina in Modified Sago Effluent 40

3.2.6 List of Experiment 41

3.2.7 Sampling

41

CHAPTER 4 RESULTS

4.1 Characteristics of Sago Effluent 42

4.2 Optical Density of Spirulina platensis 44

4.3 Effects on pH of Spirulina platensis cultured in MSE amended with

different concentration of sodium bicarbonate (NaHCO3) and in

Zarrouk’s medium.

45

4.4 Effects on growth (DCW) of Spirulina platensis in MSE amended

with different concentration of sodium bicarbonate (NaHCO3) and

in Zarrouk’s medium.

48

4.4.1 Comparison on colour of Spirulina cultures on day 0th

of

cultivation until day 20th

of cultivation in first and second

trials of experiments.

53

Page 12: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

x

4.5 Glucose content of Spirulina platensis in MSE with different

concentration of Sodium Bicarbonate, NaHCO3.

55

4.6 Starch content of Spirulina platensis in Zarrouk’s medium and in

MSE with different concentration of sodium bicarbonate, NaHCO3.

57

4.7 Comparison of protein content of Spirulina platensis in different

medium.

60

CHAPTER 5 DISCUSSIONS 64

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 79

REFERENCES 81

APPENDICES A 91

APPENDICES B 93

APPENDICES C 97

Page 13: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

xi

LIST OF ABBREVIATION

BOD Biological Oxygen Demand

BSA Bovine Serum Albumin

C Carbon

CaCl2.2H2O Calcium chloride-di-water

CuSO4.5H2O Copper sulphate-penta-water

COD Chemical Oxygen Demand

Co(NO3)2.6H2O Cobalt nitrate-hexa-water

DCW Dry cell weight

DOS Department Of Statistics

E.coli Escherichia coli

Fe-EDTA Iron-Ethylene Diaminetetraacetic Acid

FeSO4.7H2O Iron sulphate-hepta-water

g Gram

kg Kilogram

GLA γ-linolenic acid

g/L Gram per liter

H3BO3 Boric acid

HCl Hydrochloric acid

HDL High Density Lipoprotein

JCM Japanese Collection of Microorganism

K2HPO4 Di-potassium hydrogen orthophosphate

anhydrous

K2SO4 Potassium sulphate

Page 14: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

xii

L Liter

LDL Low Density Lipoprotein

MSE Modified sago effluent

Mg/L Milligram per liter

MgSO4.7H2O Magnesium sulphate-hepta-water

mL Milliliter

mm Millimeter

nm nanometer

MnCl2.4H2O Manganese chloride-tetra-water

N Nitrogen

NaCl Sodium chloride

Na2EDTA.2H2O Sodium Ethylene Diaminetetraacetic Acid-di-

water

NaHCO3 Sodium hydrogen carbonate

NaMoO4.2H2O Sodium molybdate dihydrate

NaNO3 Sodium nitrate

NaOH Sodium hydroxide

OD Optical density

PO4 Phosphate

ppb Part per billion

ppm Part per million

R2 Correlation coefficient

Rpm Revolution per min

tons Tonnes

Page 15: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

xiii

Wt. Weight

ZnSO4.7H2O Zinc sulphate-hepta-water

β Beta

˚C Degree Celsius

µ Micron

µm Micro meter

γ gamma

Page 16: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

xiv

LIST OF FIGURES

TITTLE PAGE

Figure 2.1 Structural analysis of Spirulina platensis under Olympus light

microscope at 20X.

7

Figure 2.2 Structural analysis of Spirulina platensis under Olympus light

microscope at 40X.

7

Figure 2.3 Scanning electron micrograph of Spirulina platensis.

7

Figure 2.4 Scanning electron micrograph of Nonaxenic of Spirulina platensis

7

Figure 2.5 Spirulina tablets (left), Spirulina powders (right).

25

Figure 3.1 Inoculum of Spirulina platensis in 500ml Erlenmeyer flask using

Zarrouk’s medium after 14 days.

28

Figure 3.2 Cultures of Spirulina platensis in different concentration of sodium

bicarbonate.

32

Figure 3.3 Filtrate of dried sample on Whatman membrane filter paper after

dried at 60oC for 24 hours.

34

Figure 3.4 Measured pH of the MSE.

35

Figure 3.5 Biochrom UV spectrophotometer Libra S12.

38

Figure 3.6 Filtration of the Sago Effluent.

39

Figure 3.7 Aeration of the treated MSE for 3 days.

40

Figure 4.1.1 The difference between Filtered Sago Effluent (FSE) and Modified

Sago Effluent (MSE).

44

Figure 4.1 Effects on pH of Spirulina platensis cultured in MSE amended with

different concentration of sodium bicarbonate (NaHCO3) and in

Zarrouk’s medium for 20 days of cultivation duration for the first

trial of experiment.

45

Page 17: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

xv

Figure 4.2 Effects on pH of Spirulina platensis cultured in MSE amended with

different concentration of sodium bicarbonate (NaHCO3) and in

Zarrouk’s medium for 20 days of cultivation duration for the second

trial of experiment.

46

Figure 4.3 Effects on growth (DCW) of Spirulina platensis in MSE amended

with different concentration of sodium bicarbonate (NaHCO3) and

in Zarrouk’s medium for 20 days of cultivation duration for first

trial of experiment.

48

Figure 4.4 Effects on growth (DCW) of Spirulina platensis in MSE amended

with different concentration of sodium bicarbonate (NaHCO3) and

in Zarrouk’s medium for 20 days of cultivation duration for second

trial of experiment.

49

Figure 4.4.1 0th

day (09/02/10) of Cultivation for first trial of experiment.

53

Figure 4.4.2 20th

day (29/02/10) of Cultivation for first trial of experiment.

53

Figure 4.4.3 0th

day (18/03/10) of Cultivation for second trial of experiment.

54

Figure 4.4.4 20th

day (07/04/10) of Cultivation for second trial of experiment.

54

Figure 4.5 Glucose content of Spirulina platensis in MSE with amendment of

0g/L NaHCO3, 4g/L NaHCO3 and 8g/L NaHCO3 for 20 days of

cultivation duration in the first trial experiment.

55

Figure 4.6 Glucose content of Spirulina platensis in MSE with amendment of

0g/L NaHCO3, 4g/L NaHCO3 and 8g/L NaHCO3 for 20 days of

cultivation duration in the second trial experiment.

55

Figure 4.7 Starch content of Spirulina platensis in Zarrouk’s medium and in

MSE with amendment of 0g/L NaHCO3, 4g/L NaHCO3 and 8g/L

NaHCO3 for 20 days of cultivation duration for the first trial

experiment.

57

Figure 4.8 Starch content of Spirulina platensis in Zarrouk’s medium and in

MSE with amendment of 0g/L NaHCO3, 4g/L NaHCO3 and 8g/L

NaHCO3 for 20 days of cultivation duration for the second trial

experiment.

58

Page 18: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

xvi

LIST OF TABLES

TITTLE PAGE

Table 3.1

Zarrouk’s medium (modified)

29

Table 3.2 Stock concentration of nutrient solution

29

Table 3.3 Stock concentration of bicarbonate solution

30

Table 3.4 Stock concentration of microelement stock

30

Table 3.5 Stock concentration of Fe-EDTA

30

Table 3.6 40 X stock

31

Table 4.1 Characteristics of Sago effluent before and after treatment

using BakWira MP300 for first trial of experiment.

42

Table 4.2 Characteristics of Sago effluent before and after treatment

using BakWira MP300 for second trial of experiment.

42

Table 4.3 Optical density of Spirulina platensis.

44

Table 4.4 Comparison of protein content of Spirulina platensis in

different medium for first trial of experiment.

60

Table 4.5 Comparison of protein content of Spirulina platensis in

different medium for second trial of experiment.

60

Page 19: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

1

CHAPTER 1

INTRODUCTION

1.1 General Overview

“Spirulina is a single-celled, unbranched, helicoidal, and filamentous blue-

green alga” (Belay et al, 1993). According to Kozlenko and Ronald (1998),

Spirulina has a soft cell wall complex which composed of sugars and protein; hence,

it is more easily to digest compare to others algae. Spirulina can be naturally found

in alkaline environment for survival. Proceeding studied performed by Rafiqul et al

(2005) proved that the optimal growth for Spirulina platensis is range at pH9-pH

10.5. Since the metabolism is affected by the high pH because pH is important in

solubility of carbon dioxide and minerals in medium. Thus, other algae are unable to

grow under high pH as Spirulina platensis does. (Berker, 1993 cited in Rafiqul et al,

2005).

According to James et al (1998), Spirulina algae grow ten times faster than

standard plants, and have 70% protein by dry weight. Therefore, Spirulina has

gained considerable popularity in the health food industry and increasingly as a

protein and vitamin supplement to aquaculture diets. The micro algae, Spirulina

seemed to be a good protein source and are comparable with the milk proteins

(Shelef and Soeder, 1980); further research revealed that it is a rich source of

vitamins, essential amino acids, minerals and β-carotene.

Page 20: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

2

Besides its nutritional value, Spirulina is also important in medical field. It

find its immense use as anti cancer formulations, diabetes control wound treatment

and to promote skin metabolism (Surekha Rani and Uma Bala, 2006). This is widely

exploited in the manufacturing of beauty products such as anti-wrinkling, anti-

pimple creams, facemasks and high protein shampoos. Moreover, it has been

commercially cultivated for its bluish green pigment, called phycocyanin, which can

be used as a natural colorant for food, cosmetics etc (Liang et al, 2004). Though

several thousand algal forms are available in nature, only a few are amenable to

technology. This is based on their ability to grow in synthetic media, case of

separation and stability to drying and importance of their chemical constituents and

finally the cost effectiveness of the whole system (Venkatraman et al, 1983).

With a deep concern over the probable global food shortage in the years to

come, underutilized plant resources are now being extensively tapped by scientists

throughout the world. In this regard, sago palm is gaining much importance as a crop

par excellence and a starch crop of the 21st century, due to its being an extremely

sustainable plant with an ability to thrive in most soil conditions. The importance

and development of industrial biotechnology processing has led to the utilisation of

microbial enzymes in various applications. One of the important enzymes is

amylase, which hydrolyses starch to glucose. In Malaysia, the use of sago starch has

been increasing, and it is presently being used for the production of glucose (Bujang

and Yusop, 2006). Sago starch represents an alternative cheap carbon source for

fermentation processes that is attractive out of both economic and geographical

considerations (Bujang et al, 2006).

Page 21: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

3

Sago palms (Metroxylon sagu) mostly grown in the state of Sarawak in

Malaysia. The sago industry not only contributed as an important source of starch

but also source of economical value in Malaysia. However, the generation of sago

wastewater from the starch extraction in factory brings problems to the environment

as rivers that nearby are contaminated by sago wastewater (Bujang and Yusop,

2006). Waterways are definitely an important natural habitat for aquatic species and

they also provide us an essential source of water for living requirements. Bujang et

al (1996) reported that more than 1,425 tons of sago effluent is produced per week

by a medium sized factory in Sarawak.

1.2 Objectives

From the overview above, the objectives of this study are:

• To maximize the growth of the Spirulina platensis.

• To recognize all the parameters affecting the growth of Spirulina platensis.

• To produce high amount of Spirulina economically.

Page 22: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

4

CHAPTER 2

LITERATURE REVIEW

2.1 Sago

2.1.1 Sago Starch

Sago palms occupy over three quarters of the peat land of Sarawak and it is

able to grow well and vigorously in swampy areas (Bujang and Yusop, 2006). “Sago

starch is mainly produced in the sated of Sarawak in Malaysia whereby it will be

extracted from Sago logs through several processing steps such as debarking,

pulping, starch extraction, dewatering, drying and packing” (Bujang and Yusop,

2005). Sago starch has a high commercial value and according to Bujang and Yusop

(2005), the export of sago starch is 61,000 tonnes annually and valued at US $9.15

million for the year 2005.This is because, each of the mother palm can produce many

suckers making replanting not necessary after the mother trunk is cut. Moreover,

Sago palm does not need much care and pesticide.

2.1.2 Sago Effluent

There are two form of the waste produced from the extraction of sago starch

where it can be in solid form or wastewater. As sago effluent is released into nearby

rivers and waterways without any treatment it consequently can cause pollution to

our environment from the extraction process of the sago effluent. However, pollution

Page 23: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

5

that occurs is because of the large of production of sago effluents daily but not

because of the chemical components of sago effluent (Bujang and Yusop, 2006).

“For every kilogram (dry weight) of starch produced, it has estimated that 20L of

wastewater is generated in the process” (Bujang et al, 1996). Moreover, according to

DOS (2002), Sarawak has over 30 large sago factories, thus enhancing the

possibility of water pollution from the sago industries.

Previous researches (Bujang et al, 2004) showed that sago effluent can be

aerobically treated with enzyme and microbial amendment such as Bakwira where

the mixed liquor is aerated before being released into the waterways with a reduction

in Chemical Oxygen Demand (COD) by 96% after 32 days.

A study was done by Phang et al (2000), which Spirulina cultivation in

digested sago starch factory wastewater. The objective of the study is to test the high

rate algal pond as a method for the combined treatment of the sago starch factory

wastewater and production of Spirulina for use as animal feed. This is regarding of

high rate alga pond offers a good system for the treatment of wastewater and

production of useful alga biomass (Laliberte et al, 1997). Wastewater arising from

the production of a sago starch has a high carbon to nitrogen ratio which improves

anaerobic fermentation in an up flow packed bed digester, the high carbon to

nitrogen ratio supported growth of Spirulina. Phang et al (2000) reported that sago

effluent contain high ratio in carbon to nitrogen by which this ratio can be increased

by carried fermentation in anaerobic digester. “This digested effluent with an average

C: N: P ration of 24: 0.14: 1 supported growth of Spirulina platensis with an average

Page 24: STATIC CULTURE OF Spirulina platensis IN MODIFIED … Culture of Spirulina platensis... · air sisa ini sebagai bagi penanaman alga Spirulina platensis dengan tujuan untuk ... dilaporkan

6

specific growth rate (µ) of 0.51 per day compared with the average µ of 0.54 per

day in the organic Kosaric medium in a high rate algal pond” (Phang et al, 2000).

2.2 Spirulina

2.2.1 Morphology and Characteristic

“Spirulina is a single-celled, unbranched, helicoidal, and filamentous blue-

green alga” (Belay et al, 1993). It is a cynobacterium that contains chlorophyll a,

carotenoids and some unusual accessory blue pigments and red pigments. Blue

pigments are phycobilins and phycocyanin while red pigment is phycoerythrin. Their

main photosynthetic pigment is phycocyanin, which is blue in colour. Spirulina are

photosynthetic and therefore autotrophic. So, light and temperature are the main

factors that influent the biomass production of Spirulina Platensis (Costa et al,

2004). Thus, Spirulina is a photosynthesizing cyanophyte (blue-green algae) that

grows vigorously in strong sunshine under high temperatures and highly alkaline

conditions. The name of ‘Spirulina’ is actually derived from Latin word which

means spiral in shape. This can be proven by referring to Figure 2.1, Figure 2.2,

Figure 2.3 and Figure 2.4 which is the structural analysis of Spirulina platensis that

had been done by using light microscope. It grows in water, can be harvested and

processed easily and has very high macro- and micro-nutrient contents. Spirulina

reproduce by binary fission (Sanchez et al, 2002).