fizik 4

Upload: nurhayati8860

Post on 01-Mar-2018

237 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 FIZIK 4

    1/48

    Material Science:The thermal and optical

  • 7/26/2019 FIZIK 4

    2/48

    Outline:

    The characteristic of thermal

    The characteristic of Optical

    Fakulti Kejuruteraan dan AlamBina 2

  • 7/26/2019 FIZIK 4

    3/48

    3

    How do materials respond to the application of heat?

    How do we define and measure... -- heat capacity? -- thermal expansion? -- thermal conductivity? -- thermal shoc resistance?

    How do the thermal properties of ceramics! metals!and polymers differ?

    Thermal Properties

    " #allister et al.! #hapter$%! pa&e '()

    *SS+,S TO /,SS...

  • 7/26/2019 FIZIK 4

    4/48

    4

    0uantitatively: The ener&y re1uired to produce a unit rise intemperature for one mole of a material.

    heat capacity234mol-56

    ener&y input 234mol6

    temperature chan&e 256

    Heat Capacit

    Two ways to measure heat capacity:C p : Heat capacity at constant pressure.

    C v : Heat capacity at constant volume.C p usually 7 C v

    Fmoll!Btu

    Kmol

    "

    dT dQ

    C

    The a8ility of a material to a8sor8 heat

  • 7/26/2019 FIZIK 4

    5/48

    #

    Heat capacity...

    -- increases with temperature -- for solids it reaches a limitin& value of 9 R

    rom atomic perspective: -- ,ner&y is stored as atomic vi8rations. -- s temperature increases! the avera&e ener&y of

    atomic vi8rations increases.

    $ependence o% Heat Capacit onTemperature

    Adapted %rom Fi&' ()'2*Callister & Rethwisch 8e '

    R + &as constant 3R + ,'3( "-mol.K

    C v + constant

    $e! e temperature/usuall less than T room 0

    T /K0

    D;

    ;

    C v

  • 7/26/2019 FIZIK 4

    6/48

    1

    Atomic i!rationstomic vi8rations are in the form of lattice waves

    or phonons

    dapted from i&. $%.$! Callister & Rethwisch 8e .

  • 7/26/2019 FIZIK 4

    7/48

    i n c r e a s

    i n &

    c p lass

    Metalsluminum

    SteelTun&sten>old

    $%)$( ;$$';$; ;

    %;;@(A$9($)(

    c p 2specific heat6: 234 &-56

    Material

    %@;''(@;

    peci%ic Heat: Comparison

    C p /heat capacit 0: /"-mol.K0

  • 7/26/2019 FIZIK 4

    8/48

    ,

    Thermal 56pansion

    Materials chan&e siBe when temperature ischan&ed

    l %inal l initial

    l initial l /T %inal T initial0

    linear coefficient of thermal expansion 2$45 or $4C#6

    T initial

    T %inal

    initial

    %inal

    T %inal

    > T initial

  • 7/26/2019 FIZIK 4

    9/48

    )

    Atomic Perspecti7e: Thermal 56pansion

    Adapted %rom Fi&' ()'3* Callister & Rethwisch 8e '

    symmetric curve: -- increase temperature!-- increase in interatomic

    separation-- thermal expansion

    Symmetric curve: -- increase temperature!-- no increase in interatomic

    separation-- no thermal expansion

  • 7/26/2019 FIZIK 4

    10/48

    (8

    Coe%%icient o% Thermal 56pansion :Comparison

    0:

  • 7/26/2019 FIZIK 4

    11/48

    ((

    Thermal 56pansion: 56ample

    ,x: copper wire $ m lon& is cooled from@; to -%C#. How much chan&e in len&th willit experience?

    (1'# 6 (8 1 / o C0 (9 nswer: or #u

    mm12m012.0

    )]C9(C40[)m15)](C/1(10x5.16[6

    0

    T

    /earran&in& ,1uation $%.98

  • 7/26/2019 FIZIK 4

    12/48

    (2

    The a8ility of a material to transport heat.

    temperature&radient

    thermal conductivity 234m-5-s6heat flux234m) -s6

    tomic perspective : tomic vi8rations and freeelectrons in

    hotter re&ions transport ener&y to cooler re&ions.

    T 2 T 2 T ( T (

    x ( x 2heat flux

    Thermal Conducti7it

    dx

    dT k q

    ourierDsEaw

  • 7/26/2019 FIZIK 4

    13/48

    (3

    Thermal Conducti7it :Comparison

    i n c r e a s

    i n &

    k

    =olymers=olypropylene ;.$)=olyethylene ;.@A-;. ;=olystyrene ;.$9Teflon ;.)

    vi8ration4rotationof chainmolecules

    #eramicsMa&nesia 2M&O6 9(

    lumina 2 l ) O 96 9%Soda-lime &lass $.'Silica 2cryst. SiO ) 6 $.@

    atomic vi8rations

    Metalsluminum )@'

    Steel )Tun&sten $'(>old 9$

    atomic vi8rationsand motion of freeelectrons

    k 2

  • 7/26/2019 FIZIK 4

    14/48

    (4

    Occur due to: -- restrained thermal expansion4contraction -- temperature &radients that lead todifferential

    dimensional chan&es

    Thermal tresses

    E /T 8 T f 0 E T Thermal stress

    Modulusof

    elasticityEinear coefficient of thermalexpansion from ta8le $%.$

  • 7/26/2019 FIZIK 4

    15/48

    56ample:

    Fakulti Kejuruteraan dan AlamBina

    8rass rod is to 8e used in an application

    re1uirin& its ends to 8e held ri&id. *f the rod isstress free at room temperature F ); o# 2)%9 56G!what is the maximum temperature to which therod may 8e heated without exceedin& acompressive stress of $') M=a? ssume amodulus of elasticity of $;; >=a for 8rass

    Modulusof

    elasticity

    Einear coefficient of thermalexpansion from ta8le $%.$! is); x $; -A 2o#6 -$

  • 7/26/2019 FIZIK 4

    16/48

    -- 8rass rod is stress-free at room temperature 2);C#6.

    -- *t is heated up! 8ut prevented from len&thenin&. -- t what temperature does the stress reach -$') M=a?

    56ample Pro!lem

    T 8

    8

    Solution:Ori&inal conditions

    roomthermal /T f T 8 0

    T f

    Step $: ssume unconstrained thermal expansion

    8

    Step ): #ompress specimen 8ac to ori&inal len&th

    8

    compress

    roomthermal

    (1

  • 7/26/2019 FIZIK 4

    17/48

    (

    56ample Pro!lem /cont'0 8

    The thermal stress can !e directlcalculated as

    E / compress 0

    E / thermal 0 E /T f T 8 0 E /T 8 T % 0

    ;otin& that compress + . thermal and su!stitutin& &i7es

    28 6 (8 .1 -

  • 7/26/2019 FIZIK 4

    18/48

    (,

    Occurs due to: nonuniform heatin&4coolin&

    ,x: ssume top thin layer is rapidly cooled from T 1 to T 2

    Tension develops at surface

    E /T ( T 2 0

    #ritical temperature differencefor fracture 2set s s f 6

    /T ( T 2 0%racture

    f E

    set e ual

    9 ar&e TSR =hen is lar&e

    f k

    E

    Thermal hock ?esistance

    Temperature difference thatcan 8e produced 8y coolin&:

    k T T

    rate uench0/ 2(

    rapid 1uench

    resists contraction

    tries to contract durin& coolin& T 2

    T 1

    /Auench rate0 %or %racture Thermal hock ?esistance / TSR 0

    f k E

    9

  • 7/26/2019 FIZIK 4

    19/48

    The thermal properties o% materials include: 9 Heat capacit : .. ener& re uired to increase a mole o% material ! a unit T .. ener& is stored as atomic 7i!rations9 Coe%%icient o% thermal e6pansion :

    .. the si e o% a material chan&es =ith a chan&e in temperatur .. pol mers ha7e the lar&est 7alues9 Thermal conducti7it : .. the a!ilit o% a material to transport heat .. metals ha7e the lar&est 7alues9 Thermal shock resistance : .. the a!ilit o% a material to !e rapidl cooled and not %racture .. is proportional to

    ()

    ummar

    f k E

  • 7/26/2019 FIZIK 4

    20/48

    28

    *SS+,S TO /,SS...

  • 7/26/2019 FIZIK 4

    21/48

    2(

    Optical PropertiesEi&ht has 8oth particulate and waveli e characteristics

    =hoton - a 1uantum unit of li&ht

    E h

    hc

    m-s0(86/3'887acuumainli&hto% speed

    0s"(8612'1/constantsPlanckD

    radiationo% %reAuencradiationo% =a7elen&th

    photonao% ener&

    ,

    34

    c

    h

    E

  • 7/26/2019 FIZIK 4

    22/48

    22

    ?e%raction

    medium0inli&hto% /7elocit7acuum0inli&hto% /7elocit

    v c

    Transmitted li&ht distorts electron clouds.

    The velocity of li&ht in a material is lower than in avacuum.

    n index ofrefraction

    Eno

    transmittedli&ht

    transmittedli&ht E

    electronclouddistorts

    .. Addin& lar&e ions /e'&'* lead 0 to &lass decreases the speed o% li&ht in the &lass'.. i&ht can !e !entG as it passes throu&h a

    transparent prism

    elected 7alues %rom Ta!le 2('(*Callister & Rethwisch 8e '

    T pical &lasses ca' ('# .('Plastics ('3 .('1P!O / ithar&e0 2'1$iamond 2'4(

    Material

  • 7/26/2019 FIZIK 4

    23/48

    23

    Total nternal ?e%lectance

    (

    2

    sin 2sin (

    2

    (

    2 I 1

    (

    c

    2

    9 i8er optic ca8les are clad in low n material so that li&htwill experience total internal reflectance and not escapefrom the optical fi8er.

    ( + incident an&le

    2 + re%racted an&le

    c + critical an&le

    c e6ists =hen 2 + )8J

    For ( c li&ht is internall re%lected

  • 7/26/2019 FIZIK 4

    24/48

    24

    56ample: $iamond inair 9

  • 7/26/2019 FIZIK 4

    25/48

    2#

    *ncident li&ht is reflected! a8sor8ed! scattered! and4or

    transmitted: I 8 I T I ! I R I S

    i&ht nteractions =ith olids

    Optical classification of materials:

    Adapted %rom Fi&' 2('(8*Callister "e ' /Fi&' 2('(8 is !

    "' Tel%ord* =ith specimenpreparation ! P'A' essin&'0

    sin&lecrystal

    polycrystalline dense

    polycrystalline porous

    TransparentTranslucent

    Opa1ue

    ncident: I 8

    A!sor!ed: I !Transmitted: I T

    cattered: I S

    ?e%lected : I R

  • 7/26/2019 FIZIK 4

    26/48

    Fakulti Kejuruteraan dan AlamBina

    istin&uish 8etween materials that areopa1ue! translucent! and transparent interms of their appearance and li&httransmittance

    #onceptchec :

  • 7/26/2019 FIZIK 4

    27/48

    2

    8sorption of photons 8y electron transitions:

    +nfilled electron states are adIacent to filled states Jear-surface electrons a8sor8 visi8le li&ht.

    Adapted %rom Fi&' 2('4/a0*Callister & Rethwisch 8e '

    Optical Properties o% @etals: A!sorption

    5ner& o% electron

    H n c i d e n t p h

    o t o n

    PlanckDs constant

    /1'13 6 (8.34

    "-s0

    %re 'o%incidentli&ht

    %illed states

    un%illed states

    E + h re uired

    o % e n e r

    & h

  • 7/26/2019 FIZIK 4

    28/48

    2,

    i&ht A!sorption

    e8 I I T

    The amount of li&ht a8sor8ed 8y a material is calculatedusin& KeerDs Eaw

    + a!sorption coe%%icient* cm .( + sample thickness* cm + incident li&ht intensit

    + transmitted li&ht intensit

    8 I

    T I

    ln8 I

    I T

    /earran&in& and ta in& the natural lo& of 8oth sides ofthe e1uation leads to

  • 7/26/2019 FIZIK 4

    29/48

    56ample 2('(

    Fakulti Kejuruteraan dan AlamBina

    The fraction of nonreflected li&ht that istransmitted throu&h a );;-mm thic ness of &lassis ;.%(. calculate the a8sorption coefficient ofthis material

    e8 I I T

    ln8

    I

    I T

  • 7/26/2019 FIZIK 4

    30/48

    38

    Adapted %rom Fi&' 2('4/!0*Callister & Rethwisch 8e '

    ?e%lection o% i&ht %or @etals

    ,lectron transition from an excited stateproduces a photon.

    photon emitted%rom metalsur%ace

    5ner& o% electron

    %illed states

    un%illed states

    5lectron transition

    I R conductin&G electron

  • 7/26/2019 FIZIK 4

    31/48

    3(

    /eflectivity + # R -# 8 is !et=een 8')8 and 8')#'@etal sur%aces appear shin@ost o% a!sor!ed li&ht is re%lected at the same=a7elen&th

    mall %raction o% li&ht ma !e a!sor!edColor o% re%lected li&ht depends on =a7elen&thdistri!ution

    56ample: The metals copper and &old a!sor!li&ht in 8lue and &reen + re%lected li&ht has&old color

    ?e%lection o% i&ht %or @etals/cotd0

  • 7/26/2019 FIZIK 4

    32/48

    ?e%lection

    Fakulti Kejuruteraan dan AlamBina

    I 0 intensities of incident8eamsI R *ntensities of reflected8eams

    n $ and n ) are the indices ofrefraction of the two media

    *f the li&ht is normal2or perpendicular6 to theinterface! then:

  • 7/26/2019 FIZIK 4

    33/48

    33

    ?e%lecti7it o% ;onmetalsor normal incidence and li&ht passin& into a

    solid havin& an index of refraction n :

    R re%lecti7it ((

    2

    (3'8(4('2(4('2

    2

    R

    re%lectedisli&hto% L(

    ,xample: or iamond n ).@$

  • 7/26/2019 FIZIK 4

    34/48

    Pro!lem:

    Fakulti Kejuruteraan dan AlamBina

    The index of refraction of corundum 2 l ) O 96 isanisotropic. Suppose that visi8le li&ht ispassin& from one &rain to another of differentcrystallo&raphic orientation and at normal

    incidence to the &rain 8oundary. #alculate thereflectivity at the 8oundary if the indices ofrefraction for the two &rains are $;.$) and (.)in the direction of li&ht propa&ation

  • 7/26/2019 FIZIK 4

    35/48

    Transmission

    Fakulti Kejuruteraan dan AlamBina

    =ro8lemLerive ,1uation

    )$.$%! startin& fromother expressions&iven in the chapter

    2e1. )$.$%6

    *ncident 8eam !I o

    /eflected8eam ! I R = I oR

    Transmitted8eam

  • 7/26/2019 FIZIK 4

    36/48

    31

    catterin& o% i&ht in Pol mers

    or hi&hly amorphous and pore-free polymersEittle or no scatterin&These materials are transparent

    Semicrystalline polymers

    ifferent indices of refraction for amorphous andcrystalline re&ionsScatterin& of li&ht at 8oundariesHi&hly crystalline polymers may 8e opa1ue

    ,xamples:=olystyrene 2amorphous6 clear and transparentEow-density polyethylene mil cartons opa1ue

  • 7/26/2019 FIZIK 4

    37/48

    3

    8sorption of li&ht of fre1uency 8y 8y electron transition

    occurs ifh n 7 E &ap

    *f E &ap N $.( e ! all li&ht a8sor8edP material is opa1ue 2e.&.! Si! >a s6 *f E &ap 7 9.$ e ! no li&ht a8sorptionP material is transparent and

    colorless 2e.&.! diamond6

    elected i&ht A!sorption inemiconductors

    *f $.( e N E &ap N 9.$ e ! partial li&ht a8sorptionP material is colored

    Adapted %rom Fi&' 2('#/a0*Callister & Rethwisch 8e '

    8lue li&ht: h 9.$ ered li&ht: h $.( e

    incident photonener&y h n

    ,ner&y of electron

    filled states

    unfilled states

    E &ap

    ,xamples of photonener&ies:

  • 7/26/2019 FIZIK 4

    38/48

    3,

    >e /min0

    hc

    E $ />e0

    /1'13 6 (8 34 " s0/3 6 (8 , m-s0

    /8'1 e 0/('18 6 (8()

    "-e 0

    Computations o% @inimumMa7elen&th A!sor!ed

    ;ote: the presence o% donor and-or acceptor states allo=s %orli&ht a!sorption at other =a7elen&ths'

    Solution:

    2a6 e! for which E g ;.A' e ?

    >e /min0 (',1 6 (8.1 m (',1 m

    286 /edoin& this computation for Si which has a 8and&ap

    of $.$ e i /min0 ('(3 m

  • 7/26/2019 FIZIK 4

    39/48

    3)

    uminescenceEuminescence reemission of li&ht 8y a material

    Material a8sor8s li&ht at one fre1uency and reemits it atanother 2lower6 fre1uency.Trapped 2donor4acceptor6 states introduced 8yimpurities4 defects

    acti7atorle7el

    alence !and

    Conduction !and

    trappedstatesE $

    E emissi%

    9 *f residence time in trapped stateis relatively lon& 27 $; -( s6-- phosphorescence

    9 or short residence times 2N $; -(

    s6-- fluorescence

    ,xample: Toys that &low in thedar . #har&e toys 8y exposin&

    them to li&ht. /eemission ofli&ht over timeQ

  • 7/26/2019 FIZIK 4

    40/48

    48

    Photoluminescence

    rc 8etween electrodes excites electrons in mercury atoms in thelamp to hi&her ener&y levels.

    s electron falls 8ac into their &round states! + li&ht is emittede.&.! suntan lamp

    *nside surface of tu8e lined with material that a8sor8s + andreemits visi8le li&ht

    ,.&.! #a $; ) = AO )@ with );R of - replaced 8y #l -

    dIust color 8y dopin& with metal cations S8 9 8lue

    Mn ) oran&e-red

    H& atom

    N li&ht

    electrode electrode

  • 7/26/2019 FIZIK 4

    41/48

    4(

    Cathodoluminescence+sed in cathode-ray tu8e devices 2e.&.! T s! computer monitors6

    *nside of tu8e is coated with a phosphor material=hosphor material 8om8arded with electrons,lectrons in phosphor atoms excited to hi&her state=hoton 2visi8le li&ht6 emitted as electrons drop 8ac into&round states#olor of emitted li&ht 2i.e.! photon wavelen&th6 depends oncomposition of phosphor

    nS 2 & U #l -6 8lue2 n! #d6 S 2#u l 9 6 &reen

    V ) O ) S 9R ,u red

    Jote: li&ht emitted is random in phase U directioni.e.! is noncoherent

  • 7/26/2019 FIZIK 4

    42/48

    42

    The A 5?

    The laser &enerates li&ht waves that are in phase2coherent6 and that travel parallel to one another

    E S,/Ei&ht

    mplification 8yS timulated, mission of / adiation

    Operation of laser involves a population inversion ofener&y states process

  • 7/26/2019 FIZIK 4

    43/48

    43

    Operation o% the ?u! aser WpumpX electrons in the lasin& material toexcited states

    e.&.! 8y flash lamp 2incoherent li&ht6.

    irect electron decay transitions Q produce incoheren

    Fi&' 2('(3* Callister & Rethwisch 8e '

  • 7/26/2019 FIZIK 4

    44/48

    44

    emiconductor aser Applications

    #ompact dis 2# 6 player +se red li&ht

    Hi&h resolution players+se 8lue li&htKlue li&ht is a shorter wavelen&th than red li&htso it produces hi&her stora&e density

    #ommunications usin& optical fi8ers

    i8ers often tuned to a specific fre1uencyKan s of semiconductor lasers are used as flashlamps to pump other lasers

  • 7/26/2019 FIZIK 4

    45/48

  • 7/26/2019 FIZIK 4

    46/48

    41

    Other Applications . olar Cells p-n Iunction: Operation:

    -- incident photon of li&ht produces elec.-holepair. -- typical potential of ;. produced across

    Iunction -- current increases w4li&ht intensity.

    Solar powered weather station:

    polycrystalline Sios Alamos Hi&h chool =eather

    station /photo courtesP'@' Anderson0

    n -type Si

    p -type Si p-n Iunction

    K-doped Si

    i

    i

    i iB

    hole

    P

    i

    i

    i i

    conductanceelectron

    =-doped Si

    .t pe i

    p .t pe i p junction

    li&ht

    E.

    EE E

    ...

    creation o%hole.electronpair

  • 7/26/2019 FIZIK 4

    47/48

    4

    Optical Fi!ers /cont'0

    fi8ers have diameters of $) m or lessplastic claddin& A; m thic is applied to fi8ers

    Fi&' 2('28* Callister &Rethwisch 8e '

  • 7/26/2019 FIZIK 4

    48/48

    Ei&ht radiation impin&in& on a material may 8e reflected

    from! a8sor8ed within! and4or transmitted throu&h Ei&ht transmission characteristics: -- transparent ! translucent ! opa1ue Optical properties of metals: -- opa1ue and hi&hly reflective due to electron ener&y 8and

    structure. Optical properties of non-Metals: -- for E gap N $.( e ! a8sorption of all wavelen&ths of li&htradiation

    -- for E gap 7 9.$ e ! no a8sorption of visi8le li&ht radiation -- for $.( e N E gap N 9.$ e ! a8sorption of some ran&e ofli&ht

    radiation wavelen&ths -- color determined 8y wavelen&th distri8ution of

    N@@A?