fha respirasi bu fani b03

Post on 06-Dec-2015

252 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

fha

TRANSCRIPT

FISIOLOGI RESPIRASI(PERTUKARAN GAS)

PROSES RESPIRASI

1. PERTUKARAN O2 DAN CO2 MELALUI PERMUKAAN ALAT RESPIRASI

2. DIFUSI O2 DAN CO2 ANTARA INSANG DAN DARAH

3. TRANSPORTASI O2 DAN CO2 DALAM DARAH & CAIRAN TUBUH KE & DARI SEL

4. PENGATURAN PERNAFASAN

RESPIRASI :

PROSES PRTUKARAN O2 DAN CO2 YANG TERJADI SECARA DIFUSI DARI INSANG KE KAPILER DAN KAPILR KE JARINGAN

• Fine sieve structure of gills very efficiently extracts O2 from water.

• Efficient O2 uptake is vital to fish because of its low water solubility.

• Solubility decreases with increased temperature & salinity

• Also, metabolic rate (demand for O2 ) increases as temperature rises.

Oxygen solubility determined by temperature

The Gill as a Respiratory Structure

• Buccal cavity can be opened and closed by opening and closing the mouth.

• Opercular cavity can be opened and closed by movements of the operculum.

• Ram ventilation• blood flows in an opposite direction to the flow of water,

thus maximizing oxygenation of blood– gill arches

» countercurrent flow

Structure of a Fish Gill

Fish• Because the gills are so VASCULAR and have a large

surface area, gas exchange can happen adequately

Respiratory Pump in Fish

• Fish need a more efficient method than terrestrial animals– Unidirectional system, water always moves one

way across gills and out operculum– No mixing of fresh and respired water,

maintaining highest possible PO2 at gill surface

Fish

• They breathe by pumping water through the mouth, over gill filaments and out through slits in the sides of the pharynx

• Double Pump System: by decreasing pressure in mouth, water is forced in; by increasing pressure in mouth, water is forced out through the opercula

Respiration Single, moveable operculum has allowed a pumping mechanism to

develop Continually forces water across gills even when fish is stationary

Respiration With mouth open,

opercles flare outward but remain in contact with body

Respiration

Water drawn into mouth Mouth closes and opercula open Opercula pulled in, forcing water over gills and out opercular

openings

Bony Fish Respiration

PERBANDINGAN SISTEN PERNAFASAN TL. KERAS DAN TL. RAWAN

PERBANDINGAN SISTEN PERNAFASAN TL. KERAS DAN TL. RAWAN

Sistem Pernapasan pada ikan bertulang rawan

• Insang ikan bertulang rawan tidak mempunyai tutup insang (operkulum)

misalnya pada ikan hiu.

• Masuk dan keluarnya udara dari rongga mulut, disebabkan oleh perubahan

tekanan pada rongga mulut yang ditimbulkan oleh perubahan volume

rongga mulut akibat gerakan naik turun rongga mulut.

• Bila dasar mulut bergerak ke bawah, volume rongga mulut bertambah,

sehingga tekanannya lebih kecil dari tekanan air di sekitarnya. Akibatnya,

air mengalir ke rongga mulut melalui celah mulut yang pada akhirnya

terjadilah proses inspirasi,

• Bila dasar mulut bergerak ke atas, volume rongga mulut mengecil,

tekanannya naik, celah mulut tertutup, sehingga air mengalir ke luar melalui

celah insang dan terjadilah proses ekspirasi CO2. Pada saat inilah terjadi

pertukaran gas O2 dan CO2.

Sistem Pernapasan pada ikan paru-paru ( Dipnoi )

• Pernapasan ikan paru-paru menyerupai pernapasan pada Amphibia.

• Selain mempunyai insang, ikan paru paru mempunyai satu atau

sepasang gelembung udara seperti paru-paru yang dapat digunakan

untuk membantu pernapasan, yaitu pulmosis.

• Pulmosis banyak dikelilingi pembuluh darah dan dihubungkan dengan

kerongkongan oleh duktus pneumatikus. Saluran ini merupakan jalan

masuk dan keluarnya udara dari mulut ke gelembung dan sebaliknya,

sekaligus memungkinkan terjadinya difusi udara ke kapiler darah.

Respiratory Pump in Fish

Buccal cavity

Opercular cavity

Dual Pump

Phase IExpansion of buccal and opercular cavities while opercula are closed

Phase IIMouth closes, opercula open, forcing water across gills

Ikan paru-paru hidup di rawa-rawa dan di sungai. Ikan ini mampu

bertahan hidup walaupun airnya kering dan insangnya tidak berfungsi,

karena ia bernapas menggunakan gelembung udara. Ada tiga jenis ikan

paru-paru di dunia, yaitu ikan paru-paru afrika, ikan paru paru amerika

selatan, dan ikan paru - paru queensland (Australia).

Ikan lele, gabus, gurami, dan betok memiliki alat bantu pernapasan

yang disebut labirin. Labirin merupakan perluasan ke atas dalam rongga

insang, dan membentuk lipatan-lipatan sehingga merupakan rongga-rongga

tidak teratur. Rongga labirin berfungsi menyimpan udara (O2), sehingga ikan-

ikan tersebut dapat bertahan hidup pada perairan yang kandungan oksigennya

rendah

How can fish remove 80 - 90% of O2 available from

water?

1) Short diffusion distance at gill site

2) Large surface area for diffusion at gill site

3) Counter current exchange of gases at gill site

4) Large volume of water passes over gills

• Blood flow through lamellae is from posterior to anterior(back to front).

• Water flow over lamellae is from anterior to posterior(front to back).

• Counter-current allows for diffusion from high O2 in water to low O2 in blood across entire length of lamella.

Countercurrant Countercurrant Close-up!Close-up!

When the blood and water flows in the same direction, theWhen the blood and water flows in the same direction, the co-current co-current systemsystem, it will , it will initially diffuses large amounts of oxygen but the efficiency reduces when the fluids initially diffuses large amounts of oxygen but the efficiency reduces when the fluids start to reach equilibrium. start to reach equilibrium.

In the counter-current system, equilibrium is never reached! Result: Oxygen flow is In the counter-current system, equilibrium is never reached! Result: Oxygen flow is always directed into the gills.always directed into the gills.

% O2 in gills

% O2 in water

% O2 in gills

% O2 in gills

% O2 in water

% O2 in water

% O2 in gills

Auxiliary Respiratory Structures

• Skin - diffusion of oxygen from water into dense network of capillaries in skin (eels), Thin skin (larval fish) supplies 50% of O2 needed.

• Swim bladder - vascularized physostomous swim bladders (gars)• Lungs - modified swim bladder (lungfishes)• Mouth - vascularized region in roof of mouth (electric eel,

mudsuckers)• Gut - vascularized stomach or intestinal wall (armored catfish,

loaches)

Swim Bladder

Many fish possess a swim bladder (Actinopterygii) Creates neutral buoyancy so fish can remain

motionless in water column

Not in sharks Depend on constant movement and fat deposits Swim bladder probably arose from paired lungs of primitive fish Lungs were present before swim bladder Paired lungs probably necessary because of alternating wet and dry

periods Supplemented gills Swim bladder present in pelagic bony fish Usually absent in benthic fish

Swim Bladder

Rete mirabile of a Queensland Groper, Epinephelus lanceolatus. © Geoff McPherson

Shark gill structure

• When fish are taken out of the water they suffocate, not because they can’t breathe the oxygen available in the air

• Their gill arches collapse and there is not enough surface area for diffusion to take place

• Some fish are designed to be exposed to the air for brief periods

Air Breathing Fish!? The walking catfish can go from pond to pond

as long as their gills stay wet

Lungs

Some fish use lungs to breath Pouches branching off esophagus Breathe air at surface or remain out of water

Sekian…

top related