abstrak - eprints.utm.myeprints.utm.my/id/eprint/30637/14/saeedjameipfkm2012.pdf · keupayaan...

47
vi ABSTRAK Pesawat “wing-in-ground effect” (WIG) boleh dianggap sebagai teknologi baru dalam pengangkutan marin. Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk pengangkutan marin yang lain. Prestasi pesawat WIG bergantung kepada konfigurasi pesawat dan sangat dipengaruhi oleh rekabentuk sayap. Dalam tesis ini, ciri-ciri baru aerodinamik sayap dikaji dengan menggunakan kaedah berangka dan juga secara ujian terowong angin. Sayap pesawat telah dibahagikan kepada tiga bahagian utama, di mana satu sayap segi empat tepat di tengah-tengah dan dua sayap tirus songsang dengan sudut dwisatah negatif di sisi. Aerofoil jenis NACA6409 telah dipilih sebagai kajian kes ke atas rentas sayap. Pengiraan dinamik bendalir dalam tiga dimensi telah digunakan sebagai model berangka. Persamaan keterusan dan juga persamaan momentum bagi aliran tidak boleh mampat telah digunakan dalam simulasi. Model aliran gelora yang berbeza telah digunakan untuk simulasi aliran di seluruh permukaan sayap. Untuk tujuan pengesahan, ujikaji menggunakan terowong angin telah dijalankan, dan juga perbandingan dengan hasil ujikaji dari penyelidik lain yang telah diterbitkan untuk memastikan hasil simulasi berangka bertepatan dengan mereka. Ujikaji telah dijalankan di terowong angin berkelajuan rendah, Universiti Teknologi Malaysia, dan daya aerodinamik dan momen telah diukur dengan menggunakan sel beban paksi berbilang JR3. Pekali utama aerodinamik bagi kedua-dua jenis sayap seperti pekali daya angkat, pekali seretan, nisbah daya angkat, dan daya seret dikaji bagi jarak dari dataran dan sudut lancaran yang berbeza. Didapati bahawa, pada jarak dari dataran yang rendah, pekali aerodinamik pada sayap kompaun dapat meningkatkan kecekapan sayap pesawat. Kesan parameter reka bentuk seperti saiz rentang sayap tengah dan sudut dwisatah juga telah dikaji bagi memoptimumkan sayap kompaun. Bagi sayap kompaun, apabila rentang bahagian tengah sayap dikurangkan, nisbah daya angkat terhadap daya seret meningkat dengan jelas. Sayap kompaun juga dapat menjimatkan penggunaan bahan api dan secara langsung mengurangkan pencemaran dengan pelepasan gas CO 2 yang lebih rendah. Reka bentuk sayap kompaun ini boleh digunakan untuk meningkatkan kelebihan kesan dataran bagi pesawat WIG generasi baru.

Upload: others

Post on 29-Aug-2019

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

vi

ABSTRAK

Pesawat “wing-in-ground effect” (WIG) boleh dianggap sebagai teknologi baru

dalam pengangkutan marin. Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan

berbanding WIG dengan reka bentuk pengangkutan marin yang lain. Prestasi pesawat WIG

bergantung kepada konfigurasi pesawat dan sangat dipengaruhi oleh rekabentuk sayap.

Dalam tesis ini, ciri-ciri baru aerodinamik sayap dikaji dengan menggunakan kaedah

berangka dan juga secara ujian terowong angin. Sayap pesawat telah dibahagikan kepada tiga

bahagian utama, di mana satu sayap segi empat tepat di tengah-tengah dan dua sayap tirus

songsang dengan sudut dwisatah negatif di sisi. Aerofoil jenis NACA6409 telah dipilih

sebagai kajian kes ke atas rentas sayap. Pengiraan dinamik bendalir dalam tiga dimensi telah

digunakan sebagai model berangka. Persamaan keterusan dan juga persamaan momentum

bagi aliran tidak boleh mampat telah digunakan dalam simulasi. Model aliran gelora yang

berbeza telah digunakan untuk simulasi aliran di seluruh permukaan sayap. Untuk tujuan

pengesahan, ujikaji menggunakan terowong angin telah dijalankan, dan juga perbandingan

dengan hasil ujikaji dari penyelidik lain yang telah diterbitkan untuk memastikan hasil

simulasi berangka bertepatan dengan mereka. Ujikaji telah dijalankan di terowong angin

berkelajuan rendah, Universiti Teknologi Malaysia, dan daya aerodinamik dan momen telah

diukur dengan menggunakan sel beban paksi berbilang JR3. Pekali utama aerodinamik bagi

kedua-dua jenis sayap seperti pekali daya angkat, pekali seretan, nisbah daya angkat, dan

daya seret dikaji bagi jarak dari dataran dan sudut lancaran yang berbeza. Didapati bahawa,

pada jarak dari dataran yang rendah, pekali aerodinamik pada sayap kompaun dapat

meningkatkan kecekapan sayap pesawat. Kesan parameter reka bentuk seperti saiz rentang

sayap tengah dan sudut dwisatah juga telah dikaji bagi memoptimumkan sayap kompaun.

Bagi sayap kompaun, apabila rentang bahagian tengah sayap dikurangkan, nisbah daya

angkat terhadap daya seret meningkat dengan jelas. Sayap kompaun juga dapat menjimatkan

penggunaan bahan api dan secara langsung mengurangkan pencemaran dengan pelepasan gas

CO2 yang lebih rendah. Reka bentuk sayap kompaun ini boleh digunakan untuk

meningkatkan kelebihan kesan dataran bagi pesawat WIG generasi baru.

Page 2: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

vii

TABLE OF CONTENTS CHAPTER TITLE

PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xiii

LIST OF FIGURES xviii

LIST OF ABBREVIATIONS xxvii

LIST OF SYMBOLS xxix

LIST OF APPENDICES

xxxii

1 INTRODUCTION

1.1 Background

1.2 Statement of problem

1.3 Research objectives

1.4 Scope of study

1.5 Significance of the study

1.6 Organisation of thesis

1

1

3

4

4

6

6

2 LITERATURE SURVEY

2.1 Introduction

2.1.1 Span dominated ground effect

2.1.2 Chord dominated ground effect

2.2 Literature review

9

9

10

10

11

Page 3: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

viii

2.2.1 Aerodynamic characteristic of wing near

ground

2.2.2 Influence of wing configuration on

aerodynamic performance in ground effect

2.2.3 Flow separation and wake region behind wing

near ground

2.2.4 Aerodynamic characteristics of WIG craft on

free surface

2.2.5 Optimal design of wing in ground effect

2.2.6 Aerodynamic characteristic of a multi-element

wing near ground

2.2.7 Effect of power ram engine on aerodynamic

performance of WIG craft

2.2.8 Aerodynamics of wing via viscous ground

effect in ground proximity

2.2.9 Fuel consumption and environmental impact of

craft

11

18

20

28

30

32

33

37

39

3 METHODOLOGY

3.1 Introduction

3.2 Computational methodology

3.2.1 General

3.2.2 CFD simulation

3.2.2.1 Pre-processing

3.2.2.2 Solver

3.2.2.3 Post-processing

3.2.3 Mathematical model

3.2.4 Turbulent models

3.2.4.1 Standard k-ε turbulent model

3.2.4.2 k-ω SST turbulent model

3.2.4.3 Realizable k-ε turbulent model

3.2.5 Boundary layer at near-wall

3.2.6 Standard wall functions

42

42

43

43

43

43

44

44

45

45

45

49

50

51

53

Page 4: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

ix

3.2.7 Pressure-Based Solver

3.2.8 Shape of linear formulation

3.2.9 Boundary conditions

3.2.9.1 Wall boundary condition

3.2.9.2 Velocity -inlet boundary condition

3.2.9.3 Pressure outlet boundary condition

3.2.9.4 Symmetry boundary conditions

3.2.10 Solutions controls 3.2.10.1 Discretisation

3.2.10.2 Under-relaxation factors

3.2.10.3 Pressure-Velocity Coupling Method

3.2.11 Meshing

3.2.12 Post-processing

3.3 Experimental methodology

3.3.1 Wind tunnel

3.3.1.1 Theory of operation

3.3.1.2 How does wind tunnel work?

3.3.2 UTM Wind tunnel

3.3.2.1 Introduction to UTM Wind Tunnel

facility

3.3.2.2 Test section

3.3.2.3 Fan motor and drive system

3.3.2.4 Settling chamber

3.3.2.5 Balance System

3.3.2.6 Facility control system

3.3.3 Wing Model

3.3.4 Experimental procedures and set-up

54

56

57

57

58

58

59

59

59

60

60

61

62

63

63

63

63

64

64

65

66

67

67

68

68

70

4

NUMERICAL AERODYNAMIC

CHARACTERISTICS OF A NEW COMPOUND

WING INTRODUCTION

4.1 General

4.2 CFD Numerical study

73

73

73

Page 5: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

x

4.3 Validation of CFD simulation

4.3.1 Lift Coefficient (CL)

4.3.2 Drag Coefficient (CD)

4.3.3 Lift to drag ratio (L/D)

4.4 Result and discussion

4.4.1 Lift Coefficient (CL)

4.4.2 Drag Coefficient (CD)

4.4.3 Lift to drag ratio (L/D)

78

78

80

82

84

84

86

88

5 EXPERIMENTAL AERODYNAMIC

CHARACTERISTICS OF A NEW COMPOUND

WING

5.1 General

5.2 Repeatability of experiment

5.3 Principal aerodynamic forces of compound and

rectangular wing

5.3.1 Lift coefficient

5.3.2 Drag coefficient

5.3.3 Moment coefficient

5.4 Comparison of aerodynamic coefficients between

compound and rectangular wings

5.4.1 Lift coefficient

5.4.2 Drag coefficient

5.4.3 Lift to drag ratio

5.4.4 Drag polar

5.4.5 Moment coefficient

5.4.6 Centre of pressure

5.5 Tendency of numerical and experimental simulations

91

91

92

92

93

94

95

96

96

98

100

102

104

106

108

6 DESIGN PARAMETRIC STUDY OF

CONFIGURATION OF COMPOUND WING

6.1 General

6.2 CFD Numerical study

6.3 Validation of CFD simulation

110

110

110

114

Page 6: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xi

6.3.1 Lift Coefficient (CL)

6.3.2 Drag Coefficient (CD)

6.3.3 Lift to drag ratio (L/D)

6.4 Design parametric study of compound wing

6.4.1 Span size

6.4.1.1 Pressure and velocity contours

6.4.1.2 Lift coefficient

6.4.1.3 Drag coefficient

6.4.1.4 Lift to drag ratio

6.4.1.5 Moment coefficient and centre of

pressure

6.4.2 Anhedral angle (a)

6.4.2.1 Pressure and velocity contours

6.4.2.2 Lift coefficient

6.4.2.3 Drag coefficient

6.4.2.4 Lift to drag ratio

6.4.2.5 Moment coefficient and centre of

pressure

6.4.3 Taper ratio (λ)

6.4.3.1 Pressure and velocity contours

6.4.3.2 Lift coefficient

6.4.3.3 Drag coefficient

6.4.3.4 Lift to drag ratio

6.4.3.5 Moment coefficient and centre of

pressure

6.4.4 Ground clearance

6.4.4.1 Pressure and velocity contours

6.4.4.2 Lift coefficient

6.4.4.3 Drag coefficient

6.4.4.4 Lift to drag ratio

6.4.4.5 Moment coefficient and centre of

pressure

6.4.5 Reynolds number

115

116

117

118

118

118

122

124

125

126

129

129

133

136

137

135

139

139

142

143

145

146

148

148

151

153

154

155

158

Page 7: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xii

6.4.5.1 Pressure and velocity contours

6.4.5.2 Lift coefficient

6.4.5.3 Drag coefficient

6.4.5.4 Lift to drag ratio

6.4.5.5 Moment coefficient and centre of

pressure

6.4.6 Stall angle

6.4.6.1 Pressure and velocity contours

6.4.6.2 Dropping lifts and stall angle

6.4.7 Comparison of the affect of design parameters

6.4.7.1 Lift coefficient

6.4.7.2 Drag coefficient

6.4.7.3 Lift to drag ratio

6.4.7.4 Moment coefficient and centre of

pressure

6.5 Fuel consumption and CO2 emission

158

160

162

163

165

167

167

168

169

169

170

172

173

175

7 CONCLUSION AND FUTURE WORK

7.1 Conclusion

7.2 Recommendation for Further Work

178

178

181

REFERENCES 182

Appendices A-C 194-213

Page 8: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Mesh elements 61

3.2 Type of meshing scheme. 61

3.3 The load capacities of JR3 sensor 67

3.4 Principle dimension of wings 69

4.1 Principle dimension of wings. 76

4.2 Lift coefficient versus angle of attack for h/c = 0.1 and

AR = 1 based on experimental and numerical result 79

4.3 Lift coefficient versus ground clearance for angle of attack

2º and AR = 1 based on experimental and numerical result 79

4.4 Drag coefficient versus angle of attack for h/c = 0.1and

AR = 1 based on experimental and numerical result 81

4.5 Drag coefficient versus ground clearance for angle of attack

2º and AR = 1 based on experimental and numerical result 81

4.6 Lift to drag ratio versus angle of attack for h/c = 0.1and

AR = 1 based on experimental and numerical result 83

4.7 Lift to drag ratio versus ground clearance for angle of attack

2º and AR = 1 based on experimental and numerical result 83

4.8 Lift coefficient versus angle of attack with h/c = 0.1and

AR = 1.25 for rectangular and compound wing 85

4.9 Lift coefficient versus ground clearance with angle of attack

2º and AR = 1.25 for rectangular and compound wing 85

4.10 Drag coefficient versus angle of attack with h/c = 0.1and

AR = 1.25 for rectangular and compound wing 87

4.11 Drag coefficient versus ground clearance with angle of

attack 2º and AR = 1.25 for rectangular and compound wing 87

Page 9: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xiv

4.12 Lift to drag ratio versus angle of attack with h/c = 0.1 and

AR = 1.25 for rectangular and compound wing 89

4.13 Lift to drag ratio versus ground clearance with angle of

attack 2º and AR = 1.25 for rectangular and compound wing 89

5.1 Reynolds number 96

6.1 Principle dimension of rectangular wing and compound

wings with different middle wing span 112

6.2 Principle dimension of compound wings with different

anhedral angle 112

6.3 Principle dimension of compound wings with different taper

ratio 113

6.4 Lift coefficient versus Angle of attack with ground

clearance (h/c) of 0.15 and AR = 1.25 for experimental and

present numerical result 115

6.5 Drag coefficient versus Angle of attack with ground

clearance (h/c) of 0.15 and AR = 1.25 for experimental and

present numerical result 116

6.6 Lift to drag ratio versus Angle of attack with ground

clearance (h/c) of 0.15 and AR = 1.25 for experimental and

present numerical result 117

6.7 Lift coefficient and increment (In) versus angle of attack

(A) at ground clearance (h/c) of 0.15 for rectangular (R) and

compound wings (C) 123

6.8 Drag coefficient and reduction (Re) versus angle of attack

(A) at ground clearance (h/c) of 0.15 for rectangular (R) and

compound wings 124

6.9 Lift to drag ratio and increment (In) versus angle of attack

(A) at ground clearance (h/c) of 0.15 for rectangular (R) and

compound wings (C) 126

6.10 Moment coefficient and reduction (Re) versus angle of

attack (A) at ground clearance (h/c) of 0.15 for rectangular

(R) and compound wings (C)

127

Page 10: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xv

6.11 Centre of pressure coefficient and reduction (Re) versus

angle of attack (A) at ground clearance (h/c) of 0.15 for

rectangular (R) and compound wings (C) 128

6.12 Lift coefficient and its increment versus anhedral angle at

ground clearance (h/c) of 0.15 and angle of attack of 4° 134

6.13 Drag coefficient and its reduction versus anhedral angle at

ground clearance (h/c) of 0.15 and angle of attack of 4° 135

6.14 Lift to drag ratio and its increment versus anhedral angle at

ground clearance (h/c) of 0.15 and angle of attack of 4° 136

6.15 Moment coefficient and its increment versus anhedral angle

at ground clearance (h/c) of 0.15 and angle of attack of 4° 138

6.16 Centre of pressure and its reduction versus anhedral angle at

ground clearance (h/c) of 0.15 and angle of attack of 4° 139

6.17 Lift coefficient and its reduction versus taper ratio (TR) at

ground clearance (h/c) of 0.15 and angle of attack of 4° 143

6.18 Drag coefficient and its reduction versus taper ratio at

ground clearance (h/c) of 0.15 and angle of attack of 4° 144

6.19 Lift to drag ratio and its increment versus taper ratio at

ground clearance (h/c) of 0.15 and angle of attack of 4° 145

6.20 Moment coefficient and its reduction versus taper ratio at

ground clearance (h/c) of 0.15 and angle of attack of 4° 147

6.21 Centre of pressure and its reduction versus taper ratio at

ground clearance (h/c) of 0.15 and angle of attack of 4° 148

6.22 Lift coefficient and its increment versus ground clearance at

angle of attack of 4º for rectangular wing and compound

wing-1 152

6.23 Drag coefficient and its reduction versus ground clearance

at angle of attack of 4º for rectangular wing and compound

wing-1 153

6.24. Lift to drag ratio and its increment versus ground clearance

at angle of attack of 4º for rectangular wing and compound

wing-1

155

Page 11: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xvi

6.25. Moment coefficient and its reduction versus ground

clearance at angle of attack of 4º for rectangular wing and

compound wing-1 156

6.26 Centre of pressure and its reduction versus ground clearance

at angle of attack of 4º for rectangular wing and compound

wing-1 157

6.27 Lift coefficient and its increment versus Reynolds number

at ground clearance of 0.15 and angle of attack of 4º for

rectangular wing and compound wing-4 161

6.28 Drag coefficient and its reduction versus Reynolds number

at ground clearance of 0.15 and angle of attack of 2º for

rectangular wing and compound wing-4 163

6.29 Lift to drag ratio and its increment versus Reynolds number

at ground clearance of 0.15 and angle of attack of 2º for

rectangular wing and compound wing-4 164

6.30 Moment coefficient and its reduction versus Reynolds

number at ground clearance of 0.15 and angle of attack of 2º

for rectangular wing and compound wing-4 165

6.31 Centre of pressure and its reduction versus Reynolds

number at ground clearance of 0.15 and angle of attack of 2º

for rectangular wing and compound wing-4 166

6.32 Lift coefficient and its increment versus angle of attack at

ground clearance of 0.15 for compound wing-1 and

compound wing-7 170

6.33 Drag coefficient and its increment versus angle of attack at

ground clearance of 0.15 for compound wing-1 and

compound wing-7 171

6.34 Lift to drag ratio and its increment versus angle of attack at

ground clearance of 0.15 for compound wing-1 and

compound wing-7 172

6.35. Moment coefficient and its reduction versus angle of attack

at ground clearance of 0.15 for compound wing-1 and

compound wing-7 174

Page 12: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xvii

6.36 Centre of pressure and its reduction versus angle of attack at

ground clearance of 0.15 for compound wing-1 and

compound wing-7 175

6.37 Rate of fuel consumption and CO2 emission of wings versus

angle of attack for h/c = 0.1 and AR = 1.25 176

6.38 Rate of fuel consumption and CO2 emission of rectangular

wing and compound wing-1 versus ground clearance for

angle of attack of 4° and AR = 1.25 177

Page 13: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xviii

LIST OF FIGURES FIGURE NO. TITLE PAGE

2.1 Aerodynamic coefficient of front wing versus angle of

attack (Kieffer et al., 2006)

27

2.2 WIG craft on wavy surface with course angle β(Yang et

al., 2010b) 28

2.3 Periodic aerodynamic coefficients (Yang et al., 2010b) 29

2.4 Cyclic roll moment (Yang et al., 2010b) 30

2.5 Multi-element wing (Xuguo et al., 2009) 32

2.6 Aerodynamic coefficients versus ground clearance (Xuguo

et al., 2009) 33

2.7 Aerodynamic forces versus ground clearance (h/c) for

different relative jet velocity (vjet/v∞), and angle of attack

θ° =0 (Yang and Yang, 2010) 35

2.8 Aerodynamic forces versus angle of attack (θ°) for

different relative jet velocity (vjet/v∞), and h/c=0. 3 (Yang

and Yang, 2010)

35

2.9 Aerodynamic forces versus nozzle angle (θ°) for different

ground clearance (h/c) (Yang and Yang, 2011)

36

2.10 Power-augmented ram vehicle (Matveev, 2008) 36

2.11 Amphibious craft (Sitek and Yang, 2011) 37

2.12

The pollutant emissions for several years (Kurniawan and

Khardi, 2011) 41

3.1 Compound wing 42

3.2 Near-wall modelling 53

3.3 Pressure-based solver, (a) segregated algorithm,

(b) coupled algorithm 56

Page 14: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xix

3.4 Mesh element and type of meshing near region from wing 62

3.5 Meshing of whole region around the wing 62

3.6 Universiti Teknologi Malaysia low speed wind tunnel

(Mansor, 2009) 65

3.7 The test section and a 6-components balance/load-cell to

measure aerodynamic forces and moment in 3 dimensional

loads (Mansor, 2009) 66

3.8 Power consumption of motor versus wind speed (Mansor,

2009) 66

3.9 JR3 sensor NO. 50M31A3-125 (JR3, Inc) 67

3.10 Facility of control room (Mansor, 2009) 68

3.11 Types of wing configuration, (a) Rectangular wing, (b)

Compound wing 69

3.12 Sketch of (a) Rectangular wing, (b) Compound wing 69

3.13 Experimental setup in low speed wind tunnel of Universiti

Teknologi Malaysia 70

3.14 Wing mounting by one strut 71

3.15 Supporting system 72

3.16 Monitoring force measurements 72

4.1 Types of wing configuration, (a) Rectangular wing, (b)

Compound wing, (c) Explanation of compound wing 75

4.2 Grid independency of numerical simulation, (a) Lift

coefficient, (b) Drag coefficient

77

4. 3 Meshing of rectangular wing 77

4. 4 Meshing of compound wing 78

4.5 Lift coefficient versus angle of attack for h/c = 0.1 and

AR = 1

79

4.6 Lift coefficient versus ground clearance for angle of

attack 2º and AR = 1

80

4.7 Drag coefficient versus angle of attack for h/c = 0.1 and

AR = 1 81

4.8 Drag coefficient versus ground clearance for angle of

attack 2º and AR= 1

82

Page 15: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xx

4.9 Lift to drag ratio versus angle of attack for h/c = 0.1 and

AR = 1 83

4.10 Lift to drag ratio versus ground clearance for angle of

attack 2º and AR=1 84

4.11 Lift coefficient versus angle of attack for h/c = 0.1 and

AR = 1.25 86

4.12 Lift coefficient versus ground clearance for angle of attack

2º and AR = 1.25 86

4.13 Drag coefficient versus angle of attack for h/c = 0.1 and

AR = 1.25 88

4.14 Drag coefficient versus ground clearance for angle of

attack 2º and AR = 1.25

88

4.15 Lift to drag ratio versus angle of attack for h/c = 0.1 and

AR = 1.25 90

4.16 Lift to drag ratio versus ground clearance for angle of

attack 2º and AR = 1.25 90

5.1 Mounting of compound wing inside UTM-LST 91

5.2 Repeatability of experimental test (a) Lift coefficient and

(b) drag coefficient 92

5.3 Lift coefficient versus ground clearance (h/c) at different

angle of attack (AOA) and air speed for a) rectangular

wing and b) compound wing 93

5.4 Drag coefficient versus ground clearance (h/c) at

different angle (AOA) of attack and air speed for a)

rectangular wing and b) compound wing 94

5.5 Moment coefficient versus ground clearance (h/c) at

different angle of attack (AOA) and air speed for a)

rectangular wing and b) compound wing 95

5.6 Lift coefficient of rectangular and compound wing versus

angle of attack (α°) for different ground clearance (h/c)

and Reynolds number (Re) 98

Page 16: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxi

5.7 Drag coefficient of rectangular and compound wing versus

angle of attack (α°) for different ground clearance (h/c)

and Reynolds number (Re)

100

5.8 Lift to drag ratio of rectangular and compound wing versus

angle of attack (α°) for different ground clearance (h/c)

and Reynolds number (Re) 102

5.9 Drag polar of rectangular and compound wing for different

ground clearance (h/c) and Reynolds number (Re) 104

5.10 Moment coefficient of rectangular and compound wing

versus angle of attack (α°) for different ground clearance

(h/c) and Reynolds number (Re) 106

5.11 Center of pressure of rectangular and compound wing

versus angle of attack (α°) for different ground clearance

(h/c) and Reynolds number (Re) 108

5.12 Comparison of experimental and numerical simulation

results at ground clearance of 0.15, (a) Lift coefficient,

(b) Drag coefficient, (c) Lift to drag ratio 109

6.1 Types of wing configuration, (a) Rectangular wing, (b)

Compound wing, (c) Explanation of the compound wing 111

6.2 Grid independency of numerical simulation, (a) Lift

coefficient, (b) Drag coefficient 113

6.3 Meshing of rectangular wing 114

6.4 Meshing of compound wing 114

6.5 Lift coefficient (CL) versus angle of attack for ground

clearance (h/c) of 0.15 and AR = 1.25 116

6.6. Drag coefficient (CD) versus angle of attack for ground

clearance (h/c) of 0.15 and AR = 1.25 117

6.7 Lift to drag ratio (L/D) versus angle of attack for ground

clearance (h/c) of 0.15 and AR = 1.25 118

6.8 Pressure coefficient contour on upper and lower surface of

wings at ground clearance of 0.15 and angle of attack of 8° 119

6.9 Pressure coefficient contour on the middle span of wings

at ground clearance of 0.15 and angle of attack of 8° 120

Page 17: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxii

6.10 Velocity vector colored by pressure coefficient on the

middle span of wings at ground clearance of 0.15 and

angle of attack of 8° 120

6.11 Velocity contour (m/s) on middle span of wings at

ground clearance of 0.15 and angle of attack of 8° 121

6.12 Velocity vector colored by velocity magnitude (m/s) on

the middle span of wings at ground clearance of 0.15 and

angle of attack of 8° 121

6.13 Pressure coefficient distribution near wingtip of wings at

ground clearance of 0.15 and angle of attack of 8° 122

6.14 Lift coefficient (CL) versus angle of attack at ground

clearance (h/c) of 0.15 123

6.15 Drag coefficient (CD) versus angle of attack at ground

clearance (h/c) of 0.15 125

6.16 Lift to drag ratio (L/D) versus angle of attack at ground

clearance (h/c) of 0.15 126

6.17 Moment coefficient (CM) versus angle of attack at ground

clearance (h/c) of 0.15 128

6.18 Centre of pressure (XCP/c) versus angle of attack at ground

clearance (h/c) of 0.15 129

6.19 Pressure coefficient contour on upper and lower surface of

compound wings at ground clearance of 0.15 and angle of

attack of 4° 130

6.20 Pressure coefficient contour on the middle span of

compound wings at ground clearance of 0.15 and angle

of attack of 4° 131

6.21 Velocity vector colored by pressure coefficient on the

middle span of compound wings at ground clearance of

0.15 and angle of attack of 4° 131

6.22 Velocity contour (m/s) on the middle span of compound

wings at ground clearance of 4.15 and angle of attack of 4°

132

Page 18: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxiii

6.23 Velocity vector colored by velocity magnitude (m/s) on the

middle span of compound wings at ground clearance of

0.15 and angle of attack of 4°

132

6.24 Pressure coefficient distribution near wingtip of compound

wings at ground clearance of 0.15 and angle of attack of 4° 133

6.25 Lift coefficient (CL) versus anhedral angle at ground

clearance of 0.15 and angle of attack of 4° 134

6.26 Drag coefficient (CD) versus anhedral angle at ground

clearance of 0.15 and angle of attack of 4° 135

6.27 Lift to drag ratio (L/D) versus anhedral angle at ground

clearance of 0.15 and angle of attack of 4° 137

6.28 Moment coefficient (CM) versus anhedral angle at

ground clearance of 0.15 and angle of attack of 4° 138

6.29 Centre of pressure (XCP/c) versus anhedral angle at ground

clearance of 0.15 and angle of attack of 4°

139

6.30 Pressure coefficient contour on upper and lower surface of

compound wings at ground clearance of 0.15 and angle of

attack of 4° 140

6.31 Pressure coefficient contour on the middle span of

compound wings at ground clearance of 0.15 and angle of

attack of 4° 141

6.32 Velocity contour (m/s) on the middle span of compound

wings at ground clearance of 0.15 and angle of attack of 4° 141

6.33 Pressure coefficient distribution near wingtip of compound

wings at ground clearance of 0.15 and angle of attack of 4° 142

6.34 Lift coefficient (CL) versus taper ratio at ground clearance

of 0.15 and angle of attack of 4° 143

6.35 Drag coefficient (CD) versus taper ratio at ground

clearance of 0.15 and angle of attack of 4° 144

6.36 Lift to drag ratio (L/D) versus taper ratio at ground

clearance of 0.15 and angle of attack of 4° 146

6.37 Moment coefficient (CM) versus taper ratio at ground

clearance of 0.15 and angle of attack of 4°

147

Page 19: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxiv

6.38 Centre of pressure (XCP/c) versus taper ratio at ground

clearance of 0.15 and angle of attack of 4° 148

6.39 Pressure coefficient contour on upper and lower surface

of compound wing-1 at ground clearances of 0.1 and 0.4

with angle of attack of 4° 149

6.40 Pressure coefficient contour on the middle span of

compound wing-1 at ground clearances of 0.1 and 0.4 with

angle of attack of 4° 150

6.41 Velocity vector colored by pressure coefficient on the

middle span of compound wing-1 at ground clearances of

0.1 and 0.4 with angle of attack of 4° 150

6.42 Velocity contour (m/s) on the middle span of compound

wing-1 at ground clearances of 0.1 and 0.4 with angle of

attack of 4° 150

6.43 Velocity vector colored by velocity magnitude (m/s) on

the middle span of compound wing-1 at ground clearances

of 0.1 and 0.4 with angle of attack of 4° 151

6.44 Pressure coefficient distribution near wingtip of compound

wing-1 at ground clearances of 0.1and 0.4 with angle of

attack of 4° 151

6.45 Lift coefficient (CL) versus ground clearance at angle of

attack of 4°

152

6.46 Drag coefficient (CD) versus ground clearance at angle

of attack of 4° 154

6.47 Lift to drag ratio (L/D) versus ground clearance at angle of

attack of 4° 155

6.48 Moment coefficient (CM) versus ground clearance at

angle of attack of 4° 157

6.49 Centre of pressure (XCP/c) versus ground clearance at

angle of attack of 4° 158

Page 20: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxv

6.50 Pressure coefficient contour on upper and lower surface

of compound wing-4 for different Reynolds number at

ground clearance of 0.15 and angle of attack of 4°

159

6.51 Pressure coefficient contour on the middle span of

compound wing-4 for different Reynolds number at

ground clearance of 0.15 and angle of attack of 4° 160

6.52 Pressure coefficient distribution near wingtip of compound

wing-4 for different Reynolds number at ground

clearances of 0.15 and angle of attack of 4° 160

6.53 Lift coefficient (CL) versus Reynolds number at ground

clearance of 0.15 and angle of attack of 4° 162

6.54 Drag coefficient (CD) versus Reynolds number at ground

clearance of 0.15 and angle of attack of 4° 163

6.55 Lift to drag ratio (L/D) versus Reynolds number at

ground clearance of 0.15 and angle of attack of 4° 164

6.56 Moment coefficient (CM) versus Reynolds number at

ground clearance of 0.15 and angle of attack of 4° 166

6.57 Centre of pressure (XCP/c) versus Reynolds number at

ground clearance of 0.15 and angle of attack of 4° 167

6.58 Pressure coefficient contour on upper and lower surface of

compound wing-7 at stall angle and ground clearance of

0.15 168

6.59 Pressure coefficient and velocity contour (m/s) on the

middle span of compound wing-7 at stall angle and

ground clearance of 0.15 168

6.60 Stall angle of rectangular wing and compound wing-7 at

ground clearance of 0.15 169

6.61 Lift coefficient (CL) versus angle of attack at ground

clearance of 0.15

170

6.62 Drag coefficient (CD) versus angle of attack at ground

clearance of 0.15 171

6.63 Lift to drag ratio (L/D) versus angle of attack at ground

clearance of 0.15 173

Page 21: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxvi

6.64 Moment coefficient (CM) versus angle of attack at ground

clearance of 0.15

174

6.65 Centre of pressure (XCP/c) versus angle of attack at ground

clearance of 0.15 175

Page 22: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxvii

LIST OF ABBREVIATIONS

AEV - Aero-levitation Electric Vehicle

SL - Sliding mesh

AOA - Angle of attack

AR - Aspect ratio

CFD - Computational fluids dynamic

CoVGs - Co-rotating vortex generators

CtLVG - Counter-rotating large vortex generators

CtSVGs - Counter-rotating subboundary layer vortex generators

DARS Data Acquisition and Reduction System

DM - Dynamic mesh

FS - Forward swept

FVM - Finite volume Method

HAPs - Hazardous air pollutants

HS - Height stability

LDA - Laser Doppler Anemometry

LTO - Landing and take off

LVGs - Large-scale vortex generators

PAR - Power augmented ram

PARV - Power-augmented ram vehicle

PDS - Propeller-deflected slipstream

PIV - Particle image velocimetry

RANS - Reynolds averaged Navier-Stokes

RFS - Reverse forward swept

SQP - Sequential quadratic programming method

SVGs - Subboundary layer vortex generators

TAF - Tandem-Airfoil-Flairboat

Page 23: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxviii

UTM-LST - Low speed wind tunnel of Universiti Teknologi Malaysia

VGs - Vortex generators

VLM - Vortex lattice method

WIG - Wing-in- ground effect

Page 24: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxix

LIST OF SYMBOLS

a Anhedral angle

b Wing Span

bm Middle wing span

c Chord length

ct Tip chord length

CL Lift Coefficient

CD Drag Coefficient

CM Moment coefficient

CP Specific fuel combustion

D Drag Force

d Diameter of cylinder

Gb Generation of turbulence kinetic energy due to

buoyancy

Gk Generation of turbulence kinetic energy due to the mean

velocity gradients

Gω Production of ω

h Height of trailing edge of the wing above the ground

h/c Ground clearance

I Turbulence Intensity

K Mean kinetic energy

k Turbulent kinetic energy

kP Turbulence kinetic energy k at the near-wall node P

k(t) Total kinetic energy

L Lift force

L Characteristics length

l Turbulence Length Scale

Page 25: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxx

L/D Lift to drag ratio

M Pitching moment at c/4 from the leading edge

2COm& Rate of CO2 emission

fm& Rate of fuel consumption

P Mean normal pressure

p Normal pressure

S Wing planform area

SE Specific energy

SCE Specific CO2 emission

Sij Mean rate of deformation tensor

s'ij Fluctuating rate of deformation tensor

Sk User-defined source term for k

Sω User-defined source term for ω

TSFC Trust specific fuel consumption

U Free stream mean velocity

U Mean velocity in x direction

U* Mean velocity of flow near-wall region

Umax Maximum velocity at a distance x downstream of the

source

UP Mean velocity of flow at the near-wall node P

u Velocity in x direction

uj Velocity in jth direction

uτ Friction velocity

u' Fluctuating velocity in x direction

u+ Nondimensional velocity of flow

V Mean velocity in y direction

v Velocity in y direction

vjet Jet velocity

v∞ velocity at infinity

v' Fluctuating velocity in y direction

W Mean velocity in Z direction

iW Initial weight

fW Fuel weight

Page 26: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxxi

w Velocity in z direction

w' Fluctuating velocity in z direction

CPX Centre of pressure from the leading edge

Xh Height aerodynamic center

Xα Pitch aerodynamic center

x Coordinate in ith direction

YM Effects of compressibility on turbulence

Yk Dissipation of k due to turbulence

Yω Dissipation of ω due to turbulence

y Height of first mesh on wing

y Coordinate in jth direction

yp Distance from point P to the wall

y+ Nondimensional wall distance

z Coordinate in kth direction

α Angle of attack

α Under-relaxation factor

β Course angle

θ Nozzle angle

λ Taper ratio (c/ct)

μ Air viscosity

μt Turbulent viscosity

ηp Propeller efficiency

ε Turbulent energy dissipation rate

ω Turbulence frequency

ρ Air density

Γk Effective diffusivity of k

Γω Effective diffusivity of ω

τw Wall shear stress

φ Quantities value of upstream cell-centre

calcφ Calculated value of quantity φ face

fφ Quantity value of cell face

newφ New value of quantity φ

oldφ Old value of quantity φ

Page 27: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

xxxii

LIST OF APPENDICES

APPENDIX TITLE

PAGE

A Aerodynamic characteristics of wing of wig catamaran

vehicle in ground effect 192

B Numerical investigation on fuel consumption of wig

catamaran craft in ground effect 203

C Publications 209

Page 28: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

CHAPTER 1

INTRODUCTION

1.1 Background

The wing-in- ground effect (WIG) crafts are classified as a middle form of

aircraft between ships and aircrafts. WIG crafts can fly in proximity to the any

surface such as ground, sea, snow and ice. A high air pressure (air cushion) is

generated from interface between wing of the WIG craft and the ground. The

dropping of down-wash angle because of the ground effect guides to an enhancement

in lift and decline of induce drag, with a raise of effective aspect ratio for the wing.

The enhancement of the lift force and decreasing of the induced drag provides an

augmentation on the lift to drag ratio (L/D) (Yun et al., 2010). The type of air

cushion is the principal difference between hovercraft and WIG craft. A static air

cushion holds hovercraft, while the WIG craft is hold by dynamic air cushion. The

small aspect ratio of wing and high lift to drag ratio of WIG craft are other

differences from a conventional craft. Currently, the suitable expansion of high

power computing and computational fluids dynamic (CFD) grows the numerical

aerodynamic characteristics of WIG crafts (Rozhdestvensky, 2006).

WIG craft will be talented craft for transportation as a new mean for

travelling. The high speed and safety are qualities that could be considered for WIG

craft. Passengers will prefer to faster means for short journey on river, lake, sea

among islands and etc. The passenger boats have a restriction on speed because of

their efficiency; fast boats with speed greater than 100 km/h can not reach to

Page 29: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

2

reasonable efficiency. The high speed boats, such as surface effect ships suffer

hydrodynamic resistance, while WIG crafts contact with air where the drag is very

low (Abramowski, 2007). The aerodynamic interface between wings of WIG craft

and ground surface (such as water) named ground effect makes dynamic air cushion

which this phenomenon does not appear for airplane.

There are a lot of concepts of wing-in-ground effect. Initially, the idea of ram

wing was employed into operation by Troeng (Rozhdestvensky, 2006). Practically all

WIG crafts employ high pressure ram effect to improve lift, nevertheless the problem

of ram wing in WIG craft is its stability. According to this concept, a number of WIG

crafts include a low aspect ratio wing (approximately square) and a large horizontal

tail is mounted out of ground effect which supplies the essential stability. Tandem-

Airfoil-Flairboat (TAF) is defined by the proposal of assembling two short wings in

tandem. Both wings have almost an equal size with short distance between them.

This craft is without a horizontal tail. This arrangement presents a good stability in

extreme ground effect, but it is unstable out of ground effect. A special class of ram

wing called as Lippisch, introduces the idea where the main wing includes an inverse

dihedral wing along the leading edge. This design holds more longitudinal stability

with relatively a low aspect ratio ram wing. A smaller horizontal tail is required for

longitudinal stability requirement in low ground clearance and jump modes during

cruise condition. The Lippisch concept uses a greater aspect ratio of wing as

compared with ram wing concept which is near to 3. The lift to drag ratio of Lippisch

crafts is around 25.

The hoverwing craft use a simple system of flexible skirts to hold an air

cushion between the twin hulls. This static air cushion is employed just through take

off for assisting the craft to accelerate with minimal power before shifting to the true

ground effect mode (Rozhdestvensky, 2006). The Hydrofret concept is classified to

use both static air cushion and dynamic ground effect. The concept is planned in two

models. The first is a ram-wing catamaran that is balanced by a large aspect ratio

wing tail. In another different design, a large aspect ratio rear wing is employed

instead of the tail wing (Rozhdestvensky, 2006).

Page 30: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

3

The growth of air transportation makes a increasing in environmental impacts

in the world. One technique to reduce this issue, fuel consumption can be controlled.

The pollutant emissions could be affected with the type of fuel, aircraft, engine,

engine load and altitude (Kurniawan and Khardi, 2011).

The atmospheric emissions by aircraft are divided in two parts. First, local

environmental impact belongs to take off and landing of aircraft and second is related

to global effect where aircraft is in climbing and cruise mode which causes alteration

in climate, stratospheric Ozone and etc(Kurniawan and Khardi, 2011).

1.2 Statement of problem

Recently, the wing configuration is a main challenge in designing WIG craft

for increasing the performance, economic point, and reducing the energy

consumption and pollutants emission. Many researchers have investigated the

configuration of wing in proximity to the ground. According to the type of airfoil

section and configuration of wing, they reported different aerodynamic behaviour of

the wings. All researchers have tried to improve two phenomena. First, chord

dominated ground effect that is referred to as ram effect or ram pressure. Second,

span dominated ground effect that it can reduce the tip vortex of wing and

consequently makes a reduction in the induced drag. There are some methods to

improve the advantages of ground effect such as, multi–wing elements, and

employing endplates and flaps. The investigation on wing configuration is still being

performed to increase the benefit of ground effect. However, the high drag (hump

drag) of WIG craft during the take off is the main issue because of high power

requirement that this problem totally has not yet been solved by researchers. The

combination of some concepts of wing-in ground effect can improve the

aerodynamic coefficients such as lift coefficient and lift to drag ratio. In the present

study, a new compound wing, which is composed of three parts; a rectangular wing

in the middle and two reverse taper wings with an anhedral angle at the sides, is

investigated. This present research tries to reveal the effect of design parameters such

Page 31: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

4

as, middle wing span, taper ratio, anhedral angle, ground clearance and Reynolds

number on the aerodynamic performance of the new compound wing configuration

in ground effect. Consequently by varying these design parameters, the different

aerodynamic characteristics of the compound wing could be obtained.

1.3 Research Objectives

The objectives of the present research are as follows:

i) To investigate aerodynamic characteristics of a new configuration

compound wing in ground effect.

ii) To investigate design parametric study of the compound wing related to

aerodynamic coefficients in proximity to the ground.

iii) To estimate approximately fuel consumption and CO2 emission

associated with the compound wing.

1.4 Scope of Study

The aim of the project is to investigate the aerodynamic characteristics of a

new compound wing in ground effect. This investigation have been done by

numerical and experimental methods which each one had several steps. The scopes

of this research work are as follows:

i) The literature review was carried out about aerodynamic characteristics of

various type of wing in proximity to the ground. This literature revealed

the current work of researchers about wing configuration and its

aerodynamic behaviour in ground effect. This step made a good guideline

for present research work.

Page 32: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

5

ii) The CFD method was used for numerical analysis of the aerodynamic

characteristics of the compound wing. Three step, preprocessing, solving,

and post processing were discovered in CFD method.

• Preprocessing included designation of the wing model and the

computational domain, mesh generation, definition of fluid properties,

selecting the governing equations (turbulent model), and definition of

boundary condition of domain boundary.

• In solving, integration of the governing equations, discretisation of the

integral equations to find algebraic equations, and finally solution of

the algebraic equations by an iterative method have been determined.

• Discussion and analysis have been performed with plots and contours

of the results in post processing stage.

iii) Numerical simulations were performed with respect to main parameters

such as middle span and side span size, taper ratio, anhedral angle,

Reynolds number, ground clearance and angle of attack which they can

affect on aerodynamic performance of the compound wing.

iv) The aerodynamic forces of two wings, a rectangular wing and compound

wing have been measured by experiments in the low speed wind tunnel of

Universiti Teknologi Malaysia. The present experiments were carried out

with respect to different ground clearance, angle of attack and air

velocity. The aerodynamic forces directly were measured with a six

components balance system (JR3-50M31A3 sensor).

v) The test models were built by milling system. The material of wing

models was aluminium.

vi) The fuel consumption and CO2 emission related to aerodynamic forces

from numerical simulations have been obtained for a rectangular wing

and compound wings.

Page 33: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

6

1.5 Significance of the study

The wide applicability of WIG craft such as civil and naval applications

makes a demand to investigate about wing in ground effect of this type of aircraft. It

has been recognized that the WIG crafts have special advantages for examples, cost

effectiveness, high ride quality in cruise mode, no need for airports or runways,

operating over any surfaces, water, land, snow and ice surface to use ground effect,

in addition, embarking the passenger on unprepared beach. Furthermore, the low fuel

consumption and environmental impact are other benefits of WIG craft compared to

airplane which they are favourable for economic and saving the green society. These

advantages makes a high demands to research on designation and operation of WIG

crafts to improve their performance and efficiency. The main part of WIG craft is its

wing, the present research focused on wing configuration in ground effect. The

results of this project will be useful for design of WIG craft to take a better support

from ground effect.

1.6 Organisation of Thesis

This thesis is divided into 7 chapters. In the first chapter, common

information such as objectives, scopes, and statement of problem of this research are

given. Additionally, the background of problem and the significant of this

investigation are provided. The next chapters (2-7) describe literature review,

research methodology, results and discussions, and conclusion and future work that

has been used for publishing in journals and presented in conferences.

Chapter 2 prepares a comprehensive literature review of available information

related to the topic of current research. This chapter includes numerical and

experimental simulation of aerodynamic characteristics of wings with various airfoil

sections and different wing configurations in close to the ground. In addition, the

flow behaviour around and behind the wings such as separation and wake region are

review. Also, this chapter contains some description about different type of WIG

Page 34: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

7

crafts, and some systems such as power augmented ram (PAR) engine that increases

the performance of WIG craft.

In chapter 3, two research methods which are the computational and

experimental methods are described. The computational methodology consists of

turbulent models of flow around the wing, boundary layers and wall functions at near

wall, boundary conditions, solver, solutions controls such as discretization and

pressure-Velocity Coupling Method, and meshing. The experimental methodology

firstly gives a background about wind tunnel and introduces the low speed wind

tunnel of Universiti Teknologi Malaysia. Next, some descriptions are given about the

wing models, set-up of experiment and procedure of test.

A new compound wing is presented in chapter 4. The configuration of

compound wing is illustrated and shown in this chapter. The principal aerodynamic

coefficients of a compound wing and a rectangular wing are obtained by numerical

simulations. The aerodynamic coefficients of compound wing are compared with

rectangular one. The benefits of compound wings are described in proximity to the

ground.

The aerodynamic forces of a rectangular wing and a compound wing

configuration are experimentally measured in chapter 5. There are some comparisons

between rectangular wing and compound wing on aerodynamic coefficients respect

to different ground clearances, angle of attacks and free air velocities. The

advantages of compound wing in low ground clearance are described. Also, the

aerodynamic coefficients of both wings from present numerical simulations are

compared with experimental results.

In chapter 6 the design parametric study on aerodynamic characteristics of the

compound wing is numerically investigated in ground effect. The effects of principal

parameters such as span size of side wing, taper ratio and anhedral angle on

aerodynamics performance of compound wing are discovered. Moreover, the fuel

Page 35: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

8

consumption and CO2 emission related to compound wings compared to rectangular

wing are explored.

Finally, the important conclusions are drawn in chapter 7 consistent with

results and discussion from the present research. Additionally, some future works are

recommended in this chapter.

Page 36: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

REFERENCES

Abramowski, T. (2007). Numerical Investigation of Airfoil in Ground Proximity.

Journal of Theoretical and Applied Mechanics. 45(2), 425-436.

Aframeev, E. A. (1998). Conceptual bases of WIG Craft Building: Ideas, Reality and

Outlooks. The RTO AVT Symposium on Fluid Dynamics Problems of

Vehicles Operating near or in the Air-Sea Interface, RTO MP-15. 5-8

October. Amsterdam, Netherlands, 22, 1-17.

Ahmed, M. R. (2004). Flow over Thick Airfoils in Ground Effect- an Investigation

on the Influence of Camber. Proceedings of the 24th International Congress

of the Aeronautical Sciences. 29 August- 3 September. Yokohama, Japan, 1-

10.

Ahmed, M. R., and Sharma, S. D. (2005). An Investigation on the Aerodynamics of a

Symmetrical Airfoil in Ground Effect. Journal of Experimental Thermal and

Fluid science, 29, 633-647.

Ahmed, M. R., Takasaki, T., and Kohama, Y. (2007). Aerodynamic of NACA441

Airfoil in Ground Effect. AIAA Journal, 45(1), 37-47.

Ahmed, M., and Kohama, Y. (1999). Experimental Investigation on the

Aerodynamic Characteristics of a Tandem Wing Configuration in Close

Ground Proximity. JSME International Journal. 42(4), 612-618.

Ahmed, N., and Goonaratne, J. (2002). Lift Augmentation of a Low Aspect- Ratio

Thick Wing in Ground Effect. Journal of Aircraft, 39(2), 381-384.

Ailor, W. H., and Eberle, W. R. (1975). Configuration Effects on Lift of a Body in

Close Ground Proximity. Journal of Aircraft, 13(8), 584-589.

Ando, S. (1990). Critical Review of Design Philosophies for Recent Transport WIG

Effect Vehicles. Trans. Japan Society for Aeronautical and Space Sciences,

33(99), 28-40.

Barber, T. J. (2007). A Study of Water Surface Deformation Due to Tip Vortices of a

Wing-in-Ground Effect. Journal of Ship Research. 51(2), 182–186.

Page 37: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

183

Barber, T. J., Leonardi, E. and Archer, R. D. (2002). Causes for Discrepancies in

Ground-Effect Analyses. The Aeronautical Journal. 106(1066), 653–657.

Barrows, T. M. (1973). The Ram Air Cushion-Advanced Fluid Suspension for

Tracked Levitated Vehicles. ASME 73-ICT. 14.

Barth, M., Calmels B., and Aupoix B. (2010). Numerical Simulation and Modeling

of High-Lift Aerodynamics in Ground Effect. Proceedings of the 27th

international congress of the aeronautical sciences. 19 - 24 September. Nice,

France, 1-12.

Barth, T. J., and Jespersen, D. (1989). The Design and Application of Upwind

Schemes on Unstructured Meshes. Technical Report AIAA-89-0366, AIAA

27th Aerospace Sciences Meeting, Reno, Nevada.

Bertin, J. J. (2001). Aerodynamics for Engineers. Englewood Cliffs, Prentice Hall.

Borello, G., Ferro, S., Limone, S., Ferro, G., Bergamini, P. and Quagliotti, F. B.

(1999). The Role of the Moving Ground for Automotive Wind Tunnel

Testing on Race Cars. Journal of SAE. 1999-01- 0647.

Bruna, P. M. (2011). Engineering the Race Car Wing: Application of the Vortex

Panel Numerical method. Sport Engineering. 13, 195–204.

Carter, A. W. (1961). Effect of Ground Proximity on the Aerodynamic

Characteristics of Aspect-ratio 1 Airfoils with and Without End Plate. NASA

TN D. 970- October.

Catalano, P., and Amato, M. (2003). An Evaluation of RANS Turbulence Modeling

for Aerodynamic Applications. Aerospace Science and Technology. 7, 493-

509.

Chawla, M. D., Edwards, L. C., and Franke, M. E. (1990). Wind-Tunnel

Investigation of Wing-In-Ground Effect. Journal of Aircraft, 27(4), 289-293.

Chorin, A. J. (1968). Numerical Solution of Navier-Stokes Equations. Mathematics

of Computation. 22, 745-762.

Chun, H. H., and Chang, R. H. (2003). Turbulence Flow Simulation for Wings in

Ground Effect with Two ground conditions: Fixed and Moving Ground.

International Journal of maritime engineering. 211-227.

Chun, H. H., Chang, C. H., (2002). Longitudinal Stability and Dynamic Motions of a

Small Passenger WIG Craft. Ocean Engineering. 27, 1145–1162.

Cui, E. (1998). Surface effect aero-hydrodynamics and its applications. Indian

academy of sciences, Sadhana. 23, 569-577.

Page 38: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

184

Daichin, K. W., and Zhao, L. (2007). PIV Measurements of the near Wake Flow of

an Airfoil above a Free Surface. Journal of Hydrodynamics, Ser. B. 19(4),

482-487.

Davis, J. E., and Harris G. L. (1973). Nonplanar Wings in Nonplanar Ground Effect.

Journal of Aircraft. 10(5), 308-312.

Djavareshkian, M. H., Esmaeli, A., and Parsani, A. (2010). Aerodynamics of Smart

Flap under Ground Effect. Aerospace Science and Technology. Article in

Press. doi:10.1016/j.ast.2011.01.005.

Doig, G., Barber, T. J., and Neely, A. J. (2011). The Influence of Compressibility on

the Aerodynamics of an Inverted Wing in Ground Effect. Transactions of the

ASME, Journal of Fluids Engineering. 133(061102), 1-12.

Fink, M. P., and Lastinger, J. L. (1961). Aerodynamic characteristics of low-aspect-

ratio wings in close proximity to the ground. NASA TN D. 926.

Fuwa, T., Hirata, N., Hasegawa, J., and Hori, T. (1993). Fundamental Study on

Safety Evaluation of Wing-In Surface Effect Ship (WISES). Proceedings of

the 2nd International Conference on Fast Sea Transportation. 13-16 Dec.

Yokohama, Japan, 1257-1267.

Gad-el-Hak, M. (1990). Control of Low-Speed Airfoil Aerodynamics. AIAA Journal.

28(9), 1537–1552.

Gad-el-Hak, M., and Bushnell, D. M. (1991). Separation Control: Review. ASME J.

Fluids Eng. 113, 5-30.

Galoul V., and Barber, T. J. (2007). A Study of an Inverted Wing with Endplates in

Ground Effect. Proceeding of the 16th Australasian Fluid Mechanics

Conference. 27 December. Crown Plaza, Gold Coast, Australia, 919-924.

Genua, E. (2009). A CFD Investigation in to Ground Effect Aerodynamics. Master of

Science. Delft University of Technology.

Godard, G., and Stanislas, M. (2006). Control of a Decelerating Boundary Layer.

Part 1: Optimization of Passive Vortex Generators. Aerospace Science and

Technology. 10(3), 181-191.

Grundy, I. (1986). Airfoils Moving In Air Close To A Dynamic Water Surface.

Journal of the Australian Math Society Series B, 27(3), 327-345.

Halloran, M., and O'Meara, S. (1999). Wing in Ground Effect Craft Review,

Melbourne Victoria 3001 Australia: DSTO Aeronautical and Maritime

Research Laboratory.

Page 39: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

185

Hsiun, C. M., and Chen, C. K. (1996). Aerodynamic Characteristics of a Two

Dimensional Airfoil with Ground Effect. Journal of Aircraft. 33(2), 386-392.

Hsiun, C. M., Chen C. K. (1995). Numerical Investigation of the Thickness and

Camber Effects on Aerodynamic Characteristics for Two-Dimensional

Airfoils with Ground Effect in Viscous Flow. Transactions of the Japan

Society of Mechanical Engineers. 38 (119), 77-90.

Huang, T., and Wong, K. (1970). Disturbance Induced by a Pressure Distribution

Moving over a Free Surface. Journal of Ship Research. 14(3), 195–203.

Jeffrey, D., Zhang, X., and Hurst, D. (2000). Aerodynamics of Gurney flaps on a

single-element high-lift wing. Journal of Aircraft. 37(2), 295-302.

Joh, C.Y., Kim, Y.J. (2004). Computational Aerodynamic Analysis of Airfoils for

WIG (airfoil-in-ground-effect)-craft. Journal of the Korean Society for

Aeronautical and Space Sciences. 32 (8), 37–46.

Johnson, F. T., and Rubbert, P. E. (1975). Advanced Panel-Type Influence

Coefficient Methods Applied to Subsonic Flow. AIAA Paper. 75-50.

JR3, Inc. Molti-Axis Load Cell Technologies. 22 Harter Ave Woodland, CA 95776

USA. http://www.jr3.com/DataSheets.html.

Jung, K. H., Chun H. H., and Kim, H. J. (2008). Experimental Investigation of Wing-

In Ground Effect with a NACA 6409 Section. Journal of Marine Science and

Technology, 13, 317-327.

Katz, J. (1985). Calculation of the Aerodynamic Forces on Automotive Lifting

Surfaces. ASME Journal of Fluids Engineering. 107, 438–443.

Khorrami, M., Berkman, M., Choudhari, M., Singer, B., Lokhard, D., and Brentner,

K.(1999). Unsteady Flow Computations of a Slat with a Blunt Trailing Edge.

AIAA Paper. 99-1805.

Kieffer, W., Moujaes, S., and Armbya, N. (2006). CFD Study of Section

Characteristics of Formula Mazda Race Car Wings. Mathematical and

Computer Modelling. 43, 1275-1287.

Kikuchi, K., Motoe, F., and Yanagizawa, M. (1997). Numerical Simulation of the

Ground Effect using the Boundary Element Method. International Journal

for Numerical Methods in Fluids. 25, 1043–1056.

Kim, H. J., Chun, H. H., (1998). Design of 2-Dimensional WIG Section by a

Nonlinear Optimization Method. Journal of the Society of Naval Architects of

Korea. 35(3), 50–59.

Page 40: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

186

Kim, H. J., Chun, H. H., and Jung, K. H. (2009). Aeronumeric Optimal Design of a

Wing-In-Ground-Effect Craft. Journal of Marine Science and Technology.

14, 39–50.

Knowles, K., Donoghue, D. T., and Finnis, M. V. (1994) A Study of Wings in

Ground Effect. Proceedings of the Loughborough University Conference on

Vehicle Aerodynamics. 18-19 July. Loughborough, England, 22, 1–13.

Kohama, Y. P., and Yoon, D. H. (2006). Improvement of Lift –to-Drag Ratio of the

Aero-Train. IUTAM Symposium on Laminar-Turbulent Transition,

Netherlands: Springer, 255–260.

Kornev, N., Matveev, K. (2003). Complex Numerical Modeling of Dynamics and

Crashes of Wing-In-Ground Vehicles. AIAA Paper. 600, 1-9.

Koss, D., Bauminger, S., Shepshelovich, M., Seifert, A., and Wygnanski, I. (1993).

Pilot Test of a Low Reynolds Number DTE Airfoil. AIAA Paper. 93-0643.

Kurniawan, J. S., and Khardi, S. (2011). Comparison of Methodologies Estimating

Emissions of Aircraft Pollutants, Environmental Impact Assessment around

Airports. Environmental Impact Assessment Review. 31, 240–252.

Kuya, Y., Takeda, K., and Zhang, X (2010). Computational Investigation of a Race

Car Wing With Vortex Generators in Ground Effect. ASME Journal of Fluids

Engineering. 132, 021102, 1-8.

Kuya, Y., Takeda, K., Zhang, X., Beeton S., and Pandaleon, T. (2009a). Flow

Separation Control on a Race Car Wing With Vortex Generators in Ground

Effect. ASME Journal of Fluids Engineering. 131, 121102, 1-8 .

Kuya, Y., Takeda, K., Zhang, X., Beeton S., and Pandaleon, T., (2009b). Flow

Physics of a Race Car Wing With Vortex Generators in Ground Effect. ASME

Journal of Fluids Engineering. 131, 121103, 1-9.

Kwag, S. H. (2001). Lift/Drag Prediction of 3-Dimensional WIG Moving Above

Free Surface. KSME International Journal. 15(3), 384-391.

Launder, B. E., and Spalding, D. B. (1974). The Numerical Computation of

Turbulent Flows. Computer Methods in Applied Mechanics and Engineering.

3, 269-289.

Lee, J. J., Lukachko, S. P., Waitz, I. A., and Schafer, A. (2001). Historical and Future

Trends in Aircraft Performance, Cost and Emissions. Annual Review Energy

Environment. 26, 167-200.

Page 41: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

187

Lee, J., Han, C. S., and Bae, C. H. (2010). Influence of wing configurations on

aerodynamic characteristics of wings in ground effect. Journal of Aircraft.

47(3), 1030-1040.

Lee, T. (2011). PIV Study of Near-Field Tip Vortex behind Perforated Gurney Flaps.

Experiments in Fluids. 50:351–361.

Lee, T., and Ko, L. S. (2009). PIV Investigation of Flowfield behind Perforated

Gurney-Type Flaps. Experiments in Fluids. 46,1005–1019.

Lee, T., and Su, Y. Y. (2011). Lift enhancement and flow structure of airfoil with

joint trailing-edge flap and Gurney flap. Experiments in Fluids. 50, 1671–

1684.

Li, Y., Yang, W., and Yang. Z. (2010a). Numerical Study on Wing in Ground Effect

of Canard Configuration. Aeronautical Computing Technique, 40(4), 27-30.

Li, Y., Yang, W., and Yang. Z. (2010b). Numerical study on static longitudinal

stability of canard WIG Craft. Flight Dynamics, 28(1), 9-12.

Lin, J. C., Howard, F. G., and Bushnell, D. M. (1990). Investigation of Several

Passive and Active Methods for Turbulent Flow Separation Control. AIAA

Paper. 1990-1598.

Lin, J. C., Selby, G. V., and Howard, F. G. (1991). Exploratory Study of Vortex-

Generating Devices for Turbulent Flow Separation Control. AIAA Paper.

1991-0042.

Liou, W. W., and Liu, F. (2000).Computational Modelling for the Flow over a Multi-

Element Airfoil. AIAA Paper. 99-3177, 569-577.

Mahon, S., and Zhang, X. (2005). Computational Analysis of Pressure and Wake

Characteristics of an Aerofoil in Ground Effect. Journal of Fluid

Engineering, Transaction of the ASME. 127, 290-298.

Mahon, S., and Zhang, X. (2006). Computational Analysis of an Inverted Double-

Element Airfoil in Ground Effect. Journal of Fluid Engineering, Transaction

of the ASME, 128, 1172-1180.

Mansor, S. (2009). Introdction to UTM Low Speed Wind Tunnel Facility.

Aeronautic Laboratory Universiti teknologi Malaysia.

Marshall, D. W., Newman, S. J., and Williams, C. B. (2010). Boundary layer effects

on a wing in ground-effect. Aircraft Engineering and Aerospace Technology:

An International Journal. 82(2), 99–106.

Page 42: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

188

Maskailik, A., Kolizaw, B., Zhukov, V., Radovitski, G., Sinitsyn D., and Zagorulko,

L. (2000). Ekranoplans: peculiarities of theory and design. Saint-Petersburg:

Sudostroenie.

Matveev, K. I. (2008). Static Thrust Recovery of PAR Craft on Solid Surfaces.

Journal of Fluids and Structures. 24, 920-926.

Matveev, K. I., and Soderlund, R. K. (2008). Static Performance of Power-

Augmented Ram Vehicle Model on Water. Ocean Engineering. 35, 1060-

1065.

Menter. F. (1997). Eddy-Viscosity Transport Equations and Their Relation to the k-ε

Model. ASME, Journal of Fluids Engineering. 119, 876.884.

Mokhatar, W. A. (2005). A Numerical Study of High-Lift Single Element Airfoils

with Ground Effect for Racing Cars. SAE Transactions, 114(6), 682-688.

Moon, Y. J., Oh, H. J., and Seo, J. H. (2005). Aerodynamic Investigation of Three

Dimensional Wings in Ground Effect for Aero-Levitation Electric Vehicle.

Aerospace Science and Technology. 9, 485-494.

Murao, R., Seki, S., and Tomita, N. (2005). On a Study of a WIG with Propeller-

Deflected Slipstream (PDS) by using a Radio Controlled Model. Proceedings

of the 8th International Conference on Fast Sea Transportation. 1-8.

Nikoleris, T., Gupta, G., and M. Kistler, (2011). Detailed Estimation of Fuel

Consumption and Emissions during Aircraft Taxi Operations at Dallas/Fort

Worth International Airport. Transportation Research Part D. 16, 302–308.

Ockfen, A. E., and Matveev, K. I. (2009). Aerodynamic Characteristics of

NACA4412 Airfoil Section with Flap in Extreme Ground Effect.

International Journal of Naval Architecture and Ocean Engineering. 1, 1-12.

Ollila, R. G. (1980). Historical Review of WIG Vehicles. Journal of Hydrodynamics,

14(3), 65-76.

Pailhas, G., Sauvage, P., Touvet, Y., and Coustols, E. (1998). Flowfield in The

Vicinity of a Thick Cambered Trailing edge. Proceeding of the 9th

International Symposium on Applications of Laser Techniques to Fluid

Mechanics. July 13-16. Lisbon, Portugal.

Park, K., and Lee, J. (2008). Influence of Endplate on Aerodynamic Characteristics

of Low-Aspect-Ratio Wing in Ground Effect. Journal of Mechanical Science

and Technology. 22, 2578-2589.

Page 43: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

189

Park, K., and Lee, J. (2010). Optimal Design of Two-Dimensional Wings in Ground

Effect Using Multi-Objective Genetic Algorithm. Ocean Engineering. 37,

902– 912.

Pauley, W. R., and Eaton, J. K. (1988). Experimental Study of the Development of

Longitudinal Vortex Pairs Embedded in a Turbulent Boundary Layer. AIAA

Journal. 26(7), 816–823.

Peeters, P. M., Middel, J., and Hoolhorst, A. (2005). Fuel Efficiency of Commercial

Aircraft, an Overview of Historical and Future Trends, Nationaal Lucht-en

Ruimtevaartlaboratorium, National Aerospace Laboratory, NLR-CR. 2005-

669.

Ranzenbach, R., and Barlow, J. B. (1995). Cambered Aerofoil in Ground Effect-

Wind Tunnel and road conditions. AIAA Paper. 95-1990.

Ranzenbach, R., and Barlow, J. B. (1996). Cambered Aerofoil in Ground Effect-An

Experimental and Computational study. SAE Paper. 96-0909.

Raymond, A. (1921). Ground Influence on Airfoils. NACA Technical Note. 67.

Recant, I. G. (1939). Wing-tunnel investigation of ground effect on wing with flaps.

NACA TN. 705.

Reid, E. (1927). A Full Scale Investigation of Ground Effect. NACA Technical

Report. 265.

Rozhdestvensky, K. V. (1995). Nonlinear Aerodynamics of Ekranoplan in Strong

Ground Effect. Proceedings of the 3rd International Conference on Fast Sea

Transportation (FAST95). 25–27 September, Lubeck- Travemunde,

Germany, 631-639.

Rozhdestvensky, K. V. (2000). Aerodynamics of a Lifting System in Extreme Ground

Effect. (1st ed.). Verlag Berlin Heidelberg New York: Springer.

Rozhdestvensky, K. V. (2006). Wing-In-Ground Effect Vehicles. Progress in

Aerospace Science, 42, 211-283.

Rubbert, P. E., and Saaris, G. R. (1972). Review and Evaluation of a Three-

Dimensional Lifting Potential Flow Analysis Method for Arbitrary

Configurations. AIAA Paper. 72-188.

Rudolph, P. K. C. (1996). High-Lift Systems on Commercial Subsonic Airliners.

NASA CR. 4746.

Rumsey, C. L., and Ying, S. X. (2002). Prediction of high lift: Review of present

CFD capability. Progress in Aerospace Sciences. 38, 45-180.

Page 44: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

190

Schlichting, H. (1968). Boundary Layer Theory. New-York: McGraw-Hill.

Schmid, S., Lutz, Th. and Kramer, E. (2009). Impact of the Modelling Approaches

on the Prediction of Ground Effect Aerodynamics. Engineering applications

of computational fluid Mechanics. 3(3), 419-429.

Selescu, R. (2008). Adapting a Blowdown Type Wind Tunnel for Ground Effect

Simulation Tests. Proceeding of the 9th WSEAS International Conference on

Automation and Information (ICAI'08), 24-26 June. Bucharest Romania, 194-

199.

Shih, T.-H., Liou, W. W., Shabbir, A., and Zhu, J. (1995). A New k-ε Eddy-

Viscosity Model for High Reynolds Number Turbulent Flows - Model

Development and Validation. Computers Fluids. 24(3), 227-238.

Sitek, B., and Yang, W. (2011). Conceptual Design of an Amphibious Vehicle:

Vector. ARPN Journal of Engineering and Applied Sciences. 6(2), 1-6.

Smith, A. M. O. (1975). High Lift Aerodynamics. Journal of Aircraft. 12(6), 501-

530.

Soso, M. D., and Wilson, P. A. (2006). Aerodynamics of a Wing in Ground Effect in

Generic Racing Car Wake Flows. Proc. IMechE Part D: Journal of

Automobile Engineering. 220, 1–13.

Soso, M. D., and Wilson, P. A. (2008). The Influence of an Upstream Diffuser on a

Downstream Wing in Ground Effect. Proc. IMechE Part D: Journal of

Automobile Engineering. 222, 551-563.

Staufenbiel, R. (1978). Some Nonlinear Effects in Stability and Control of Wing-in-

Ground effect vehicles. Journal of Aircraft. 15 (8), 541–544.

Sun, K., Sheng, Q. H., Zhang, L., and Li, F. L. (2007). Experiments on

Hydrodynamic Interaction between 3-D Oval and wall. Journal of

Hydrodynamics, Ser. B. 19(1), 121-126.

Van Dam, C. P. (2002). The Aerodynamic Design of Multi-Element High-Lift

Systems for Transport Airplanes. Progress in Aerospace Sciences. 38, 101-

144.

Vassilopoulos, K., and Gai, S. (1998). Unsteady Pressures on a Blunt Trailing edge -

end Plate and Boundary Layer effects. AIAA Paper. 98-0418.

Versteeg, H. K., and Malalasekera, W. (2007). An Introduction to Computational

Fluid Dynamics, The Finite Volume Method. Harlow, England: Pearson,

Prentice Hall.

Page 45: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

191

Wang, J. J., Lia, Y. C., and Choi, K. S. (2008). Gurney Flap—Lift Enhancement,

Mechanisms and Applications. Progress in Aerospace Sciences. 44, 22–47.

Wang, Y. N., Tseng, C. Y., Huang, Y. L., and Leong, J. C. (2010). Investigation of

2004 Ferrari Formula One Race Car Wing Effects. Proceedings of the

International Symposium on Computer, Communication, Control and

Automation. 5-7 May, Tainan, 85-88.

Wen, D. K., and Li-li, Z. (2007). PIV Measurements of the Near-Wake Flow of an

Airfoil Above a Free Surface. Journal of hydrodynamics. 19(4):482-487.

Widnall, S. E., and Barrows, T. M. (1970). An Analytic Solution for Two and Three

Dimensional Wings in Ground Effect. Journal of Fluid Mechanics, 41(4),

769-792.

Wieselsberger, C. (1922). Wing Resistance Near the Ground. NACA TM. 77.

Wingship investigation. (1994). Advanced Research Projects Agency Rept. A979492,

Arlington, VA, 1.

Xuguo, Q., Peiqing, L., and Qiulin, Q. (2009). Aerodynamics of a Multi-Element

Airfoil near Ground. Tsinghua Science and Technology. 14(S2), 94-99.

Yang, W., and Yang, Z. (2009). Aerodynamic Investigation of a 2D Wing and Flows

in Ground Effect. Chinese Journal of Computational Physics. 26(2), 231-240.

Yang, W., and Yang, Z. (2011). Schemed Power-Augmented Flow for Wing In-

Ground Effect Craft in Cruise. Chinese Journal of Aeronautics. 24, 119-126.

Yang, W., Lin, F., and Yang, Z. (2010d). Three-Dimensional Ground Viscous Effect

on Study of Wing-in Ground Effect. Proceedings of 3rd International

Conference on Modeling and Simulation, Applied Mathematics and

Mathematical Modeling. 5, 165-168.

Yang, W., Yang, Z., and Ying, C. (2010a). Effects of Design Parameters on

Longitudinal Static Stability for WIG craft. International journal of

Aerodynamics, 1(1), 97-113.

Yang, W., Ying, C., and Yang, Z. (2010b). Aerodynamic Study of WIG Craft near

Curved Ground. Journal of Hydrodynamics, Ser. B. 22(5), 371-376.

Yang, Z., Gu, W., and Li, Qi. (2011). Aerodynamic Design Optimization of Race

Car Rear Wing. Proceedings of the International Conference on Computer

Science and Automation Engineering, IEEE. 10-12 June. Shanghai, 642-646.

Page 46: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

192

Yang, Z., and Yang, W. (2010). Complex Flow for Wing-in-ground Effect Craft with

Power Augmented Ram Engine in Cruise. Chinese Journal of Aeronautics.,

23(1), 1-8.

Yang, Z., Yang, W., and Jia, Q. (2010c). Ground Viscous Effect on 2D Flow of

Wing in Ground Proximity. Engineering Applications of Computational Fluid

Mechanics. 4(4), 521-531.

Yang, Z., Yang, W., and Li, Y. (2009). Analysis of two configurations for a

commercial WIG craft based on CFD. Proceeding of 27th AIAA Applied

Aerodynamics Conference. 22 - 25 June. San Antonio, Texas, 1-9.

Ying, C., Yang, W., and Yang, Z. (2010a). Numerical simulation on reverse forward

swept wing in ground effect. Computer Aided Engineering, 19(3), 35-39.

Ying, C., Yang, W., and Yang, Z. (2010b). Ground Viscous Effect on Stall of Wing

in Ground Effect. Proceedings of 3rd International Conference on Modeling

and Simulation, Modeling and Simulation in Industrial Application. 3, 230-

233.

Ying, C., Yang, W., and Yang. Z. (2010c). Numerical Simulation on Stall of Wing in

Ground effect. Flight Dynamics. 28(5), 9-12.

Yun, L., Bliault, A., and Doo, J. (2010). WIG Craft and Ekranoplan: Ground Effect

Craft Technology. Springer New York Dordrecht Heidelberg London:

Springer Science+Business Media, LLC 2010.

Zerihan, J. and Zhang, X. (2000). Aerodynamics of a single element wing in ground

effect. AIAA Journal. 37(6), 1058–1064.

Zerihan, J., and Zhang, X. (2001a). Aerodynamics of Gurney Flaps on a Wing in

Ground Effect. AIAA Journal. 39(5), 772–780.

Zerihan, J., and Zhang, X. (2001b). A Single Element Wing in Ground Effect-

Comparisons of Experiments and Computation. AIAA Paper. 2001-0423.

Zhang, X., and Zerihan, J. (2003a). Aerodynamics of a Double-Element Wing in

Ground Effect. AIAA Journal. 41(6), 1007-1016.

Zhang, X., and Zerihan, J. (2003b). Off-Surface Aerodynamic Measurements of a

Wing in Ground Effect. Journal of Aircraft. 40(4), 716-725.

Zhang, X., Toet W., and Zerihan, J. (2006). Ground Effect Aerodynamics of Race

Cars. Transactions of the ASME, Applied Mechanics Reviews. 59, 33-49.

Page 47: ABSTRAK - eprints.utm.myeprints.utm.my/id/eprint/30637/14/SaeedJameiPFKM2012.pdf · Keupayaan meluncur pada kelajuan yang tinggi adalah kelebihan berbanding WIG dengan reka bentuk

193

Zhang, X., Zerihan, J., Ruhrmann, A., and Deviese, M. (2002). Tip Vortices

Generated by a Wing in Ground Effect. Proceedings of the 11th International

Symposium on Applications of Laser Techniques to Fluid Mechanics. 8-10

July. Lison, Portugal, Instituto Superior Technico.