analisis sistem struktur bangunan - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan...

107
1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang adalah susunan elemen-elemen linier yang membentuk segitiga atau kombinasi segitiga, sehingga menjadi bentuk rangka yang tidak dapat berubah bentuk bila diberi beban eksternal tanpa adanya perubahan bentuk pada satu atau lebih batangnya. Setiap elemen tersebut dianggap tergabung pada titik hubungnya dengan sambungan sendi. Sedangkan batang-batang tersebut dihubungkan sedemikian rupa sehingga semua beban dan reaksi hanya terjadi pada titik hubung. 4.1.1. Prinsip – prinsip Umum Rangka Batang a. Prinsip Dasar Triangulasi Prinsip utama yang mendasari penggunaan rangka batang sebagai struktur pemikul beban adalah penyusunan elemen menjadi konfigurasi segitiga yang menghasilkan bentuk stabil. Pada bentuk segiempat atau bujursangkar, bila struktur tersebut diberi beban, maka akan terjadi deformasi masif dan menjadikan struktur tak stabil. Bila struktur ini diberi beban, maka akan membentuk suatu mekanisme runtuh (collapse), sebagaimana diilustrasikan pada gambar berikut ini. Struktur yang demikian dapat berubah bentuk dengan mudah tanpa adanya perubahan pada panjang setiap batang. Sebaliknya, konfigurasi segitiga tidak dapat berubah bentuk atau runtuh, sehingga dapat dikatakan bahwa bentuk ini stabil (Gambar 4.1). Pada struktur stabil, setiap deformasi yang terjadi relatif kecil dan dikaitkan dengan perubahan panjang batang yang diakibatkan oleh gaya yang timbul di dalam batang sebagai akibat dari beban eksternal. Selain itu, sudut yang terbentuk antara dua batang tidak akan berubah apabila struktur stabil tersebut dibebani. Hal ini sangat berbeda dengan mekanisme yang terjadi pada bentuk tak stabil, dimana sudut antara dua batangnya berubah sangat besar. Pada struktur stabil, gaya eksternal menyebabkan timbulnya gaya pada batang-batang. Gaya-gaya tersebut adalah gaya tarik dan tekan murni. Lentur (bending) tidak akan terjadi selama gaya eksternal berada pada titik nodal (titik simpul). Bila susunan segitiga dari batang-batang adalah bentuk stabil, maka sembarang susunan segitiga juga membentuk struktur stabil dan kukuh. Hal ini merupakan prinsip dasar penggunaan rangka batang pada gedung. Bentuk kaku yang lebih besar untuk sembarang geometri dapat dibuat dengan memperbesar segitiga-segitiga itu. Untuk rangka batang yang hanya memikul beban vertikal, pada batang tepi atas umumnya timbul gaya tekan, dan pada tepi bawah umumnya timbul gaya tarik. Gaya tarik atau tekan ini dapat timbul pada setiap batang dan mungkin terjadi pola yang berganti-ganti antara tarik dan tekan.

Upload: dinhnhu

Post on 12-May-2019

246 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

181

2. ANALISIS SISTEM STRUKTUR BANGUNAN

2.2. Struktur Rangka Batang

Rangka batang adalah susunan elemen-elemen linier yang membentuk segitiga atau kombinasi segitiga, sehingga menjadi bentuk rangka yang tidak dapat berubah bentuk bila diberi beban eksternal tanpa adanya perubahan bentuk pada satu atau lebih batangnya. Setiap elemen tersebut dianggap tergabung pada titik hubungnya dengan sambungan sendi. Sedangkan batang-batang tersebut dihubungkan sedemikian rupa sehingga semua beban dan reaksi hanya terjadi pada titik hubung.

4.1.1. Prinsip – prinsip Umum Rangka Batang a. Prinsip Dasar Triangulasi

Prinsip utama yang mendasari penggunaan rangka batang sebagai struktur pemikul beban adalah penyusunan elemen menjadi konfigurasi segitiga yang menghasilkan bentuk stabil. Pada bentuk segiempat atau bujursangkar, bila struktur tersebut diberi beban, maka akan terjadi deformasi masif dan menjadikan struktur tak stabil. Bila struktur ini diberi beban, maka akan membentuk suatu mekanisme runtuh (collapse), sebagaimana diilustrasikan pada gambar berikut ini. Struktur yang demikian dapat berubah bentuk dengan mudah tanpa adanya perubahan pada panjang setiap batang. Sebaliknya, konfigurasi segitiga tidak dapat berubah bentuk atau runtuh, sehingga dapat dikatakan bahwa bentuk ini stabil (Gambar 4.1).

Pada struktur stabil, setiap deformasi yang terjadi relatif kecil dan dikaitkan dengan perubahan panjang batang yang diakibatkan oleh gaya yang timbul di dalam batang sebagai akibat dari beban eksternal. Selain itu, sudut yang terbentuk antara dua batang tidak akan berubah apabila struktur stabil tersebut dibebani. Hal ini sangat berbeda dengan mekanisme yang terjadi pada bentuk tak stabil, dimana sudut antara dua batangnya berubah sangat besar.

Pada struktur stabil, gaya eksternal menyebabkan timbulnya gaya pada batang-batang. Gaya-gaya tersebut adalah gaya tarik dan tekan murni. Lentur (bending) tidak akan terjadi selama gaya eksternal berada pada titik nodal (titik simpul). Bila susunan segitiga dari batang-batang adalah bentuk stabil, maka sembarang susunan segitiga juga membentuk struktur stabil dan kukuh. Hal ini merupakan prinsip dasar penggunaan rangka batang pada gedung. Bentuk kaku yang lebih besar untuk sembarang geometri dapat dibuat dengan memperbesar segitiga-segitiga itu. Untuk rangka batang yang hanya memikul beban vertikal, pada batang tepi atas umumnya timbul gaya tekan, dan pada tepi bawah umumnya timbul gaya tarik. Gaya tarik atau tekan ini dapat timbul pada setiap batang dan mungkin terjadi pola yang berganti-ganti antara tarik dan tekan.

Page 2: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

182

Gambar 4.1. Rangka Batang dan Prinsip-prinsip Dasar Triangulasi

Sumber: Schodek, 1999 Penekanan pada prinsip struktur rangka batang adalah bahwa

struktur hanya dibebani dengan beban-beban terpusat pada titik-titik hubung agar batang-batangnya mengalami gaya tarik atau tekan. Bila beban bekerja langsung pada batang, maka timbul pula tegangan lentur pada batang itu sehingga desain batang sangat rumit dan tingkat efisiensi menyeluruh pada batang menurun. b. Analisa Kualitatif Gaya Batang Perilaku gaya-gaya dalam setiap batang pada rangka batang dapat ditentukan dengan menerapkan persamaan dasar keseimbangan. Untuk konfigurasi rangka batang sederhana, sifat gaya tersebut (tarik, tekan atau nol) dapat ditentukan dengan memberikan gambaran bagaimana rangka batang tersebut memikul beban. Salah satu cara untuk menentukan gaya dalam batang pada rangka batang adalah dengan menggambarkan bentuk

Page 3: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

183

deformasi yang mungkin terjadi. Mekanisme gaya yang terjadi pada konfigurasi rangka batang sederhana dapat dilihat pada Gambar 4.2.

Metode untuk menggambarkan gaya-gaya pada rangka batang adalah berdasarkan pada tinjauan keseimbangan titik hubung. Secara umum rangka batang kompleks memang harus dianalisis secara matematis agar diperoleh hasil yang benar.

Mekanisme Gaya Batang Rangka Batang A

Rangka Batang B

Susunan Rangka Batang Dasar

Sifat gaya (tarik / tekan) batang diagonal dapat ditentukan dengan membayangkan batang itu tidak ada dan melihat kecenderungan deformasinya. Jadi, diagonal yang terletak di antara B - F pada rangka batang A mengalami tarik karena mencegah menjauhnya titik B dan F.

Distribusi gaya batang pada rangka batang tersebut adalah :

C= gaya tekan T = gaya tarik

Analogi ’kabel’ atau ’pelengkung’ dapat digunakan untuk menentu-kan sifat (tarik / tekan) gaya batang. Di dalam rangka batang kiri, batang FBD dibayangkan sebagai ’kabel’ yang mengalami tarik. Batang-batang lain berfungsi mempertahankan keseimbangan konfigurasi ’kabel’ dasar tersebut.

Gambar 4.2. Mekanisme Gaya-gaya pada Rangka Batang Sumber: Schodek, 1999

4.1.2. Analisa Rangka Batang

a. Stabilitas Langkah pertama pada analisis rangka batang adalah menentukan apakah rangka batang itu mempunyai konfigurasi yang stabil atau tidak. Secara umum, setiap rangka batang yang merupakan susunan bentuk dasar segitiga merupakan struktur yang stabil. Pola susunan batang yang tidak

Page 4: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

184

segitiga, umumnya kurang stabil. Rangka batang yang tidak stabil dan akan runtuh apabila dibebani, karena rangka batang ini tidak mempunyai jumlah batang yang mencukupi untuk mempertahankan hubungan geometri yang tetap antara titik-titik hubungnya (Gambar 4.3).

Gambar 4.3. Kestabilan Internal pada Rangka Batang

Sumber: Schodek, 1999

Penting untuk menentukan apakah konfigurasi batang stabil atau tidak stabil. Keruntuhan total dapat terjadi bila struktur tak stabil terbebani. Pola yang tidak biasa seringkali menyulitkan penyelidikan kestabilannya. Pada suatu rangka batang, dapat digunakan batang melebihi jumlah minimum yang diperlukan untuk mencapai kestabilan. Untuk menentukan kestabilan rangka batang bidang, digunakan persamaan yang menghubungkan banyaknya titik hubung pada rangka batang dengan banyaknya batang yang diperlukan untuk mencapai kestabilan (lihat sub bab 3.6). Aspek lain dalam stabilitas adalah bahwa konfigurasi batang dapat digunakan untuk menstabilkan struktur terhadap beban lateral. Gambar 4.4 menunjukan cara menstabilkan struktur dengan menggunakan batang-batang kaku (bracing). Kabel dapat digunakan sebagai pengganti dari batang kaku, bila gaya yang dipikul adalah gaya tarik saja. Tinjauan stabilitas sejauh ini beranggapan bahwa semua elemen rangka batang

Page 5: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

185

dapat memikul gaya tarik dan tekan dengan sama baiknya. Elemen kabel tidak dapat memenuhi asumsi ini, karena kabel akan melengkung bila dibebani gaya tekan. Ketika pembebanan datang dari suatu arah, maka gaya tekan atau gaya tarik mungkin timbul pada diagonal, sesuai dengan arah diagonal tersebut. Suatu struktur dengan satu kabel diagonal mungkin tidak stabil. Namun bila kabel digunakan dengan sistem kabel silang, dimana satu kabel memikul seluruh gaya horisiontal dan kabel lainnya menekuk tanpa menimbulkan bahaya terhadap struktur, maka kestabilan dapat tercapai.

Gambar 4.4. Penggunan batang kaku (bracing) diagonal

Sumber: Schodek, 1999

b. Gaya Batang Prinsip yang mendasari teknik analisis gaya batang adalah bahwa setiap struktur atau setiap bagian dari setiap struktur harus berada dalam kondisi seimbang. Gaya-gaya batang yang bekerja pada titik hubung rangka batang pada semua bagian struktur harus berada dalam keseimbangan, seperti pada Gambar 4.5. Prinsip ini merupakan kunci utama dari analisis rangka batang.

Page 6: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

186

Gambar 4.5. Diagram gaya-gaya batang yang bekerja pada titik hubung

Sumber: Schodek, 1999

c. Metode Analisis Rangka Batang Beberapa metode digunakan untuk menganalisa rangka batang. Metode-metode ini pada prinsipnya didasarkan pada prinsip keseimbangan. Metode-metode yang umum digunakan untuk analisa rangka batang adalah sebagai berikut :

Keseimbangan Titik Hubung pada Rangka Batang Pada analisis rangka batang dengan metode titik hubung (joint), rangka batang dianggap sebagai gabungan batang dan titik hubung. Gaya batang diperoleh dengan meninjau keseimbangan titik-titik hubung. Setiap titik hubung harus berada dalam keseimbangan.

Keseimbangan Potongan Prinsip yang mendasari teknik analisis dengan metode ini adalah bahwa setiap bagian dari suatu struktur harus berada dalam keseimbangan. Dengan demikian, bagian yang dapat ditinjau dapat pula mencakup banyak titik hubung dan batang. Konsep peninjauan keseimbangan pada bagian dari suatu struktur yang bukan hanya satu titik hubung merupakan cara yang sangat berguna dan merupakan dasar untuk analisis dan desain rangka batang, juga banyak desain struktur lain.

Perbedaan antara kedua metode tersebut di atas adalah dalam peninjauan keseimbangan rotasionalnya. Metode keseimbangan titik hubung, biasanya digunakan apabila ingin mengetahui semua gaya batang. Sedangkan metode potongan biasanya digunakan apabila ingin mengetahui hanya sejumlah terbatas gaya batang.

Gaya Geser dan Momen pada Rangka Batang Metode ini merupakan cara khusus untuk meninjau bagaimana rangka batang memikul beban yang melibatkan gaya dan momen eksternal, serta gaya dan momen tahanan internal pada rangka batang.

Page 7: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

187

Agar keseimbangan vertikal potongan struktur dapat dijamin, maka gaya geser eksternal harus diimbangi dengan gaya geser tahanan total atau gaya geser tahanan internal (VR), yang besarnya sama tapi arahnya berlawanan dengan gaya geser eksternal. Efek rotasional total dari gaya internal tersebut juga harus diimbangi dengan momen tahanan internal (MR) yang besarnya sama dan berlawanan arah dengan momen lentur eksternal. Sehingga memenuhi syarat keseimbangan, dimana :

RE MM = atau 0=− RE MM (4.1)

d. Rangka Batang Statis Tak Tentu Rangka batang statis tak tentu tidak dapat dianalisis hanya dengan menggunakan persamaan kesimbangan statika, karena kelebihan banyaknya tumpuan atau banyaknya batang yang menjadi variabel. Pada struktur statis tak tentu, keseimbangan translasional dan rotasional ( Fx=0,

Fy=0, dan Mo=0) masih berlaku. Pemahaman struktur statis tak tentu adalah struktur yang gaya-gaya dalamnya bergantung pada sifat-sifat fisik elemen strukturnya.

e. Penggunaan Elemen (Batang) Tarik Khusus : Kabel Selain elemen batang yang sudah dibahas di atas, ada elemen lain yang berguna, yaitu elemen kabel, yang hanya mampu memikul tarik. Secara fisik, elemen ini biasanya berupa batang baja berpenampang kecil atau kabel terjalin. Elemen ini tidak mampu memikul beban tekan, tetapi sering digunakan apabila hasil analisis diketahui selalu memikul beban tarik. Elemen yang hanya memikul beban tarik dapat mempunyai penampang melintang yang jauh lebih kecil dibanding dengan memikul beban tekan.

f. Rangka Batang Ruang Kestabilan yang ada pada pola batang segitiga dapat diperluas ke dalam tiga dimensi. Pada rangka batang bidang, bentuk segitiga sederhana merupakan dasar, sedangkan bentuk dasar pada rangka batang ruang adalah tetrahedron. Prinsip-prinsip yang telah dibahas pada analisis rangka batang bidang secara umum dapat diterapkan pada rangka batang ruang. Kestabilan merupakan tinjauan utama.

Gaya-gaya yang timbul pada batang suatu rangka batang ruang dapat diperoleh dengan meninjau keseimbangan ruang potongan rangka batang ruang tersebut. Jelas bahwa persamaan statika yang digunakan untuk benda tegar tiga dimensi, yaitu :

=== 0,0,0 gyx FFF dan

=== 0,0,0 gyx MMM (4.2)

Apabila diterapkan langsung pada rangka batang ruang yang cukup besar, persamaan-persamaan ini akan melibatkan banyak titik hubung dan batang.

Page 8: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

188

g. Kekakuan Titik Hubung Pada perhitungan rangka batang, diasumsikan bahwa semua titik hubung dimodelkan sebagai titik hubung sendi. Dalam beberapa hal, membuat hubungan yang benar-benar sendi kadang-kadang tidak mungkin atau bahkan tidak dikehendaki. Apabila kondisi titik hubung aktual sedemikian rupa sehingga ujung-ujung batang tidak bebas berotasi, maka momen lentur lokal dan gaya aksialnya dapat timbul pada batang-batang. Apabila momen lentur itu cukup besar, maka batang tersebut harus didesain agar mampu memikul tegangan kombinasi akibat gaya aksial dan momen lentur. Besar tegangan lentur yang terjadi sebagai akibat dari titik hubung kaku umumnya 20% dari tegangan normal yang terjadi. Pada desain awal, biasanya tegangan lentur sekunder ini diabaikan. Salah satu efek positif dari adanya titik hubung kaku ini adalah untuk memperbesar kekakuan rangka batang secara menyeluruh, sehingga dapat mengurangi defleksi. Merencanakan titik hubung yang kaku biasanya tidak akan mempengaruhi pembentukan akhir dari rangka batang.

4.1.3. Desain Rangka Batang a. Tujuan

Kriteria yang digunakan untuk merancang juga menjadi sangat bervariasi. Ada beberapa tujuan yang menjadi kriteria dalam desain rangka batang, yaitu:

(1) Efisiensi Struktural Tujuan efisiensi struktural biasa digunakan dan diwujudkan dalam suatu prosedur desain, yaitu untuk meminimumkan jumlah bahan yang digunakan dalam rangka batang untuk memikul pembebanan pada bentang yang ditentukan. Tinggi rangka batang merupakan variabel penting dalam meminimumkan persyaratan volume material, dan mempengaruhi desain elemennya.

(2) Efisiensi Pelaksanaan (Konstruksi) Alternatif lain, kriteria desain dapat didasarkan atas tinjauan efisiensi pelaksanaan (konstruksi) sehubungan dengan fabrikasi dan pembuatan rangka batang. Untuk mencapai tujuan ini, hasil yang diperoleh seringkali berupa rangka batang dengan konfigurasi eksternal sederhana, sehingga diperoleh bentuk triangulasi yang sederhana pula. Dengan membuat semua batang identik, maka pembuatan titik hubung menjadi lebih mudah dibandingkan bila batang-batang yang digunakan berbeda.

b. Konfigurasi Beberapa bentuk konfigurasi eksternal rangka batang yang umum digunakan seperti ditunjukan pada Gambar 4.6. Konfigurasi eksternal selalu berubah-ubah, begitu pula pola internalnya. Konfigurasi-konfigurasi ini dipengaruhi oleh faktor eksternal, tinjauan struktural maupun konstruksi.

Page 9: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

189

Masing-masing konfigurasi mempunyai tujuan yang berbeda. Beberapa hal yang menjadi bahasan penting dalam konfigurasi rangka batang adalah :

(1) Faktor Eksternal Faktor-faktor eksternal memang bukanlah hal yang utama dalam menentukan konfigurasi rangka batang. Namun faktor eksternal juga dapat mempengaruhi bentuk-bentuk yang terjadi.

(2) Bentuk-bentuk Dasar Ditinjau dari segi struktural maupun konstruksi, bentuk–bentuk dasar yang digunakan dalam rangka batang merupakan respon terhadap pembebanan yang ada. Gaya-gaya internal akan timbul sebagai respon terhadap momen dan gaya geser eksternal. Momen lentur terbesar pada umumnya terjadi di tengah rangka batang yang ditumpu sederhana yang dibebani merata, dan semakin mengecil ke ujung. Gaya geser eksternal terbesar terjadi di kedua ujung, dan semakin mengecil ke tengah.

(3) Rangka Batang Sejajar Pada rangka batang dengan batang tepi sejajar, momen eksternal ditahan terutama oleh batang-batang tepi atas dan bawah. Gaya geser eksternal akan dipikul oleh batang diagonal karena batang-batang tepi berarah horisontal dan tidak mempunyai kontribusi dalam menahan gaya arah vertikal. Gaya-gaya pada diagonal umumnya bervariasi mengikuti variasi gaya geser dan pada akhirnya menentukan desain batang.

(4) Rangka Batang Funicular Rangka batang yang dibentuk secara funicular menunjukan bahwa secara konsep, batang nol dapat dihilangkan hingga terbentuk konfigurasi bukan segitiga, namun tanpa mengubah kemampuan struktur dalam memikul beban rencana. Batang-batang tertentu yang tersusun di sepanjang garis bentuk funicular untuk pembebanan yang ada merupakan transfer beban eksternal ke tumpuan. Batang-batang lain adalah batang nol yang terutama berfungsi sebagai bracing. Tinggi relatif pada struktur ini merupakan fungsi beban dan lokasinya.

Page 10: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

190

Gambar 4.6. Jenis-jenis Umum Rangka Batang Sumber: Schodek, 1999

c. Tinggi Rangka Batang Penentuan tinggi optimum yang meminimumkan volume total rangka batang umumnya dilakukan dengan proses optimasi. Proses optimasi ini membuktikan bahwa rangka batang yang relatif tinggi terhadap bentangannya merupakan bentuk yang efisien dibandingkan dengan rangka

Page 11: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

191

batang yang relatif tidak tinggi. Sudut-sudut yang dibentuk oleh batang diagonal dengan garis horisontal pada umumnya berkisar antara 300 – 600

dimana sudut 450 biasanya merupakan sudut ideal. Berikut ini pedoman sederhana untuk menentukan tinggi rangka batang berdasarkan pengalaman. Pedoman sederhana di bawah ini hanya untuk pedoman awal, bukan digunakan sebagai keputusan akhir dalam desain.

Jenis Rangka Batang Tinggi Rangka batang dengan beban relatif ringan dan berjarak dekat

20

1 dari bentangan

Rangka batang kolektor sekunder yang memikul reaksi yang dihasilkan oleh rangka batang lain 10

1 dari bentangan

Rangka batang kolektor primer yang memikul beban sangat besar, misalnya: rangka batang yang memikul beban kolom dari gedung bertingkat banyak

5

1

4

1atau dari bentangan

d. Masalah-masalah pada Desain Elemen Beberapa permasalahan yang umumnya timbul pada desain elemen menyangkut faktor-faktor yang diuraikan berikut ini.

(1) Beban Kritis Pada rangka batang, setiap batang harus mampu memikul gaya maksimum (kritis) yang mungkin terjadi. Dengan demikian, dapat saja terjadi setiap batang dirancang terhadap kondisi pembebanan yang berbeda-beda.

(2) Desain Elemen, meliputi : Batang Tarik

ijintegangan

tarikgayadiperlukanyangpenampangL =

Batang Tekan Untuk batang tekan, harus diperhitungkan adanya kemungkinan keruntuhan tekuk (buckling) yang dapat terjadi pada batang panjang yang mengalami gaya tekan. Untuk batang tekan panjang, kapasitas pikul-beban berbanding terbalik dengan kuadrat panjang batang. Untuk batang tekan yang relatif pendek, maka tekuk bukan merupakan masalah sehingga luas penampang melintang hanya bergantung langsung pada besar gaya yang terlibat dan teganagan ijin material, dan juga tidak bergantung pada panjang batang tersebut.

(3) Batang Berukuran Konstan dan/atau Tidak Konstan Bila batang tepi atas dirancang sebagai batang yang menerus

dan berpenampang melintang konstan, maka harus dirancang terhadap gaya maksimum yang ada pada seluruh batang tepi atas,

Page 12: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

192

sehingga penampang tersebut akan berlebihan dan tidak efisien. Agar efisien, maka penampang konstan yang dipakai dikombinasikan dengan bagian-bagian kecil sebagai tambahan luas penampang yang hanya dipakai pada segmen-segmen yang memerlukan.

(4) Pengaruh Tekuk terhadap Pola Ketergantungan kapasitas pikul beban suatu batang tekan

pada panjangnya serta tujuan desain agar batang tekan tersebut relatif lebih pendek seringkali mempengaruhi pola segitiga yang digunanakan, seperti ditunjukan pada Gambar 4.7 berikut.

Gambar 4.7. Tekuk Batang : hubungan dengan pola segitiga

Sumber: Schodek, 1999

Gambar4.8. Tekuk lateral pada rangka Sumber: Schodek, 1999

Page 13: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

193

(5) Pengaruh Tekuk Lateral pada desain batang dan susunan batang. Jika rangka berdiri bebas seperti pada Gambar 4.8, maka ada

kemungkinan struktur tersebut akan mengalami tekuk lateral pada seluruh bagian struktur. Untuk mencegah kondisi ini maka struktur rangka batang yang berdiri bebas dapat dihindari. Selain itu penambahan balok transversal pada batang tepi atas dan penggunaan rangka batang ruang juga dapat mencegah tekuk transversal (Gambar 4.9).

e. Rangka Batang Bidang dan Rangka Batang Ruang Rangka batang bidang memerlukan material lebih sedikit daripada rangka batang tiga dimensi untuk fungsi yang sama. Dengan demikian, apabila rangka batang digunakan sebagai elemen yang membentang satu arah, sederetan rangka batang bidang akan lebih menguntungkan dibandingkan dengan sederetan rangka batang ruang (tiga dimensi). Sebaliknya, konfigurasi tiga dimensi seringkali terbukti lebih efisien dibandingkan beberapa rangka batang yang digunakan untuk membentuk sistem dua arah. Rangka batang tiga dimensi juga terbukti lebih efisien bila dibandingkan beberapa rangka batang yang digunakan sebagai rangka berdiri bebas (tanpa balok transversal yang menjadi penghubung antar rangka batang di tepi atas). Hal ini seperti ditunjukan pada Gambar 4.9.

Gambar 4.9. Rangka batang ruang tiga dimensi Sumber: Schodek, 1999

Page 14: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

194

2.3. Struktur Balok

Secara sederhana, balok sebagai elemen lentur digunakan sebagai elemen penting dalam kosntruksi. Balok mempunyai karakteristik internal yang lebih rumit dalam memikul beban dibandingkan dengan jenis elemen struktur lainnya. Balok menerus dengan lebih dari dua titik tumpuan dan lebih dari satu tumpuan jepit merupakan struktur statis tak tentu. Struktur statis tak tentu adalah struktur yang reaksi, gaya geser, dan momen lenturnya tidak dapat ditentukan secara langsung dengan menggunakan persamaan keseimbangan dasar Fx =0, Fy =0, dan Fz =0. Balok statis tak tentu sering juga digunakan dalam praktek, karena struktur ini lebih kaku untuk suatu kondisi bentang dan beban daripada struktur statis tertentu. Jadi ukurannya bisa lebih kecil. Kerugian struktur statis tak tentu adalah pada kepekaannya terhadap penurunan (settlement) tumpuan dan efek termal.

4.2.1. Prinsip Desain Balok

Pada sistem struktural yang ada di gedung, elemen balok adalah elemen yang paling banyak digunakan dengan pola berulang. Umumnya pola ini menggunakan susunan hirarki balok, dimana beban pada permukaan mula-mula dipikul oleh elemen permukaan diteruskan ke elemen struktur sekunder, dan selanjutnya diteruskan ke kolektor atau tumpuan. Semakin besar beban, yang disertai dengan bertambahnya panjang, pada umumnya akan memperbesar ukuran atau tinggi elemen struktur, seperti pada Gambar 4.10. Susunan hirarki bisa sangat bervariasi, tetapi susunan yang umum digunakan adalah satu dan dua tingkat. Sedangkan susunan tiga tingkat adalah susunan yang maksimum digunakan [Gambar 4.10(a)]. Untuk ukuran bentang tertentu, pada umumnya sistem dengan berbagai tingkat dapat digunakan. Ukuran elemen struktur untuk setiap sistem dapat ditentukan berdasarkan analisis bentang, beban dan material. Ada beberapa kriteria pokok yang harus dipenuhi, antara lain : kemampuan layan, efisiensi, kemudahan.

Tegangan aktual yang timbul pada balok tergantung pada besar dan distribusi material pada penampang melintang elemen struktur. Semakin besar balok maka semakin kecil tegangannya. Luas penampang dan distribusi beban merupakan hal yang penting. Semakin tinggi suatu elemen, semakin kuat kemampuannya untuk memikul lentur.

Variabel dasar yang penting dalam desain adalah besar beban yang ada, jarak antara beban-beban dan perilaku kondisi tumpuan balok. Kondisi tumpuan jepit lebih kaku daripada yang ujung-ujungnya dapat berputar bebas. Balok dengan tumpuan jepit dapat memikul beban terpusat di tengah bentang dua kali lebih besar daripada balok yang sama tidak dijepit ujungnya. Jenis dan perilaku umum balok seperti pada Gambar 4.11.

Page 15: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

195

Gambar 4.10. Balok pada Gedung

Sumber: Schodek, 1999

Page 16: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

196

Beban lentur pada balok menyebabkan terjadinya gaya-gaya internal, tegangan serta deformasi. Gaya serta momen ini berturut-turut disebut gaya geser dan momen lentur. Agar keseimbangan pada bagian struktur tersebut diperoleh untuk bagian struktur yang diperlihatkan, sekumpulan gaya internal pasti timbul pada struktur yang efek jaringnya adalah untuk menghasilkan momen rotasional yang sama besar tapi berlawanan arah dengan momen lentur eksternal dan gaya vertikal yang sama dan berlawanan arah dengan gaya geser eksternal.

Gambar4 .11. Jenis-jenis perilaku balok

Sumber: Schodek, 1999

4.2.2. Analisa Balok

a. Tegangan Lentur Pada perilaku umum balok, tegangan lentur yang bervariasi secara linier pada suatu penampang merupakan tanggapan atas aksi momen lentur eksternal yang ada pada balok di titik tersebut. Hubungan antara tegangan lentur (fy), parameter loaksi (y) dan besaran penampang (I) dapat dinyatakan dalam hubungan berikut ini :

Page 17: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

197

I

Myfy

membesarfymakamembesarIapabila

membesarfymakamembesaryapabila

membesarfymakamembesarMapabila

IyMfy

,

,

,1

.. (4.3)

Untuk suatu harga momen tertentu, bila tinggi balok menjadi dua kali (sementara lebarnya tetap), akan menyebabkan tegangan lentur mengecil dengan faktor ¼. Tegangan lentur tidak terlalu peka terhadap perubahan lebar penampang. Untuk momen dan tinggi penampang konstan, memperlebar penampang dua kali akan memperkecil tegangan lentur menjadi setengahnya. Untuk penampang tak simetris, penentuan lokasi pusat berat tidak tepat ditengah tinggi penampang. Proses penentuan dimensi penampang melintang pada balok sederhana simetris yang memikul momen lentur tidaklah sulit. Mula-mula bahan dipilih sehingga tegangan ijin diketahui. Selanjutnya ukuran penampang yang diperlukan ditentukan berdasarkan taraf tegangan lentur aktual pada balok yang harus sama atau lebih kecil dari taraf tegangan lentur ijin. Apabila tegangan aktual pada titik itu melampaui tegangan ijin, maka balok tersebut dipandang mengalami kelebihan tegangan (over-stressed) dan hal ini tidak diijinkan.

b. Tekuk Lateral pada Balok

Pada balok yang dibebani dapat terjadi tekuk lateral dan terjadi keruntuhan sebelum seluruh kekuatan penampang tercapai. Fenomena tekuk lateral pada balok serupa dengan yang terjadi pada rangka batang. Ketidakstabilan dalam arah lateral terjadi karena gaya tekan yang timbul di daerah di atas balok, disertai dengan tidak cukupnya kekakuan balok dalam arah lateral. Diasumsikan bahwa jenis kegagalan tekuk lateral ini dapat terjadi, dan tergantung pada penampang balok, pada taraf tegangan yang relatif rendah.

Pencegahan tekuk lateral dapat dilakukan dengan cara : (1) dengan membuat balok cukup kaku dalam arah lateral (2) dengan menggunakan pengaku/pengekang (bracing) lateral.

Apabila balok digunakan untuk menumpu tutup atap atau sistem sekunder lain, pengekang dengan sendirinya diberikan oleh elemen sekunder tersebut. Apabila balok digunakan pada situasi dimana jenis pengekang tersebut tidak mungkin digunakan, maka balok dapat dibuat menjadi kaku dalam arah lateral dengan memperbesar dimensi transversal di daerah atas balok. Penggunaan beberapa pengekang lateral pada contoh struktur balok kayu dapat dilihat pada Gambar 4.12. Jenis dan penggunaan pengekang lateral juga ditentukan oleh perbandingan antara tinggi dan lebar balok.

Page 18: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

198

Gambar 4.12. Pengekang Lateral untuk Balok Kayu

Sumber: Schodek, 1999

c. Tegangan Geser Gaya resultan dari tegangan geser ini, yaitu gaya geser internal (VR) sama besar, tetapi berlawanan arah dengan gaya geser eksternal (VE). Tegangan geser maksimum pada penampang balok adalah 1,5 kali tegangan geser rata-rata penampang balok segiempat. d. Tegangan Tumpu Tegangan tumpu (bearing stress) adalah tegangan yang timbul pada bidang kontak antara dua elemen struktur. Contohnya adalah tegangan yang terjadi pada ujung-ujung balok sederhana yang terletak di atas tumpuan ujung dengan dimensi tertentu. Banyak material, misalnya kayu, yang sangat mudah mengalami kegagalan akibat tegangan tumpu. Apabila beban tekan disalurkan, kegagalan tegangan tekan biasanya terjadi, dan hal ini ditunjukkan dengan hancurnya material. Kegagalan ini biasanya dilokalisasikan, dan lebih baik dihindari.

PERBANDINGAN TINGGI/LEBAR: JENIS PENGEKANG LATERAL YANG DIPERLUKAN

Page 19: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

199

e. Torsi Torsi adalah puntiran, yang timbul pada elemen struktur apabila diberikan momen puntir langsung MT atau secara tak langsung. Tegangan geser torsional timbul pada elemen struktur tersebut sebagai akibat dari momen torsi yang bekerja padanya, seperti pada gambar 4.13.

Gambar 4.13. Torsi yang terjadi pada balok. Sumber: Schodek, 1999

Sedangkan Gambar 4.14 menunjukkan bahwa penampang tertutup

lebih baik dalam menahan torsi bila dibandingkan dengan penampang terbuka.

Gambar 4.14. Penampang balok dan ketahanan terhadap torsi

Sumber: Schodek, 1999

f. Pusat Geser

Page 20: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

200

Gambar 4.15 adalah ilustrasi pusat geser (shear centre) pada balok. Pada penampang tak simetrik, pemberian beban dapat menyebabkan terjadinya puntiran. Dengan menerapkan beban melalui ’pusat geser’ balok, maka hanya akan terjadi lentur, tanpa adanya puntir. Pusat geser penampang tak simetris seringkali terletak di luar penampang.

Gambar 4.15. Pusat geser (shear center) pada balok Sumber: Schodek, 1999

g. Defleksi

Defleksi pada bentang balok disebabkan karena adanya lendutan balok akibat beban. Defleksi ( ) pada suatu titik tergantung pada beban P atau w, panjang bentang balok L, dan berbanding terbalik dengan kekakuan balok. Dengan demikian dapat dinyatakan bahwa:

( )( )EIPLC

EIwLC

berkurangmakabertambahEapabila

berkurangmakabertambahIapabila

bertambahmakabertambahLapabila

bertambahmakabertambahwapabila

/

/

,

,

,

,

32

41

=Δ=Δ

ΔΔΔΔ

Beberapa kriteria empiris yang digunakan untuk menentukan defleksi

ijin adalah sebagai berikut :

Page 21: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

201

360

Lijin =Δ

Lantai Defleksi akibat beban mati

Defleksi akibat beban mati dan beban

hidup 240

Lijin =Δ

240

Lijin =Δ

Atap Defleksi akibat beban hidup

Defleksi akibat beban mati dan beban

hidup 180

Lijin =Δ

g. Tegangan Utama Pada balok, interaksi antara tegangan lentur dan tegangan geser dapat merupakan tegangan normal tekan atau tarik, yang disebut sebagai tegangan utama (principle stresses). Arah tegangan aksial ini pada umumnya berbeda dengan arah tegangan lentur maupun tegangan gesernya. Garis tegangan utama dapat digambarkan berikut ini, dimana merupakan implikasi pada mekanisme pemikul-beban yang ada pada balok (Gambar 4.16).

Gambar 4.16. Garis tegangan utama

Sumber: Schodek, 1999

4.2.3. Desain Balok

Prinsip – prinsip Desain Umum Variabel utama dalam mendesain balok meliputi: bentang, jarak balok, jenis dan besar beban, jenis material, ukuran dan bentuk penampang, serta cara penggabungan atau fabrikasi. Semakin banyak batasan desain, maka semakin mudah desain dilakukan. Setiap desain harus memenuhi kriteria kekuatan dan kekakuan untuk masalah keamanan dan kemampuan layan. Pendekatan desain untuk memenuhi kriteria ini sangat bergantung pada material yang dipilih, apakah menggunakan balok kayu, baja atau beton bertulang.

Page 22: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

202

Beberapa faktor yang merupakan prinsip-prinsip desain umum dalam perencanaan balok, yaitu :

(1) Kontrol kekuatan dan kekakuan (2) Variasi besaran material (3) Variasi bentuk balok pada seluruh panjangnya (4) Variasi kondisi tumpuan dan kondisi batas

Prinsip desain praktis balok kayu dipengaruhi oleh berbagai faktor. Salah satunya adalah sifat kayu yang mempunyai kemampuan untuk memikul tegangan besar dalam waktu singkat. Pada kondisi beban permanen, tegangan ijin perlu direduksi dengan faktor 0,90. Faktor beban untuk angin adalah 1,33. Sedangkan beban normal mempunyai faktor 1,0. Desain balok baja umumnya didesain berdasarkan beban kerja dan tegangan ijin. Balok yang digunakan bisa berupa penampang gilas (wide flens / sayap lebar), kanal, atau tersusun atas elemen-elemen (plat atau siku). Untuk bentang atau beban yang sangat besar, penampang girder plat yang tersusun dari elemen siku dan plat sering digunakan. Pada balok baja, apabila material balok mulai leleh pada saat dibebani, maka distribusi tegangan yang ada mulai berubah. Balok masih dapat menerima tambahan momen sampai semua bagian penampang telah meleleh. Desain balok beton tidak dapat digunakan sendiri pada balok karena sangat kecilnya kekuatan tarik, dan karena sifat getasnya (brittle). Retak-retak yang timbul dapat berakibat gagalnya struktur, dimana hal ini dapat terjadi ketika balok beton mengalami lentur. Penambahan baja di dalam daerah tarik membentuk balok beton bertulang dapat meningkatkan kekuatan sekaligus daktilitasnya. Elemen struktur beton bertulang menggabungkan sifat yang dimiliki beton dan baja. Desain Balok Statis Tak Tentu Proses desain balok menerus sama saja dengan proses desain balok sederhana. Apabila momen maksimum yang dapat terjadi pada struktur telah diketahui, selanjutnya ditentukan penampang struktur yang cukup untuk memikul momen itu. Prinsip mengenai distribusi material secara optimal di suatu penampang melintang juga dapat diterapkan pada balok menerus.

Beberapa hal khusus yang perlu diperhatikan dalam desain balok statis tak tentu ini diuraikan sebagai berikut:

(1) Desain Momen, secara praktis seperti pada Tabel 4.1. (2) Penentuan Penampang Balok Menerus

Penentuan ukuran suatu penampang melintang balok menerus tergantung pada besar momen yang ada pada penampang tersebut. Tinggi struktur yang dibentuk disesuaikan dengan momen lentur yang ada.

(3) Penggunaan Titik Hubung Konstruksi Karena alasan pelaksanaan, kesulitan sering terjadi dalam membuat elemen struktur menerus yang panjang, karena seringnya digunakan

Page 23: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

203

titik pelaksanaan (construction joints). Untuk memudahkan pembuatan titik konstruksi, titik-titik itu diletakkan di dekat, atau pada titik belok. Dengan demikian, titik pelaksanaan tidak perlu dirancang untuk memikul momen. Jadi hanya merupakan titik hubung sendi. Dengan menggunakan kondisi momen nol pada titik belok, perilaku balok menerus tersebut dapat dimodelkan sebagai strutur statis tertentu.

(4) Pengontrolan Distribusi Momen Momen yang timbul pada balok menerus dapat dirancang secara cermat oleh perencana. Hal ini dapat dilakukan dengan berbagai cara. Salah satunya adalah dengan mengatur bentang dan beban pada struktur.

Tabel 4.1. Desain Momen

Sumber: Chen & Liu, 2005

Beton bertulang merupakan salah satu contoh material yang cocok untuk digunakan pada balok menerus. Kontinuitas dapat diperoleh dengan mengatur penulangan balok beton bertulang tersebut. Tulangan baja diletakkan pada daerah dimana terjadi tegangan tarik. Banyaknya tulangan di setiap lokasi tergantung pada momen yang timbul.

Page 24: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

204

2.4. Struktur Kolom

Kolom sebagai elemen tekan juga merupakan elemen penting pada konstruksi. Kolom pada umumnya merupakan elemen vertikal. Namun sebenarnya kolom tidak harus selalu berarah vertikal, bahkan dinding pemikul (load-bearing wall) sebenarnya juga dapat dipadang sebagai kolom yang diperluas menjadi suatu bidang. Umumnya, kolom tidak mengalami lentur secara langsung, karena tidak ada beban tegak lurus terhadap sumbunya.

Sistem post and beam terdiri dari elemen struktur horisontal (balok) diletakkan sederhana di atas dua elemen struktur vertikal (kolom) yang merupakan konstruksi dasar yang digunakan sejak dulu. Pada sistem ini, secara sederhana balok dan kolom digunakan sebagai elemen penting dalam konstruksi.

4.3.1. Prinsip Desain Kolom

Elemen struktur kolom yang mempunyai nilai perbandingan antara panjang dan dimensi penampang melintangnya relatif kecil disebut kolom pendek. Kapasitas pikul-beban kolom pendek tidak tergantung pada panjang kolom dan bila mengalami beban berlebihan, maka kolom pendek pada umumnya akan gagal karena hancurnya material. Dengan demikian, kapasitas pikul-beban batas tergantung pada kekuatan material yang digunakan. Semakin panjang suatu elemen tekan, proporsi relatif elemen akan berubah hingga mencapai keadaan yang disebut elemen langsing. Perilaku elemen langsing sangat berbeda dengan elemen tekan pendek. Perilaku elemen tekan panjang terhadap beban tekan adalah apabila bebannya kecil, elemen masih dapat mempertahankan bentuk liniernya, begitu pula apabila bebannya bertambah. Pada saat beban mencapai nilai tertentu, elemen tersebut tiba-tiba tidak stabil, dan berubah bentuk menjadi seperti tergambar. Hal inilah yang dibuat fenomena tekuk (buckling) apabila suatu elemen struktur (dalam hal ini adalah kolom) telah menekuk, maka kolom tersebut tidak mempunyai kemampuan lagi untuk menerima beban tambahan. Sedikit saja penambahan beban akan menyebabkan elemen struktur tersebut runtuh. Dengan demikian, kapasitas pikul-beban untuk elemen struktur kolom itu adalah besar beban yang menyebabkan kolom tersebut mengalami tekuk awal. Struktur yang sudah mengalami tekuk tidak mempunyai kemampuan layan lagi. Fenomena tekuk adalah suatu ragam kegagalan yang diakibatkan oleh ketidakstabilan suatu elemen struktur yang dipengaruhi oleh aksi beban. Kegagalan yang diakibatkan oleh ketidakstabilan dapat terjadi pada berbagai material. Pada saat tekuk terjadi, taraf gaya internal bisa sangat rendah. Fenomena tekuk berkaitan dengan kekakuan elemen struktur. Suatu elemen yang mempunyai kekakukan kecil lebih mudah mengalami tekuk dibandingkan dengan yang mempunyai kekakuan besar. Semakin panjang suatu elemen struktur, semakin kecil kekakuannya.

Page 25: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

205

Apabila suatu elemen struktur mulai tidak stabil, seperti halnya kolom yang mengalami beban tekuk, maka elemen tersebut tidak dapat memberikan gaya tahanan internal lagi untuk mempertahankan bentuk liniernya. Gaya tahanannya lebih kecil daripada beban tekuk. Kolom yang tepat berada dalam kondisi mengalami beban tekuk sama saja dengan sistem yang berada dalam kondisi keseimbangan netral. Sistem dalam kondisi demikian mempunyai kecenderungan mempertahankan konfigurasi semula.

Banyak faktor yang mempengaruhi beban tekuk (Pcr) pada suatu elemen struktur tekan panjang. Faktor-faktor tersebut adalah sebagai berikut:

(1) Panjang Kolom Pada umumnya, kapasitas pikul-beban kolom berbanding terbalik dengan kuadrat panjang elemennya. Selain itu, faktor lain yang menentukan besar beban tekuk adalah yang berhubungan dengan karakteristik kekakuan elemen struktur (jenis material, bentuk, dan ukuran penampang).

(2) Kekakuan Kekakuan elemen struktur sangat dipengaruhi oleh banyaknya material dan distribusinya. Pada elemen struktur persegi panjang, elemen struktur akan selalu menekuk pada arah seperti yang diilustrasikan pada di bawah bagian (a). Namun bentuk berpenampang simetris (misalnya bujursangkar atau lingkaran) tidak mempunyai arah tekuk khusus seperti penampang segiempat. Ukuran distribusi material (bentuk dan ukuran penampang) dalam hal ini pada umumnya dapat dinyatakan dengan momen inersia (I).

(3) Kondisi ujung elemen struktur Apabila ujung-ujung kolom bebas berotasi, kolom tersebut mempunyai kemampuan pikul-beban lebih kecil dibandingkan dengan kolom sama yang ujung-ujungnya dijepit. Adanya tahanan ujung menambah kekakuan sehingga juga meningkatkan kestabilan yang mencegah tekuk. Mengekang (menggunakan bracing) suatu kolom pada suatu arah juga meningkatkan kekakuan.

Fenomena tekuk pada umumnya menyebabkan terjadinya pengurangan kapasitas pikul-beban elemen tekan. Beban maksimum yang dapat dipikul kolom pendek ditentukan oleh hancurnya material, bukan tekuk. Beban ini dinyatakan dalam persamaan:

FyAPy ⋅= (4.4) dimana: A = luas penampang melintang kolom Fy = tegangan leleh material Sebaliknya, pada kolom panjang atau langsing, kegagalan yang terjadi disebabkan oleh beban yang lebih kecil daripada beban yang menyebabkan hancurnya material. Ini berarti bahwa tegangan aktual yang

Page 26: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

206

ada apabila tekuk terjadi pada kolom panjang (tegangan tekuk kritis) selalu lebih kecil daripada tegangan leleh, yaitu dinyatakan sebagai berikut :

fcr = Pcr / A < fleleh. Kegagalan pada kolom panjang adalah yang disebabkan oleh tekuk, jadi tegangan yang terjadi pada saat gagal lebih kecil daripada tegangan leleh material kolom tersebut.

4.3.2. Analisa Kolom

a. Kolom Pendek Analisis pada kolom pendek dibagi atas analisa terhadap dua jenis beban yang terjadi pada elemen tekan tersebut, yaitu:

1. Beban Aksial Elemen tekan yang mempunyai potensi kegagalan karena

hancurnya material (tegangan langsung) dan mempunyai kapasitas pikul-beban tak tergantung pada panjang elemen, relatif lebih mudah untuk dianalisis. Apabila beban yang bekerja bertitik tangkap tepat pada pusat berat penampang elemen, maka yang timbul adalah tegangan tekan merata yang besarnya dinyatakan dalam persamaan:

f = P / A

dimana kegagalan akan terjadi bila tegangan langsung aktual ini melebihi tegangan hancur material (fa Fy). Beban hancur dinyatakan dalam persamaan:

FyAPy ⋅=

dimana: A = luas penampang melintang kolom Fy = tegangan leleh / hancur material

2. Beban Eksentris Apabila beban bekerja eksentris (tidak bekerja di pusat berat

penampang melintang), maka distribusi tegangan yang timbul tidak akan merata. Efek beban eksentris adalah menimbulkan momen lentur pada elemen yang berinteraksi dengan tegangan tekan langsung. Bahkan apabila beban itu mempunyai eksentrisitas yang relatif besar, maka di seluruh bagian penampang yang bersangkutan dapat terjadi tegangan tarik (Gambar 4.17) Aturan sepertiga-tengah, yaitu aturan yang mengusahakan agar beban mempunyai titik tangkap di dalam sepertiga tengah penampang (daerah Kern) agar tidak terjadi tegangan tarik.

Page 27: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

207

Gambar 4.17. Beban eksentris pada Kolom

Sumber: Schodek, 1999

b. Kolom Panjang Analisis pada kolom panjang dibagi atas analisa terhadap dua faktor yang terjadi pada elemen tekan tersebut, yaitu:

1. Tekuk Euler Beban tekuk kritis untuk kolom yang ujung-ujungnya sendi disebut sebagai beban tekuk Euler, yang dinyatakan dalam Rumus Euler :

2

2

L

PIPcr

π= (4.5)

dimana: E = modulus elastisitas I = momen inersia L = panjang kolom di antara kedua ujung sendi π = konstanta = 3,1416

Dengan rumus ini, dapat diprediksi bahwa apabila suatu kolom menjadi sangat panjang, beban yang dapat menimbulkan tekuk pada kolom menjadi semakin kecil menuju nol, dan sebaliknya. Rumus Euler ini tidak berlaku untuk kolom pendek, karena pada kolom ini yang lebih menentukan adalah tegangan hancur material. Bila panjang kolom menjadi dua kali lipat, maka kapasitas pikul-beban akan berkurang menjadi seperempatnya. Dan bila panjang kolom menjadi setengah dari panjang semula, maka kapasitas pikul-

Page 28: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

208

beban akan meningkat menjadi 4 kali. Jadi, beban tekuk kolom sangat peka terhadap perubahan panjang kolom.

2. Tegangan Tekuk Kritis

Beban tekuk kritis kolom dapat dinyatakan dalam tegangan tekuk kritis (fcr), yaitu dengan membagi rumus Euler dengan luas penampang A. Jadi persamaan tersebut adalah :

2

2

AL

EI

A

Pfcr

π== atau ( )2

2

rL

E

A

Pfcr

π==

dimana bila dimensi penampang I dan A mempunyai hubungan sebagaimana rumus berikut :

2.rAI = sehingga AIr =

dimana r disebut jari-jari girasi

Unsur L/r disebut sebagai rasio kelangsingan kolom. Tekuk kritis berbanding terbalik dengan kuadrat rasio kelangsingan. Semakin besar rasio, akan semakin kecil tegangan kritis yang menyebabkan tekuk. Rasio kelangsingan (L/r) ini merupakan parameter yang sangat penting dalam peninjauan kolom karena pada parameter inilah tekuk kolom tergantung. Jari-jari girasi suatu luas terhadap suatu sumbu adalah jarak suatu titik yang apabila luasnya dipandang terpusat pada titik tersebut, momen inersia terhadap sumbu akan sama dengan momen inersia luas terhadap sumbu tersebut. Semakin besar jari-jari girasi penampang, akan semakin besar pula tahanan penampang terhadap tekuk, walaupun ukuran sebenarnya dari ketahanan terhadap tekuk adalah rasio L/r.

3. Kondisi Ujung Pada kolom yang ujung-ujungnya sendi, titik ujungnya mudah berotasi namun tidak bertranslasi. Hal ini akan memungkinkan kolom tersebut mengalami deformasi.

4. Bracing Untuk mengurangi panjang kolom dan meningkatkan kapasitas pikul-bebannya, kolom sering dikekang pada satu atau lebih titik pada panjangnya. Pengekang (bracing) ini merupakan bagian dari rangka struktur suatu bangunan gedung. Pada kolom yang diberi pengekang (bracing) di tengah tingginya, maka panjang efektif kolom menjadi setengah panjangnya, dan kapasitas pikul-beban menjadi empat kali lipat dibandingkan dengan kolom tanpa pengekang. Mengekang kolom di titik yang jaraknya 2/3 dari tinggi tidak efektif dalam memperbesar kapasitas pikul-beban kolom bila dibandingkan dengan mengekang tepat di tengah tinggi kolom.

Page 29: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

209

5. Kekuatan Kolom Aktual vs Ideal Apabila suatu kolom diuji secara eksperimental, maka akan diperoleh hasil yang berbeda antara beban tekuk aktual dengan yang diperoleh secara teoritis. Hal ini khususnya terjadi pada pada kolom yang panjangnya di sekitar transisi antara kolom pendek dan kolom panjang. Hal ini terjadi karena adanya faktor-faktor seperti eksentrisitas tak terduga pada beban kolom, ketidak-lurusan awal pada kolom, adanya tegangan awal pada kolom sebagai akibat dari proses pembuatannya, ketidakseragaman material, dan sebagainya. Untuk memeperhitungkan fenomena ini, maka ada prediksi perilaku kolom pada selang menengah (intermediate range).

6. Momen dan Beban Eksentris Banyaknya kolom yang mengalami momen dan beban eksentris, dan bukan hanya gaya aksial. Untuk kolom pendek, cara memperhitungkannya adalah dinyatakan dengan PeM = , dan dapat diperhitungkan tegangan kombinasi antara tegangan aksial dan tegangan lentur. Untuk kolom panjang, ekspresi Euler belum memperhitungkan adanya momen.

4.3.3. Desain Kolom

a. Prinsip-prinsip Desain Umum Tujuan desain kolom secara umum adalah untuk memikul beban rencana dengan menggunakan material seminimum mungkin, atau dengan mencari alternatif desain yang memberikan kapasitas pikul-beban sebesar mungkin untuk sejumlah material yang ditentukan. Ada beberapa faktor yang menjadi pertimbangan dasar atau prinsip-prinsip dalam desain elemen struktur tekan secara umum, yaitu sebagai berikut :

1. Penampang Penentuan bentuk penampang melintang yang diperlukan untuk memikul beban, secara konseptual merupakan sesuatu yang mudah. Tujuannya adalah untuk memperoleh penampang melintang yang memberikan nilai rx dan ry yang diperlukan dengan material yang seminimum mungkin. Beberapa bentuk penampang dapat dilihat pada Gambar 4.18.

2. Kolom pada Konteks Gedung Pada umumnya, akan lebih menguntungkan bila menggunakan bracing pada titik-titik yang tidak terlalu banyak disertai kolom yang agak besar, dibandingkan dengan banyak bracing dan kolom kecil.

Page 30: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

210

Gambar 4.18. Bentuk-bentuk Penampang Kolom

Sumber: Schodek, 1999

b. Ukuran Kolom Prosedur desain untuk mengestimasi ukuran kolom cukup rumit karena harga tegangan ijinnya belum diketahui sebelum menentukan ukuran kolom. Prosedur desain yang biasa digunakan adalah dengan mengestimasi tegangan ijin, ukuran kolom, dengan menggunakan dimensinya untuk menentukan tegangan ijinnya, lalu kemudian memeriksa apakah kolom tersebut mempunyai ukuran yang memadai. Tegangan aktual yang ada dibandingkan dengan tegangan ijin yang dihitung. Bila tegangan aktual melampaui tegangan yang diijinkan, maka proses diulangi lagi sampai tegangan aktual lebih kecil daripada yang diijinkan.

2.5. Sistem Struktur pada Bangunan Gedung Bertingkat

2.2.1. Pengantar Aplikasi Sistem Struktur pada Bangunan

Sistem struktur pada bangunan gedung secara garis besar menggunakan beberapa sistem utama

a) Struktur Rangka atau Skeleton

Struktur kerangka atau skeleton terdiri atas komposisi dari kolom-kolom dan balok-balok. Kolom sebagai unsur vertikal berfungsi sebagai penyalur beban dan gaya menuju tanah, sedangkan balok adalah unsur horisontal yang berfungsi sebagai pemegang dan media pembagian beban dan gaya ke kolom. Kedua unsur ini harus tahan terhadap tekuk dan lentur.

Page 31: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

211

Selanjutnya dilengkapi dengan sistem lantai, dinding, dan komponen lain untuk melengkapi kebutuhan bangunan untuk pembentuk ruang. Sistem dan komponen tersebut diletakkan dan ditempelkan pada kedua elemen rangka bangunan. Dapat dikatakan bahwa elemen yang menempel pada rangka bukanlah elemen struktural (elemen non-struktural).

Bahan yang umumnya dipakai pada sistem struktur rangka adalah kayu, baja, beton (Gambar 4.19) termasuk beton pra-cetak . Semua bahan tersebut harus tahan terhadap gaya-gaya tarik, tekan, puntir dan lentur. Saat ini bahan yang paling banyak digunakan adalah baja dan beton bertulang karena mampu menahan gaya-gaya tersebut dalam skala yang besar. Untuk bahan pengisi non-strukturalnya dapat digunakan bahan yang ringan dan tidak mempunyai daya dukung yang besar, seperti susunan bata, dinding kayu, kaca dan lainnya.

Sistem rangka yang dibentuk dengan elemen vertikal dan horisontal baik garis atau bidang, akan membentuk pola satuan ukuran yang disebut grid (Gambar4.20). Grid berarti kisi-kisi yang bersilangan tegak lurus satu dengan lainnya membentuk pola yang teratur. Berdasarkan pola yang dibentuk serta arah penyaluran pembebanan atau gayanya, maka sistem rangka umumnya terdiri atas dua macam yaitu: sistem rangka dengan bentang satu arah (one way spanning) dan bentang dua arah (two way spanning). Bentuk grid persegi panjang menggunakan sistem bentang satu arah, dengan penyaluran gaya ke arah bentang yang pendek. Sedangkan untuk pola grid yang cenderung bujursangkar maka penyaluran gaya terjadi

Gambar 4.19. Gedung dengan struktur rangka beton

Sumber: Macdonald, 2002

Page 32: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

212

ke arah kedua sisinya, maka sistem struktur yang digunakan adalah sistem bentang dua arah. Aksi struktur dua arah dapat diperoleh jika perbandingan dimensi bentang panjang dengan bentang pendek lebih kecil dari 1,5.

Gambar 4.20. Tipikal struktur gedung berlantai banyak Sumber: Schodek, 1999

Sistem struktur rangka banyak berkembang untuk aplikasi pada bangunan tinggi (multi-storey structure) dan bangunan dengan bentang lebar (long-span structure)

b) Struktur Rangka Ruang

Sistem rangka ruang dikembangkan dari sistem struktur rangka batang dengan penambahan rangka batang kearah tiga dimensinya (gambar 4.21). Struktur rangka ruang adalah komposisi dari batang-batang yang masing-masing berdiri sendiri, me-mikul gaya tekan atau gaya tarik yang sentris dan dikaitkan satu sa-ma lain dengan sistem tiga dimensi atau ruang. Bentuk rangka ruang dikembangkan dari pola grid dua lapis (doubel-layer grids), dengan batang-batang yang

Gambar 4.21. Contoh aplikasi sistem

rangka ruang Sumber: Macdonald, 2002

Page 33: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

213

menghubungkan titik-titik grid secara tiga dimensional.

Elemen dasar pembentuk struktur rangka ini adalah: − Rangka batang bidang − Piramid dengan dasar segiempat membentuk oktahedron − Piramid dengan dasar segitiga membentuk tetrahedron (Gambar 4,22)

Gambar 4.22. Elemen dasar pembentuk sistem rangka ruang Sumber: Schodek, 1999

Beberapa sistem selanjutnya dikembangkan model rangka ruang berdasarkan pengembangan sistem konstruksi sambungannya (Gambar 4.23), antara lain:

− Sistem Mero − Sistem space deek − Sistem Triodetic − Sistem Unistrut − Sistem Oktaplatte − Sistem Unibat − Sistem Nodus − Sistem NS Space Truss

c) Struktur Permukaan Bidang

Struktur permukaan bidang termasuk juga struktur form-active biasanya digunakan pada keadaan khusus dengan persyaratan struktur dengan tingkat efisiensi yang tinggi. Struktur-struktur permukaan bidang pada umumnya menggunakan material-material khusus yang dapat mempunyai kekuatan yang lebih tinggi dengan ketebalan yang minimum. Beberapa jenis struktur ini antara lain:

Page 34: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

214

Gambar 4.23. Macam-macam sistem rangka ruang

Sumber: Schodek, 1999

Struktur bidang lipat

Struktur bidang lipat dibentuk melalui lipatan-lipatan bidang datar dengan kekakuan dan kekuatan yang terletak pada keseluruhan bentuk itu sendiri. Bentuk lipatan akan mempunyai kekakuan yang lebih karena momen inersia yang lebih besar, karena bentuk lipatan akan memiliki ketinggian yang jauh lebih besar dibandingkan dengan plat datar.

Struktur cangkang

Struktur cangkang adalah sistem dengan pelat melengkung ke satu arah atau lebih yang tebalnya jauh lebih kecil daripada bentangnya. Gaya-gaya yang harus didukung dalam struktur cangkang disalurkan secara merata melalui permukaan bidang sebagai gaya-gaya

sistem Mero sistem space deek

sistem triodetic sistem unistruf sistem oktaplatte

sistem unibat sistem nodus NS space truss

Page 35: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

215

membran yang diserap oleh elemen strukturnya. Gaya-gaya disalurkan sebagai gaya normal, dengan demikian tidak terdapat gaya lintang dan lentur. Resultan gaya yang tersebar diserap ke dalam struktur dengan gaya tangensial yang searah dengan kelengkungan bidang permukaannya.

Struktur membran

Struktur membran mempunyai prinsip yang sama dengan struktur cangkang, tetapi dengan bahan bidang permukaan yang sangat tipis. Kekakuan selaput tipis tersebut diperoleh dengan elemen tarik yang membentuk jala-jala yang saling membantu untuk menambah kapasitas menahan beban-beban lendutan.

d) Struktur Kabel dan Jaringan

Struktur kabel dan jaringan dikembangkan dari kemampuan kabel menahan gaya tarik yang tinggi. Dengan menggunakan sistem tarik maka tidak diperlukan sistem penopang vertikal untuk elemen horisontalnya (lantai atau atap), sehingga daerah di bawah elemen horisontal (ruang) memiliki bentangan yang cukup besar. Bangunan dengan aplikasi sistem struktur ini akan sangat mendukung untuk bangunan bentang luas berbentang lebar, seperti dome, stadion, dll (Gambar 4.24). Sistem yang dikembangkan pada struktur kabel antara lain:

− Struktur atap tarik dengan kolom penunjang − Struktur kabel tunggal − Struktur kabel ganda

Gambar 4.24. Struktur bangunan modern dengan sistem permukaan bidang dan kabel

Sumber: Macdonald, 2002

Page 36: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

216

2.2.2. Analisis Struktur Rangka Kaku

Struktur rangka kaku (rigid frame) adalah struktur yang terdiri atas elemen-elemen linier, umumnya balok dan kolom, yang saling dihubungkan pada ujung-ujungnya oleh joints (titik hubung) yang dapat mencegah rotasi relatif di antara elemen struktur yang dihubungkannya. Dengan demikian, elemen struktur itu menerus pada titik hubung tersebut. Seperti halnya balok menerus, struktur rangka kaku adalah struktur statis tak tentu. Banyak struktur rangka kaku yang tampaknya sama dengan sistem post and beam, tetapi pada kenyataannya struktur rangka ini mempunyai perilaku yang sangat berbeda dengan struktur post and beam. Hal ini karena adanya titik-titik hubung pada rangka kaku. Titik hubung dapat cukup kaku sehingga memungkinkan kemampuan untuk memikul beban lateral pada rangka, dimana beban demikian tidak dapat bekerja pada struktur rangka yang memperoleh kestabilan dari hubungan kaku antara kaki dengan papan horisontalnya.

a) Prinsip Rangka Kaku

Cara yang paling tepat untuk memahami perilaku struktur rangka sederhana adalah dengan membandingkan perilakunya terhadap beban dengan struktur post and beam. Perilaku kedua macam struktur ini berbeda dalam hal titik hubung, dimana titik hubung ini bersifat kaku pada rangka dan tidak kaku pada struktur post and beam. Gambar 4.25 menunjukkan jenis-jenis struktur rangka dan perbedaannya dengan struktur post and beam.

Gambar 4.25. Perbandingan Perilaku Struktur ’Post and Beam’

dan Rangka Kaku Sumber: Schodek, 1999

Page 37: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

217

b) Beban Vertikal

Pada struktur post and beam, struktur akan memikul beban beban vertikal dan selanjutnya beban diteruskan ke tanah. Pada struktur jenis ini, balok terletak bebas di atas kolom. Sehingga pada saat beban menye-babkan momen pada balok, ujung-ujung balok berotasi di ujung atas kolom. Jadi, sudut yang dibentuk antara ujung balok dan ujung atas kolom berubah. Kolom tidak mempunyai kemampuan untuk menahan rotasi ujung balok. Ini berarti tidak ada momen yang dapat diteruskan ke kolom,sehingga kolom memikul gaya aksial.

Apabila suatu struktur rangka kaku mengalami beban vertikal seperti di atas, beban tersebut juga dipikul oleh balok, diteruskan ke kolom dan akhirnya diterima oleh tanah. Beban itu menyebabkan balok cenderung berotasi. Tetapi pada struktur rangka kaku akan terjadi rotasi bebas pada ujung yang mencegah rotasi bebas balok. Hal ini dikarenakan ujung atas kolom dan balok berhubungan secara kaku. Hal penting yang terjadi adalah balok tersebut lebih bersifat mendekati balok berujung jepit, bukan terletak secara sederhana. Seiring dengn hal tersebut, diperoleh beberapa keuntungan, yaitu bertambahnya kekakuan, berkurangnya defleksi, dan berkurangnya momen lentur internal. Akibat lain dari hubungan kaku tersebut adalah bahwa kolom menerima juga momen lentur serta gaya aksial akibat ujung kolom cenderung memberikan tahanan rotasionalnya. Ini berarti desain kolom menjadi relatif lebih rumit.

Titik hubung kaku berfungsi sebagai satu kesatuan. Artinya, bila titik ujung itu berotasi, maka sudut relatif antara elemen-elemen yang dihubungkan tidak berubah. Misalnya, bila sudut antara balok dan kolom semula 900, setelah titik hubung berotasi, sudut akan tetap 900. Besar rotasi titik hubung tergantung pada kekakuan relatif antara balok dan kolom. Bila kolom semakin relatif kaku terhadap balok, maka kolom lebih mendekati sifat jepit terhadap ujung balok, sehingga rotasi titik hubung semakin kecil. Bagaimanapun rotasi selalu terjadi walaupun besarannya relatif kecil. Jadi kondisi ujung balok pada struktur rangka kaku terletak di antara kondisi ujung jepit (tidak ada rotasi sama sekali) dan kondisi ujung sendi-sendi (bebas berotasi). Begitu pula halnya dengan ujung atas kolom.

Perilaku yang dijelaskan di atas secara umum berarti bahwa balok pada sistem rangka kaku yang memikul beban vertikal dapat didesain lebih kecil daripada balok pada sistem post and beam. Sedangkan kolom pada struktur rangka kaku harus didesain lebih besar dibandingkan dengan kolom pada struktur post and beam, karena pada struktur rangka kaku ada kombinasi momen lentur dan gaya aksial. Sedangkan pada struktur post and beam hanya terjadi gaya aksial. Ukuran relatif kolom akan semakin dipengaruhi bila tekuk juga ditinjau. Hal ini dikarenakan kolom pada struktur rangka mempunyai tahanan ujung, sedangkan kolom pada post and beam tidak mempunyai tahanan ujung. Perbedaan lain antara struktur rangka kaku dan struktur post and beam sebagai respon terhadap beban vertikal adalah

Page 38: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

218

adanya reaksi horisontal pada struktur rangka kaku. Sementara pada struktur post and beam tidak ada.

Pondasi untuk rangka harus didesain untuk memikul gaya dorong horisontal yang ditimbulkan oleh beban vertikal. Pada struktur post and beam yang dibebani vertikal, tidak ada gaya dorong horisontal, jadi tidak ada reaksi horisontal. Dengan demikian, pondasi struktur post and beam relatif lebih sederhana dibandingkan pondasi untuk struktur rangka.

c) Beban Horisontal

Perilaku struktur post and beam dan struktur rangka terhadap beban horisontal sangat berbeda. Struktur post and beam dapat dikatakan hampir tidak mempunyai kemampuan sama sekali untuk memikul beban horisontal. Adanya sedikit kemampuan, pada umumnya hanyalah karena berat sendiri dari tiang / kolom (post), atau adanya kontribusi elemen lain, misalnya dinding penutup yang berfungsi sebagai bracing. Tetapi perlu diingat bahwa kemampuan memikul beban horisontal pada struktur post and beam ini sangat kecil. Sehingga struktur post and beam tidak dapat digunakan untuk memikul beban horisontal seperti beban gempa dan angin. Sebaliknya, pada struktur rangka timbul lentur, gaya geser dan gaya aksial pada semua elemen, balok maupun kolom. Momen lentur yang diakibatkan oleh beban lateral (angin dan gempa) seringkali mencapai maksimum pada penampang dekat titik hubung. Dengan demikian, ukuran elemen struktur di bagian yang dekat dengan titik hubung pada umumnya dibuat besar atau diperkuat bila gaya lateralnya cukup besar. Rangka kaku dapat diterapkan pada gedung besar maupun kecil. Secara umum, semakin tinggi gedung, maka akan semakin besar pula momen dan gaya-gaya pada setiap elemen struktur. Kolom terbawah pada gedung bertingkat banyak pada umumnya memikul gaya aksial dan momen lentur terbesar. Bila beban lateral itu sudah sangat besar, maka umumnya diperlukan kontribusi elemen struktur lainnya untuk memikul, misalnya dengan menggunakan pengekang (bracing) atau dinding geser (shear walls).

d) Kekakuan Relatif Balok dan Kolom

Pada setiap struktur statis tak tentu, termasuk juga rangka (frame), besar momen dan gaya internal tergantung pada karakteristik relatif antara elemen-elemen strukturnya. Kolom yang lebih kaku akan memikul beban horisontal lebih besar. Sehingga tidak dapat digunakan asumsi bahwa reaksi horisontal sama besar. Momen yang lebih besar akan timbul pada kolom yang memikul beban horisontal lebih besar (kolom yang lebih kaku).

Perbedaan kekakuan relatif antara balok dan kolom juga mempengaruhi momen akibat beban vertikal. Semakin kaku kolom, maka momen yang timbul akan lebih besar daripada kolom yang relatif kurang kaku terhadap balok. Untuk struktur yang kolomnya relatif lebih kaku

Page 39: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

219

terhadap balok, momen negatif pada ujung balok yang bertemu dengan kolom kaku akan membesar sementara momen positifnya berkurang. Efek variasi kekakuan tersebut seperti pada Gambar 4.26.

(a) Struktur pelengkung tiga sendi. Momen negatif besar terjadi pada balok.

(b) Struktur ’post and beam’. Momen positif besar terjadi pada balok.

(c) Kolom tidak menahan rotasi pada ujung

(d) Rangka dengan kolom sangat fleksibel dan balok kaku. Kolom fleksibel memberikan sedikit tahanan thdp rotasi, sehingga balok berlaku seperti sendi.

(e) Rangka dengan kekakuan balok & kolom normal. Kolom dpt memberi tahanan rotasi, shg terjadi rotsi titik hubung.

(f) Rangka dengan kolom sangat kaku & balok fleksibel.

(g) Kolom dpt memberi tahanan rotasi cukup besar, shg bersifat jepit thdp ujung balok.

Gambar 4.26. Efek variasi kekakuan relatif balok dan kolom terhadap momen dan gaya internal pada struktur rangka kaku

Sumber: Schodek, 1999

e) Goyangan (Sideways)

Pada rangka yang memikul beban vertikal, ada fenomena yang disebut goyangan (sidesway). Bila suatu rangka tidak berbentuk simetris, atau tidak dibebani simetris, struktur akan mengalami goyangan (translasi horisontal) ke salah satu sisi.

f) Penurunan Tumpuan (Support Settlement)

Seperti halnya pada balok menerus, rangka kaku sangat peka terhadap turunnya tumpuan (Gambar 4.27). Berbagai jenis tumpuan (vertikal, horisontal, rotasional) dapat menimbulkan momen. Semakin besar differential settlement, akan semakin besar pula momen yang ditimbulkan. Bila gerakan tumpuan ini tidak diantisipasi sebelumnya, momen tersebut dapat menyebabkan keruntuhan pada rangka. Oleh karena itu perlu diperhatikan desain pondasi struktur rangka kaku untuk memperkecil kemungkinan terjadinya gerakan tumpuan.

Page 40: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

220

Gambar 4.27. Efek turunnya tumpuan (support settlement) pada struktur Rangka Kaku

Sumber: Schodek, 1999

g) Efek Kondisi Pembebanan Sebagian

Seperti yang terjadi pada balok menerus, momen maksimum yang terjadi pada struktur rangka bukan terjadi pada saat rangka itu dibebani penuh. Melainkan pada saat dibebani sebagian. Hal ini sangat menyulitkan proses analisisnya. Masalah utamanya adalah masalah prediksi kondisi beban yang bagaimanakah yang menghasilkan momen kritis.

h) Rangka Bertingkat Banyak

Beberapa metode yang dapat digunakan untuk melakukan analisis rangka bertingkat banyak yang mengalami beban lateral. Salah satunya adalah Metode Kantilever (Gambar 4.28), yang mulai digunakan pada tahun 1908. Metode ini menggunakan banyak asumsi, yaitu antara lain :

ada titik belok di tengah bentang setiap balok ada titik belok di tengah tinggi setiap kolom besar gaya aksial yang terjadi di setiap kolom pada suatu tingkat

sebanding dengan jarak horisontal kolom tersebut ke pusat berat semua kolom di tingkat tersebut.

Metode analisis lain yang lebih eksak adalah menggunakan

perhitungan berbantuan komputer. Walaupun dianggap kurang eksak, metode kantilever sampai saat ini masih digunakan, terutama untuk memperlajari perilaku struktur bertingkat banyak.

Page 41: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

221

Gambar 4.28. Rangka Kaku Bertingkat Banyak

Sumber: Schodek, 1999

i) Rangka Vierendeel Struktur Vierendeel seperti pada Gambar 4.29, adalah struktur rangka kaku yang digunakan secara horisontal. Struktur ini tampak seperti rangka batang yang batang diagonalnya dihilangkan. Perlu diingat bahwa struktur ini adalah rangka, bukan rangka batang. Jadi titik hubungnya kaku. Struktur demikian digunakan pada gedung karena alasan fungsional, dimana tidak diperlukan elemen diagonal. Struktur Vierendeel ini pada umumnya lebih efisien daripada struktur rangka batang.

Momen lentur pada setiap elemen tergantung pada besar gaya geser eksternal yang bekerja pada struktur. Momen semakin besar terjadi pada elemen yang semakin ke ujung, dimana gaya geser eksternalnya paling besar, dan semakin kecil di bagian tengah.

Gaya aksial pada elemen tepi atas dan bawah tergantung pada besar momen lentur overall pada struktur. Jadi, gaya ksial di bagian tengah struktur lebih besar daripada di tepi.

Diagram ukuran elemen ditentukan berdasarkan momen lentur yang ada pada masing-masing elemen struktur.

Gambar 4.29. Rangka Khusus : Struktur Vierendeel Sumber: Schodek, 1999

Page 42: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

222

2.2.3. Desain Rangka Kaku

Struktur rangka adalah jenis struktur yang tidak efisien apabila digunakan untuk beban lateral yang sangat besar. Untuk memikul beban yang demikian akan lebih efisien menambahkan dinding geser (shear wall) atau pengekang diagonal (diagonal bracing) pada struktur rangka. Apabila persyaratan fungsional gedung mengharuskan penggunaan rangka, maka dimensi dan geometri umum rangka yang akan didesain sebenarnya sudah dipastikan. Masalah desain yang utama adalah pada penentuan tiitik hubung, jenis material dan ukuran penampang struktur.

a) Pemilihan Jenis Rangka Derajat kekakuan struktur rangka tergantung antara lain pada banyak dan lokasi titik-titik hubung sendi dan jepit (kaku). Titik hubung sendi dan jepit seringkali diperlukan untuk maksud-maksud tertentu, meminimumkan momen rencana dan memperbesar kekakuan adalah tujuan-tujuan desain umum dalam memilih jenis rangka. Tinjauan lain meliputi kondisi pondasi dan kemudahan pelaksanaan. Gambar 4.30 menunjukan beberapa jenis struktur rangka yang mempunyai bentuk berdasarkan pada momen lentur yang terjadi padanya.

Gambar 4.30. Jenis-jenis struktur dengan bentuk berdasarkan

momen lentur yang terjadi padanya Sumber: Schodek, 1999

Momen yang diakibatkan oleh turunnya tumpuan pada rangka yang

mempunyai tumpuan sendi akan lebih kecil daripada yang terjadi pada rangka bertumpuan jepit. Selain itu, pondasi untuk rangka bertumpuan sendi

Page 43: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

223

tidak perlu mempunyai kemampuan memikul momen. Gaya dorong horisontal akibat beban vertikal juga biasanya lebih kecil pada rangka bertumpuan sendi dibandingkan dengan rangka yang bertumpuan jepit. Rangka bertumpuan jepit dapat lebih memberikan keuntungan meminimum-kan momen dan mengurangi defleksi bila dibandingkan dengan rangka bertumpuan sendi. Dalam desain harus ditinjau berbagai macam kemungkinan agar diperoleh hasil yang benar-benar diinginkan.

b) Momen Desain Untuk menentukan momen desain, diperlukan momen gabungan akibat beban vertikal dan beban horisontal. Dalam bebrapa hal, momen-momen akibat beban vertikal dan lateral (horisontal) ini saling memperbesar. Sementara dalam kondisi lain dapat saling mengurangi. Momen kritis terjadi apabila momen-momen tersebut saling memperbesar. Perlu diingat bahwa beban lateral umumnya dapat mempunyai arah yang berlawanan dengan yang tergambar. Karena itu, umumnya yang terjadi adalah momen yang saling memperbesar, jarang yang saling memperkecil. Apabila momen maksimum kritis, gaya aksial dan geser internal telah diperoleh, maka penentuan ukuran penampang elemen struktural dapat dilakukan dengan dua cara, yaitu :

(1) Mengidentifikasi momen dan gaya internal, maksimum yang ada di bagian elemen struktur tersebut, selanjutnya menentukan ukuran penampang di seluruh elemen tersebut berdasarkan gaya dan momen internal tadi, sampai ukuran penampang konstan pada seluruh panjang elemen struktur tersebut. Cara ini seringkali menghasilkan elemen struktur yang berukuran lebih (over-size) di seluruh bagian elemen, kecuali titik kritis. Oleh karena itu, cara ini dianggap kurang efisien dibanding cara kedua berikut ini.

(2) Menentukan bentuk penampang sebagai respon terhadap variasi gaya momen kritis. Biasanya cara ini digunakan dalam desain balok menerus.

c) Penentuan Bentuk Rangka (1) Struktur Satu Bentang

Pendekatan dengan menggunakan respon terhadap beban vertikal sebagai rencana awal tidak mungkin dilakukan berdasarkan momen negatif dan positif maksimum yang mungkin terjadi di setiap penampang akibat kedua jenis pembebanan tersebut. Konfigurasi yang diperoleh tidak optimum untuk kondisi beban lateral maupun beban vertikal, namun dapat memenuhi kondisi simultan kedua jenis pembebanan tersebut. (Gambar 4.31)

(2) Rangka Bertingkat Banyak Pada struktur rangka bertingkat banyak juga terjadi hal-hal yang sama dengan yang terjadi pada struktur rangka berbentang tunggal.

Page 44: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

224

Respon struktural terhadap beban lateral.

Respon struktur terhadap beban vertikal. Struktur tidak praktis, bahkan berbahaya karena struktur ini tidak stabil

Respon struktur terhadap beban vertikal dan lateral. Struktur ini diberi ukuran berdasarkan persyaratan kritis dari masing-masing kondisi pembebanan, tetapi belum pasti optimum untuk keduanya.

Gambar 4.31. Penentuan ukuran dan bentuk penampang pada

rangka bertingkat banyak, berdasarkan momen internal Sumber: Schodek, 1999

d) Desain Elemen dan Hubungan Penentuan bentuk elemen struktur dapat pula dilakukan dengan menggunakan profil tersusun. Titik hubung yang memikul momen umumnya dilas/disambung dengan baut pada kedua flens untuk memperoleh kekakuan hubungan yang dikehendaki. Umumnya digunakan plat elemen pengaku di titik-titik hubung kaku agar dapat mencegah terjadinya tekuk pada elemen flens dan badan sebagai akibat dari adanya tegangan tekan yang besar akibat momen. Rangka beton bertulang umumnya menggunakan tulangan di semua muka sebagai akibat dari distribusi momen akibat berbagai pembebanan. Tulangan baja terbanyak umumnya terjadi di titik-titik hubung kaku. Pemberian pasca tarik dapat pula digunakan pada elemen struktur horisontal dan untuk menghubungkan elemen-elemen vertikal. Rangka kayu biasanya mempunyai masalah, yaitu kesulitan membuat titik hubung yang mampu memikul momen. Salah satu usaha yang dilakukan untuk mengatasinya adalah dengan memakai knee braces. Titik hubung perletakannya biasanya berupa sendi.

Page 45: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

225

2.2.4. Analisis Struktur Plat dan Grid

Plat adalah struktur planar kaku yang secara khas terbuat dari meterial monolit yang tingginya relatif kecil dibandingkan dengan dimensi-dimensi lainya. Beban yang umum bekerja pada plat mempunyai sifat banyak arah dan tersebar. Plat dapat ditumpu di seluruh tepinya atau hanya pada titik-titik tertentu, misalnya oleh kolom-kolom, atau bahkan campuran antar tumpuan menerus dan tumpuan titik. Kondisi tumpuan bisa berbentuk sederhana atau jepit. Adanya kemungkinan variasi kondisi tumpuan menyebabkan plat dapat digunakan untuk berbagai keadaan. Rangka ruang (sebenarnya merupakan rangka batang) yang terdiri dari elemen-elemen pendek kaku berpola segitiga yang disusun secara tiga dimensi dan membentuk struktur permukaan bidang kaku yang besar dengan ketebalan relatif tipis adalah struktur yang analog dengan plat. Struktur Grid juga merupakan suatu contoh analogi lain dari struktur plat. Struktur grid bidang secara khas terdiri dari elemen-elemen linier kaku panjang seperti balok atau rangka batang, dimana batang-batang tepi atas dan bawah terletak sejajar. Titik hubungnya bersifat kaku. Distribusi momen dan geser pada struktur seperti ini dapat merupakan distribusi yang terjadi pad plat monolit. Pada umumnya grid berbutir kasar lebih baik memikul beban terpusat. Sedangkan plat dan rangka ruang dengan banyak elemen struktur kecil cenderung lebih cocok untuk memikul beban terdistribusi merata. Beberapa skema bentuk struktur plat, rangka ruang dan grid seperti pada Gambar 4.32.

Gambar 4.32. Struktur Rangka Ruang, Plat dan Grid

Sumber: Schodek, 1999

Page 46: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

226

a) Struktur Plat (1) Struktur Plat Satu Arah

Beberapa hal perlu menjadi perhatian dalam pembahasan struktur plat satu arah, yaitu :

Gambar 4.33. Struktur plat satu arah Sumber: Schodek, 1999

Beban Merata struktur plat berperilaku hampir sama dengan struktur grid. perbedaannya adalah bahwa pada struktur plat, berbagi aksi terjadi secara kontinu melalui bidang slab, bukan hanya pada titik-titik tumpuan. Plat tersebut dapat dibayangkan sebagai sederetan jalur balok yang berdekatan dengan lebar satu satuan dan terhubung satu sama lain di seluruh bagian panjangnya. Gambar 4.33 mengilustrasikan struktur plat satu arah.

Beban Terpusat Plat yang memikul beban terpusat berperilaku lebih rumit. Plat tersebut dapat dibayangkan sebagai sederetan jalur balok yang berdekatan dengan lebar satu satuan dan terhubung satu sama lain di seluruh bagian panjangnya. Karena adanya beban yang diterima oleh jalur balok, maka balok cenderung berdefleksi ke bawah. Kecenderungan itu dikurangi dengan adanya hubungan antara jalur-jalur tersebut. Torsi juga terjadi pada jalur tersebut. Pada jalur yang semakin jauh dari jalur dimana beban terpusat bekerja, torsi dan geser yang terjadi akan semakin berkurang di jalur yang mendekati tepi plat. Hal ini berarti momen internal juga berkurang. Jumlah total reaksi harus sama dengan beban total yang bekerja pada seluruh arah vertikal. Jumlah momen tahanan internal yang terdistribusi di seluruh sisi plat juga harus sama dengan momen eksternal total. Hal ini didasarkan atas tinjauan keseimbangan dasar.

Page 47: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

227

Plat Berusuk Plat berusuk adalah sistem gabungan balok-slab. Apabila slab mempunyai kekakuan yang relatif kaku, maka keseluruhan susunan ini akan berperilaku sebagai slab satu arah (Gambar 4.34), bukan balok-balok sejajar. Slab transveral dianggap sebagai plat satu arah menerus di atas balok. Momen negatif akan terjadipada slab di atas balok.

Gambar 4.34. Plat Berusuk Satu Arah

Sumber: Schodek, 1999

(2) Struktur Plat Dua Arah Bahasan atas struktur plat dua arah akan dijelaskan berdasarkan kondisi tumpuan yang ada (gambar 4.35), yaitu sebagai berikut :

Plat sederhana di atas kolom Plat yang ditumpu sederhana di tepi-tepi menerus Plat dengan tumpuan tepi jepit menerus Plat di atas balok yang ditumpu kolom

Sistem slab dan balok dua arah. Plat terletak di atas balok-balok. Apabila balok ini sangat kaku, maka plat akan

berperilaku seolah-olah ditumpu oleh dinding. Apabila balok sangat fleksibel, maka plat

berperilaku seolah-olah ditumpu oleh empat kolom di pojok-pojoknya.

Gambar 4.35. Sistem Balok dan Plat Dua Arah Sumber: Schodek, 1999

Page 48: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

228

b) Struktur Grid Pada struktur grid, selama baloknya benar-benar identik, beban akan sama di sepanjang sisi kedua balok. Setiap balok akan memikul setengah dari beban total dan meneruskan ke tumpuan. Apabila balok-balok tersebut tidak identik maka bagian terbesar dari beban akan dipikul oleh balok yang lebih kaku. Apabila balok mempunyai panjang yang tidak sama, maka balok yang lebih pendek akan menerima bagian beban yang lebih besar dibandingkan dengan beban yang diterima oleh balok yang lebih panjang. Hal ini karena balok yang lebih pendek akan lebih kaku. Kedua balok tersebut akan mengalami defleksi yang sama di titik pertemuannya karena keduanya

Gambar 4.36. Struktur Grid Dua Arah Sederhana Sumber: Schodek, 1999

dihubungkan pada titik tersebut. Agar defleksi kedua balok itu sama, maka diperlukan gaya lebih besar pada balok yang lebih pendek. Dengan demikian, balok yang lebih pendek akan memikul bagian beban yang lebih besar. Besar relatif dari beban yang dipikul pada struktur grid saling tegak lurus, dan bergantung pada sifat fisis dan dimensi elemen-elemen grid tersebut (Gambar 4.36).

Pada grid yang lebih kompleks, baik aksi dua arah maupun torsi dapat terjadi. Semua elemen berpartisipasi dalam memikul beban dengan memberikan kombinasi kekuatan lentur dan kekuatan torsi. Defleksi yang terjadi pada struktur grid yang terhubung kaku akan lebih kecil dibandingkan dengan defleksi pada struktur grid terhubung sederhana.

2.2.5. Desain Sistem Dua Arah: Plat, Grid dan Rangka Ruang

a) Desain Plat Beton Bertulang Beberapa faktor yang merupakan tinjauan desain pada plat beton

bertulang. Faktor-faktor itu antara lain :

(1) Momen Plat dan penempatan tulangan baja

Page 49: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

229

Tebal plat beton bertulang dan banyaknya serta lokasi penempatan tulangan baja yang digunakan pada slab atau plat bertinggi konstan selalu bergantung pada besar dan distribusi momen pada plat tersebut. Tulangan baja harus diletakkan pada seluruh daerah tarik. Karena momen bersifat kontinu, maka tulangan baja harus mempunyai jarak yang dekat. Umumnya tulangan dipasang sejajar.

(2) Bentang efektif Semakin besar bentang, maka semakin besar momen yang timbul. Hal ini berarti, semakin tebal pula plat beton tersebut. Bila plat beton yang digunakan tebal, maka berat sendiri struktur akan bertambah. Karena alasan ini, plat beton seringkali dilubangi untuk mengurangi berat sendiri, tanpa mengurangi tinggi strukturalnya secara berarti. Sistem ini biasa disebut slab wafel. (Gambar 4.37)

Slab dan Balok Dua Arah Denah dengan tumpuan tepi

menerus berupa balok dapat memberikan pada plat tersebut kondisi tumpuan yang memperkecil momen plat

Slab Wafel Kapasitas yang membentang

secara menyeluruh dari plat dapat ditingkatkan dengan tidak melubangi garis-garis antara kolom. Sehingga diperoleh aksi balok & slab dua arah.

Gambar 4.37. Sistem Slab dengan Balok Dua Arah dan Sistem Wafel Sumber: Schodek, 1999

(3) Tebal plat Perbandingan L/d untuk mengestimasi tebal slab secara pendekatan adalah sebagai berikut :

Page 50: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

230

Sistem L /d Slab datar dua arah 33-40 Slab dan balok dua arah 45-55 Slab wafel 28-30 Slab satu arah 24-36

Balok beton bertulang 16-26

(4) Efek gaya geser

Geser juga terjadi pada plat dan kadang kala bersifat dominan. Memperbesar luas geser plat dapat dilakukan dengan mempertebal plat. Namun hal ini menyebabkan plat tidak ekonomis. Solusinya adalah dengan menggunakan drop panel, yaitu plat dengan penebalan setempat. Alternatif lain, luas geser dapat diperbesar dengan memperbesar ukuran plat. Hal ini dapat dilakukan secara lokal dengan menggunakan kepala kolom (column capitals). Semakin besar kepala kolom, maka akan semakin besar pula luas geser plat. Plat yang menggunakan kepala kolom seperti ini biasanya disebut plat datar (flat slab). (Gambar 4.38)

Gambar 4.38. Penggunaan drop panel dan column capitals Sumber: Schodek, 1999

Page 51: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

231

b) Struktur Rangka Ruang Beberapa faktor yang akan diuraikan berikut merupakan tinjauan

desain pada struktur rangka ruang. Faktor-faktor itu antara lain :

(1) Gaya-gaya elemen struktur Gambar 4.39 berikut ini mengilustrasikan gaya-gaya elemen yang terjadi pada struktur rangka ruang.

Gambar 4.39. Gaya-gaya pada Struktur Rangka Ruang Sumber: Schodek, 1999

Gambar 4.40. Jenis-jenis Struktur Rangka Ruang dengan modul berulang Sumber: Schodek, 1999

Page 52: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

232

(2) Desain batang dan bentuk

Banyak sekali unit geometris yang dapat digunakan untuk membentuk unit berulang mulai dari tetrahedron sederhana, sampai bentuk-bentuk polihedral lain (Gambar 4.40). Rangka ruang tidak harus terdiri atas modul-modul individual, tapi dapat pula terdiri atas bidang-bidang yang dibentuk oleh batang menyilang dengan jarak seragam.

Struktur Plat Lipat Kekakuan struktur plat satu arah dapat sangat dibesarkan dengan menghilangkan sama sekali permukaan planar, dan membuat deformasi besar pada plat itu, sehingga tinggi struktural plat semakin besar. Struktur semacam ini disebut plat lipat (folded plat), seperti pada Gambar 4.41.. Karateristik struktur plat lipat adalah masing-masing elemen plat berukuran relatif panjang. Prinsip desain yang mendasari hal ini adalah mengusahakan sedemikian rupa agar sebanyak mungkin material terletak jauh dari bidang tengah struktur.

Gambar 4.41. Struktur Plat Lipat Sumber: Schodek, 1999

2.2.6. Sistem Struktur dan Konstruksi Bangunan Bertingkat Tinggi

Dasar pemilihan suatu sistem struktur untuk bangunan tinggi adalah harus memenuhi syarat kekuatan dan kekakuan. Sistem struktur harus mampu menahan gaya lateral dan beban gravitasi yang dapat menyebabkan deformasi geser horisontal dan lentur. Hal lain yang penting dipertimbangkan dalam perencanaan skema struktural dan layout adalah persyaratan-persyaratan meliputi detail arsitektural, utilitas bangunan, transportasi vertikal, dan pencegahan kebakaran. Efisiensi dari sistem struktur dinilai dari kemampuannya dalam menahan beban lateral yang tinggi, dimana hal ini dapat menambah tinggi rangka. Suatu bangunan dinyatakan sebagai bangunan tinggi bila efek beban lateral tercermin dalam desainnya. Defleksi lateral dari suatu bangunan tinggi harus dibatasi untuk mencegah kerusakan elemen struktural dan non-struktural. Kecepatan angin di bagian atas bangunan juga harus dibatasi sesuai dengan kriteria

Page 53: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

233

kenyamanan, untuk menghindari kondisi yang tidak nyaman bagi penghuninya.

Gambar 4.42 berikut ini adalah batasan-batasan umum, dimana suatu sistem rangka dapat digunakan secara efisien untuk bangunan bertingkat banyak.

Gambar 4.42. Pengelompokan Sistem Bangunan Tinggi

Sumber: Chen & Liu, 2005

Berbagai jenis sistem struktur di atas dapat diklasifikasikan atas dua

kelompok utama, yaitu : − medium-height building, meliputi : shear-type deformation

predominant − high-rise cantilever structures, meliputi : framed tubes, diagonal

tubes, and braced trusses Klasifikasi ini didasarkan atas keefektifan struktur tersebut dalam

menahan beban lateral. Dari diagram di atas, sistem struktur yang terletak pada ujung kiri adalah sistem struktur rangka dengan tahanan momen yang efisien untuk bangunan dengan tinggi 20-30 lantai. Dan pada ujung kanan adalah sistem struktur tubular dengan efisiensi kantilever tinggi. Sistem struktur lainnya merupakan sistem struktur yang bentuknya merupakan aplikasi dari berbagai batasan ekonomis dan batasan ketinggian bangunan.

Menurut Council on Tall Buildings and Urban Habitat 1995, dalam menyusun suatu metode klasifikasi bangunan tinggi berdasarkan sistem strukturnya, klasifikasi ini harus meliputi bahasan atas empat tinjauan, yaitu

Page 54: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

234

tinjauan terhadap : sistem rangka utama, sub-sistem pengekang (bracing), rangka lantai, dan konfigurasi serta distribusi beban. Pengelompokan ini ditekankan pada tahanan terhadap beban lateral. Sedangkan bahasan terhadap fungsi pikul-beban dari sub-sistem bangunan tinggi bisa lebih bebas ditentukan. Suatu sistem pencakar langit yang efisien harus mempunyai elemen penahan beban vertikal yang sesuai dalam sub-sistem beban lateral dengan tujuan untuk meminimalkan beban lateral terhadap keseluruhan struktur.

2.2.7. Klasifikasi Rangka Bangunan Bertingkat

Dengan mengetahui berbagai variasi sistem rangka, maka dapat memudahkan pembuatan model sistem rangka bertingkat banyak. Untuk struktur tiga dimensi yang lebih rumit yang melibatkan interaksi berbagai sistem struktur, model yang sederhana sangat berguna dalam tahap preliminary design dan untuk komputasi. Model ini harus dapat mem-presentasikan perilaku dari tiap elemen rangka dan efeknya terhadap keseluruhan struktur. Berikut ini akan dibahas tentang beberapa sistem rangka sebagai struktur untuk konstruksi bangunan berlantai banyak. a) Rangka Momen (Moment Frames)

Suatu rangka momen memperoleh kekakuan lateral terutama dari tekukan kaku dari elemen rangka yang saling dihubungkan dengan sambungan kaku. Sambungan ini harus didesain sedemikian rupa sehingga punya cukup kekuatan dan kekakuan, serta punya kecenderungan deformasi minimal. Deformasi yang akan terjadi harus diusahakan seminimal mungkin berpengaruh terhadap distribusi gaya internal dan momen dalam struktur atau dalam keselutuhan deformasi rangka. Suatu rangka kaku tanpa pengekang (unbraced) harus mampu memikul beban lateral tanpa mengandalkan sistem bracing tambahan untuk stabilitasnya. Rangka itu sendiri harus tahan terhadap gaya-gaya rencana, meliputi beban dan gaya lateral. Disamping itu, rangka juga harus mempunyai cukup kekakuan lateral untuk menahan goyangan bila dibebani gaya horisontal dari angin dan gempa. Walaupun secara detail, sambungan kaku mempunyai nilai ekonomis struktur yang rendah, namun rangka kaku tanpa pengekang menunjukkan kinerja yang lebih baik dalam merespon beban dan gempa. Dari sudut pandang arsitektural, akan banyak keuntungan bila tidak digunakan sistem bracing triangulasi atau sisitem dinding solid pada bangunan.

Page 55: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

235

b) Rangka Sederhana

Gambar 4.43. Rangka Sederhana dengan Bracing

Sumber: Chen & Liu, 2005 Suatu sistem rangka sederhana mengacu pada sistem struktur

dimana balok dan kolom dihubungkan dengan sambungan baut (pinned-joints), dan sistem ini tidak mempunyai ketahanan terhadap beban lateral. Stabilitas struktur ini dicapai dengan menambahkan sistem pengaku (bracing) sepeti pada gambar 4.43. Dengan demikian, beban lateral ditahan oleh bracing. Sedangkan beban vertikal dan lateral ditahan oleh sistem rangka dan sistem bracing tersebut.

Beberapa alasan penggunaan rangka dengan sambungan baut (pinned-joints frame) dalam desain rangka baja bertingkat banyak adalah :

a. Rangka jenis ini mudah dilaksanakan b. Sambungan baut lebih dipilih dibandingkan sambungan las, yang

umumnya memerlukan pengawasan khusus, perlindungan terhadap cuaca, dan persiapan untuk permukaannya dalam pengerjaannya.

c. Rangka jenis ini mudah dari segi desain dan analisis. d. Lebih efektif dari segi pembiayaan. Penggunaan sistem bracing pada

rangka sederhana lebih efektif bila dibandingkan dengan penggunaan sambungan kaku pada rangka sederhana.

Page 56: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

236

c) Sistem Pengekang (Bracing Systems) Sistem bracing menjamin stabilitas lateral dari keseluruhan kinerja

rangka. Sistem ini bisa berupa rangka triangulasi, dinding geser atau core, atau rangka dengan sambungan kaku. Umumnya bracing pada gedung ditempatkan untuk mengakomodasi ruang lift dan tangga.

Pada struktur baja, umumnya digunakan truss triangulasi vertikal sebagai bracing. Tidak seperti pada struktur beton, dimana semua sambungan bersifat menerus, cara yang paling efisien pada baja digunakan sambungan berupa penggantung untuk menghubungkan masing-masing elemen baja. Untuk struktur yang sangat kaku, dinding geser / shear wall atau core umum digunakan. Efesiensi bangunan dalam menahan gaya lateral bergantung pada lokasi dan tipe sistem bracing yang digunakan untuk mengantikan dinding geser dan core di sekelilimg shaft lift dan tangga.

d) Rangka dengan Pengekang (Braced Frame) dan Rangka Tanpa Pengekang (Unbraced Frame) Sistem rangka bangunan dapat dipisahkan dalam dua macam

sistem, yaitu sistem tahanan beban vertikal dan sistem tahanan beban horisontal. Fungsi utama dari sistem bracing ini adalah untuk menahan gaya lateral. Pada beberapa kasus, tahanan beban vertikal juga mempunyai kemampuan untuk menahan gaya horisontal. Untuk membandingkan kedua sistem bracing ini perlu diperhatikan perilaku sistem terutama responnya terhadap gaya-gaya horisontal.

Gambar 4.44. Sistem Bracing Umum : (a) sistem rangka vertikal, (b) dinding geser-shear wall

Sumber: Chen & Liu, 2005

Page 57: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

237

Gambar 4.44 menunjukan perbandingan antara kedua sistem bracing di atas. Struktur A menahan beban horisontal dengan sistem bracing yang merupakan kesatuan dengan struktur utama. Sedangkan struktur B menahan beban horisontal dengan sistem bracing yang sifatnya terpisah dari struktur utama.

Suatu rangka dapat diklasifikasikan sebagai rangka berpengaku (braced) bila tahanan terhadap goyangan disediakan oleh sistem bracing sebagai respon terhadap beban lateral, dimana pengekang tersebut mempunyai cukup kekakuan dan dapat secara akurat merespon beban horisontal. Rangka dapat diklasifikasikan sebagai rangka berpengekang (braced) bila sistem bracing mampu mereduksi geser horisontal lebih dari 80%.

e) Sway Frame dan Un-sway Frame

Suatu rangka dapat diklasifikasikan sebagai ‘un-sway frame’ bila respon terhadap gaya horisontal dalam bidang cukup kaku untuk menghindari terjadinya tambahan gaya internal dan momen dari pergeseran horisontal tersebut. Dalam desain rangka bangunan berlantai banyak, perlu untuk memisahkan kolom dari rangka dan memperlakukan stabilitas dari kolom dan rangka sebagai masalah yang berbeda.

Untuk kolom dalam rangka berpengaku, diasumsikan bahwa kolom dibatasi pada ujung-ujungnya dari geser horisontal, sehingga pada ujung kolom hanya dikenai momen dan beban aksial yang diteruskan oleh rangka. Selanjutnya diasumsikan bahwa rangka sebagai sistem bracing memenuhi stabilitas secara keseluruhan dan tidak mempengaruhi perilaku kolom.

Pada desain ‘sway frame’, kolom dan rangka saling berinteraksi satu sama lainnya. Sehingga pada desain ‘sway frame’, harus dipertimbangkan bahwa rangka merupakan menjadi bagian atau merupakan keseluruhan struktur bangunan tersebut.

Pertanyaan pemahaman: 9. Bagaimanakah prinsip-prinsip umum suatu struktur rangka batang? 10. Bagaimana prinsip metode analisis rangka batang yang umum

digunakan? 11. Bagaimanakah prinsip desain balok? 12. Pada analisis perilaku umum balok, aspek-aspek apa saja yang

perlu diperhatikan? 13. Bagaimanakah prinsip desain kolom? 14. Bagaimanakah perbedaan analisis untuk kolom pendek dan kolom

panjang?

Page 58: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

238

15. Sebutkan dan jelaskan sistem struktur apa saja yang umum diaplikasikan pada bangunan?

16. Jelaskan aspek-aspek yang perlu diperhatikan pada analisis rangka kaku!

17. Sebutkan dan jelaskan beberapa sistem rangka untuk bangunan bertingkat banyak?

Tugas pendalaman:

Cari sebuah contoh bangunan bertingkat, uraikan dan gambarkan rangkaian bagian-bagian atau komponen strukturnya. Komponen struktur dan rangkaiannya harus menggambarkan satu kesatuan sistem struktur pembentuk bangunan. Komponen struktur dapat merupakan sistem rangka, atau sistem rangka kaku kolom dan balok.

Page 59: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

239

5. DAYA DUKUNG TANAH DAN PONDASI

Pondasi merupakan bagian dari konstruksi bangunan yang

menyalurkan beban struktur dengan aman ke dalam tanah. Untuk merancang pondasi dengan aman memerlukan data sifat/karakteristik tanah, mulai dari jenis, sifat fisik dan sifat mekanik termasuk keberadaan muka air dari tanah yang akan menerima penyaluran beban dari pondasi. Bagian berikut mempresentasikan secara garis besar keterkaitan tanah dan implikasinya pada struktur pondasi bangunan dan dinding penahan tanah. 5.1. Tanah dan Sifat-sifatnya 5.1.1. Jenis Tanah dan Klasifikasi Tanah

Di bidang teknik sipil, tanah dapat didefinisikan sebagai material lapukan batuan yang terdiri dari butiran (agregat) mineral-mineral padat, bahan organik yang melapuk, serta zat cair serta gas yang mengisi ruang kosong diantara butiran. Sebutan dan deskripsi perbedaan fisik tanah berikut dapat membantu mengerti tentang bagaimana tanah dikelompokan untuk kepentingan rekayasa bangunan.

• Batu (Stone). Batu merupakan materi yang kekal yang terbentuk dari bahan mineral yang keras, seperti granit atau batu kapur, yang hanya dapat dipindahkan dengan membor atau meledakkan. Batu tersusun dari butiran material yang saling merekat seperti halnya beton, dan merupakan bahan dari alam terkuat di bidang bangunan.

• Batu Bongkah (Boulder). Bongkah merupakan hasil lapukan batuan yang berukuran kira-kira diperlukan dua tangan untuk dapat mengangkat.

• Geragal/kerakal. Lapukan batuan ini relatif dapat di pegang/ dipindahkan dengan satu tangan.

• Kerikil (Gravel). Ukuran butir ini kira-kira cukup mudah untuk dapat dipindahkan dengan jari tangan. Berdasarkan sistem pengelompokan USCS (Unified Soil Clasification Sytem), ukuran gravel lebih besar dari 6.5 mm (0.25 Inchi)

• Pasir (Sand). Butiran cukup jelas untuk dilihat, namun cukup sulit untuk diambil dengan jari. Ukuran butir pasir lebih kecil dari kerikil, 6.5 mm – 0.06 mm (0.25 – 0.002 Inch). Bersama-sama kerikil sering disebut sebagai tanah berbutir kasar.

• Lanau (Silt). Ukuran butir lanau lebih kecil dari pasir, yakni berkisar antara 0.06 – 0.002 mm (0.002 – 0,00008 mm. Lanau ini relatif memiliki sifat mirip pasir, tanah berbutir.

• Lempung (Clay). Butiran lempung berukuran lebih kecil dari lanau, kurang dari 0.00008 mm. Karena kecilnya ukuran dan berbutir

Page 60: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

240

lempeng, jenis tanah ini bersifat stabil, sangat dipengaruhi kandungan pori dan jumlah air yang mengisi pori tanah lempung.

• Humus (peat). Humus dan jenis tanah organik lain tidak diperkenankan untuk menerima beban pondasi. Karena banyak mengandung bahan organik, butiran tanah ini tidak kekal dan mudah berubah volume karena dipengaruhi oleh faktor biologis dan usia.

Untuk kepentingan bidang teknik sipil deskripsi tersebut masih

kurang untuk dapat menggambarkan jenis, simbol dan sifat tanah. Karenanya, dilakukanlah sistem klasififikasi tanah oleh sekelompok ahli atau lembaga mulai dari bidang pertanian hingga bidang tranportasi. Unified Soil Classification System (USCS) dan American Association of State Highway Transportation Officials System (AASHTO) adalah sistem klasifikasi yang banyak dirujuk dan relevan untuk kepentingan bidang teknik sipil, seperti tercantum pada Tabel 5.1.

Tabel 5.1. Klasifikasi Tanah Menurut USCS Sumber: Brockenbrough dkk, 2003

Prosedur Klasifikasi Symbol Nama Jenis Identifikasi Lab

GW Kerikil bergradasi baik, kerikil bercampur sedikit pasir tanpa / tak ada butiran halus

CU = D60/D10 =1 – 4 CC = D302/D10 = 1-3

Kerik

il Mur

ni

(Tan

pa –

sed

ikit

butir

hal

us)

GP Kerikil bergradasi buruk, kerikil bercampur pasir mengandung sedikit butira halus

Tidak memenuhi syarat CU maupun CC untuk GW

GM Kerikil berlanau, kerikil mengandung mengandung pasir – lanau bergradasi buruk

Indek Plastisitas kurang dari 7

Kerik

il (le

bih

dari

50%

terta

han

pada

aya

kan

No. 4

/ ∅

4.7

5 m

m

Kerik

il Ber

butir

Hal

us

(Ter

dapa

t sej

um;lla

h bu

tiran

hal

us)

GC Kerikil berlempung, kerikil mengandung pasir dan lempung bergradasi buruk

Indek Plastisitas lebih dari 7

SW Pasir bergaradasi baik, Pasir dengan sedikit pasir tanpa butiran halus

CU = D60/D10 > 6 CC = D302/D10 = 1-3

Pasir

Ber

sih

(Tan

pa /

sedi

kit

biut

iran

halu

s)

SP Pasir bergradasi buruk, dengan sedikit butiran halus

Tidak memenuhi syarat CU maupun CC SW

SM Pasir berlanau, pasir bercampur lanau lanau bergradasi buruk

Indeks Plastisitas lebih dari 7 Ratioindeks plastisitas PI dan batas cair LL < 2.25

Tana

h Be

rbut

ir Ka

sar

(Leb

ih d

ari 5

0% te

rtaha

n pa

da a

yaka

n No

. 200

/ ∅

0.0

75 m

m)

Pasir

(leb

ih d

ari 5

0% lo

los

pada

aya

kan

No. 4

/ ∅

4.7

5 m

m)

Pasir

Ber

butir

Hal

us

(Ter

dapa

t sej

umla

h bu

tiran

hal

us)

SC Pasir berlempung, pasir bercampur lempung bergradasi buruk

Indeks plastisitas lebih dari 7 Ratioindeks plastisitas PI dan batas cair LL > 2.25

Tabel 5.1. Klasifikasi Tanah Menurut USCS (lanjutan)

Page 61: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

241

Prosedur Klasifikasi Symbol Nama Jenis Identifikasi Lab

ML

Lanau tak organik dengan sedikit pasir halus, bubukan batu, atau pasir halus berlempung dengan sedikit plastis

Indeks Plastisitas < 7 dan LL < 30 Ratio indeks plastisitas PI dan batas cair LL < 2.25

CL

Lanau berlempung tak organik dengan plastisitas rendah sampai sedang, lanau bercampur lempung, pasir halus

Indeks Plastisitas < 7 dan LL > 30 Ratio indeks plastisitas PI dan batas cair LL > 2.25

Lanau bercampur Lempung dengan batas cair (Liquid Limit) kurang dari

50%

OL Lanau organik atau lanau berlempung organik dengan plastisitas rendah-sedang

LL > 30 Ratio indeks plastisitas PI dan batas cair LL < 2.25

MH Lempung tak organik, lempung bercampur lanau, lpasir halus

LL > 50 Ratio indeks plastisitas PI dan batas cair LL < 2.25

CH Lempung tak organik dengan plastisitas tinggi, lempung gemuk

Indeks Plastisitas < 7 dan LL < 50 Ratio indeks plastisitas PI dan batas cair LL > 2.25

OH Lempung organik deng plastisitas sedang hingga tinggi

LL > 30 Ratio indeks plastisitas PI dan batas cair LL < 2.25

Tana

h Be

rbut

ir Ha

lus

(Leb

ih d

ari 5

0% lo

los

pada

aya

kan

No. 2

00 (∅

0.0

75 m

m)

Lempung bercampur lanau dengan batas cair

lebih dari 50%

PT Humus dan tanah dengan kadar organik tinggi

5.1.2. Pengujian Tanah Pengujian tanah untuk keperluan perancangan pondasi dapat berupa

uji tanah di lapangan dan uji tanah di laboratorium, baik itu berupa uji fisik maupun uji mekanik, uji untuk mengetahui angka kekuatan tanah. Uji tanah di lapangan diperlukan untuk mencari data langsung dari lapangan. Uji ini dapat berupa uji lapisan tanah dengan alat bor (soil boring), uji kepadatan maupun kekerasan tanah. Uji Kekerasan tanah dapat berupa uji penetrasi standar (standard penetration test), uji sondir/uji penetrasi konus (Cone penetration test). Uji lapangan ini termasuk pelaksanaan pengambilan sampel tanah untuk keperluan uji laboratorium.

Sedangkan untuk uji di laboratorium dapat berupa analis butiran dan komposisi butiran/ gradasi, kadar air, berat isi, berat jenis (specific garfity) uji geser dengan alat geser langsung maupun dan alat triaxial hingga uji pemampatan tanah (consolidation test). Berikut di sampaikan sebagian uji tanah yang perlu untuk diketahui terkait dengan sifat tanah.

a) Uji Kadar Air Kandungan air pada jenis tanah tertentu sangat berpengaruh

terhadap sifat fisik maupun kekuatannya. Karennya uji kadar air uji awal yang paling banyak dilakukan terkait dengan fisik tanah. Kadar air dinyatakan dalam angka persentase (%). Formula untuk kadar air (water content) dapat dikemukakan sebagai berikut.

Wc = Ww/Wsd *100% (5.1)

Page 62: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

242

Dimana: Ww = berat air yang dikandung tanah = Ws wet – Ws dry Ws dry = berat tanah kering oven.

b) Uji ukuran butir tanah dan gradasi tanah Uji untuk mengetahui karakter fisik terkait dengan ukuran butiran

yang umumnya cukup dilakukan dengan analisis ayakan (Sieve analysis) untuk tanah berbutir kasar. Sedang untuk tanah yang berbutir halus seperti lempung diperlukan uji dengan Hydrometer (Hydrometer test set). Peralatan uji ayakan dan hydrometer ditunjukkan pada Gambar 5.1 dan Gambar 5.2.

Dari pengujian dengan analisis ayakan akan diperoleh indeks ukuran butiran tanah mulai dari dari diameter butiran paling banyak / dominan, koefisien gradasi tanah maupun koefisien keseragaman tanah yang diperlukan untuk mengklasifikasikan tanah. Diameter lubang saringan dan contoh isian tabel uji ayakan untuk keperluan klasifikasi stanah ditunjukan pada Tabel 5. 2 dan Tabel 5.3.

Gambar 5.1. Set ayakan untuk uji ukuran butir dan gradasi tanah

Sumber: Dok. Lab TS-FTUM

Gambar 5.2. Set alat uji Hidrometer Sumber: Dok. Lab TS-FTUM

Page 63: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

243

Tabel 5.2. Nomor Pengenal, Ukuran Lubang Ayakan (Sieve Size) untuk Uji Tanah Sumber: MBT Bandung

∅ Lubang Ayakan ∅ Lubang Ayakan No .

No. Pengenal Ayakan (mm) (Inch) No.

No. Pengenal Ayakan

(mm) (Inch)

1 4 4.75 1.87 8 50 0.30 0.12 2 6 3.35 1.32 9 60 0.25 0.10 3 8 2.36 0.93 10 80 0.18 0.07 4 10 2.00 0.79 11 100 0.15 0.06 5 20 0.85 0.33 12 140 0.106 0.04 6 30 0.60 0.24 13 170 0.088 0.03 7 40 0.425 0.17 14 200 0.075 0.03

Tabel 5.3. Contoh analisis saringan menurut SNI 1968 - 1990 – F Sumber: Dokumen Laboratorium Teknik Sipil UM, 2004.

No. Diameter Saringan

(mm)

Berat Saringan Kosong

(Gr)

Berat Saringan +

Tanah (Gr)

Berat Tanah

Tertahan (Gr)

� Berat Tanah

Tertahan (Gr)

� % Berat

Tertahan

� % Berat. Lolos

4 4.750 441.15 456.15 15.00 15.00 5.15 94.85 6 3.000 447.10 469.60 22.50 37.50 12.87 87.13 8 2.360 430.70 460.70 30.00 67.50 23.17 76.83 16 1.180 413.12 450.62 37.50 105.00 36.04 63.96 20 0.850 428.05 443.05 15.00 120.00 41.19 58.81 30 0.600 404.25 426.75 22.50 142.50 48.91 51.09 40 0.425 315.12 345.12 30.00 172.50 59.21 40.79 50 0.300 292.30 338.01 45.71 218.21 74.90 25.10 100 0.150 396.55 421.32 24.77 242.98 83.40 16.60 200 0.075 399.90 438.71 38.81 281.79 96.72 3.28 PAN 0.000 447.95 457.50 9.55 291.34 100.00 0.00

D10 = Besaran diameter butiran sehingga 10% dari total butiran lolos/lebih kecil dari diameter tersebut.

D30 = Besaran diameter butir sehingga 30% dari total butiran lolos/lebih kecil dari diameter tersebut.

D60 = Besaran diameter, sehingga 60% butiran tanah lolos. Koefisien gradasi (Cc) = (D30)2/(D10.D60) Koefisien keseragaman (Cu) = D60/D10 D10 = 0.075+{(10-2.28)/(16.60-3.28)}*(0.10-0.075) = 0.113 mm D30 = 0.300+{(30-25.10)/(40.79-25.10)}*(0.425-0.300) = 0.339 mm D60 = 0.850+{(60-58.81)/(63.96-58.81)}*(1.180-0.850) = 0.926 mm Cu = D60/D10 = 8.21 Cc = (D30)2/(D10.D60) = 1.10

Page 64: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

244

c) Batas Konsistensi Tanah (Atterberg Limits) Batas konsistensi tanah sering disebut batas Atterberg. Besaran

batas batas konsistensi merupakan besaran kadar air (%) untuk menandai kondisi tanah terhadap kandungan air. Batas konsistensi ini terdiri dari batas cair (Liquid Limit / LL), bata plastis (Plastic Limit/ PL) maupun batas susut (shirinkage Limit). Batas cair merupakan kadar air tanah sehingga tanah pada kadar air tersebut bersifat layaknya zat alir/ cair. Batas plastis merupakan kadar air dimana dengan kondisi tersebut bersifat plastis dari kondisi tanah kering yang bersifat padat / keras. Sedangkan batas susut merupakan kadar air maksimum agar saat tanah dikeringkan tidak mengalami susut/ perubahan volume.

Pengujian batas cair di laboratorium digunakan cawan Cassagrande (Gambar 5.3). Cawan ini dilengkapi dengan piranti pemukul dengan cara mengangkat dan menjatuhkan cawan.

Jika tanah uji di letakkan pada cawan setebal 1 cm, kemudian dibuat alur menggunakan alat pembuat alur (groover), dan kemudian melakukan ketukan (blow). Akibat ketukan tersebut, alur yang dibuat akan kembali menutup. Kemudahan menutupnya alur tersebut sangat dipengaruhi oleh jumlah air dalam tanah tersebut. Batas cair merupakan kadar air tanah uji (%) jika dilakukan ketukan sebanyak 25 kali menyebabkan alur tanah pada cawan Cassagrande berimpit 1.25 cm (1/2 Inch).

Gambar 5.3. Alat uji Batas Cair dan batas plastis: Cawan Cassagrande

Sumber: Dok. Lab TS-FTUM

Batas Plastis merupakan besaran kadar air tanah dimana saat dilakukan pilinan pada contoh tanah hingga ∅ 3 mm mulai terjadi retakan dan tidak putus. Tanah uji batas plastis ini umumnya menggunakan tanah uji batas cair yang diangin-anginkan kemudian dibuat bola tanah ∅ 1 cm. Bola tanah tersebut kemudian dipilin dengan jari di atas permukaan halus. Jika kondisi pilinan tanah ∅ = 3 mm dan mulai retak, segera lakukan uji kadar air. Kadar air pada kondisi itulah sebagai batas platis.

Page 65: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

245

Indek Plastisitas (PI) merupakan selisih antara batas cair dan batas plastis. Jika ditulis dalam formula adalah sebagai berikut. Indeks plastisitas inilah yang memberikan indikasi terkait dengan kerekatan/ kohesifitas keplastisan suatu tanah uji oleh pengaruh air yang dikandungnya. Tanah lempung untuk bahan genting umumnya memiliki angka/ indeks plastisitas yang lebih tinggi dibanding tanah lanau.

PI = LL – PL (5.2) Dimana: PI = Indeks plastisitas, LL = Batas Cair, PL = Batas plastis

d) Pengujian Kekuatan Geser Tanah Pengujian kekuatan geser tanah dapat dilakukan dengan

menggunakan Set Alat Geser langsung (Direct Shear Test Set) dan Alat Uji Triaxial (Triaxial Test Set), seperti pada Gambar 5.4. Walaupun kurang memiliki ketelitian alat geser langsung sering digunakan untuk menentukan tegangan geser tanah (t) dan atau beserta sudut geser tanah (θ). Tanah uji untuk test ini umumnya adalah tanah asli tanpa terganggu (undisturbed).

Untuk pelaksanaan uji contoh uji diberi tegangan normal (�) sebesar tekanan tanah yang ada di atas tanah uji, � = γ . h. Dimana γ adalah berat isi tanah dan h merupakan kedalaman tanah uji. Contoh hasil uji geser langsung dapat ditunjukkan pada Tabel 5.4.

Sudut geser (θ) ditentukan berdasarkan kemiringan grafik uji = Arc Tan t/�. Sedangkan angka rekatan (cohesiveness) ditentukan dari besaran tegangan geser pada tegangan normal � = 0. Berdasarkan hasil uji tersebut didapatkan bahwa θ = 37 o, dan angka kohesi (c) = 0.075 kg/cm2.

Tabel 5.4. Hasil Uji Geser Langsung (Direct Shear Test) Sumber: Dok. Lab TS-FTUM

Gaya Normal N = 2.00 Kg N = 4.00 Kg N = 8.00 Kg

Tegangan Normal � = 0.0638 Kg/cm2 � = 0.1276 Kg/cm2 � = 0.2551 Kg/cm2

Waktu Deformasi Bacaan Dial

Gaya Geser

(S)

Teg. Geser

(tttt)

Bacaan Dial

Gaya Geser

(S)

Teg. Geser

(tttt)

Bacaan Dial

Gaya Geser

(S)

Teg. Geser

(t) 0' 00" 12.50 0.00 0.00 0.00 0' 15" 25.00 10.00 20.00 20.00 0' 30" 37.50 28.00 32.00 45.00 0' 45" 50.00 40.00 4.40 0.14 40.00 60.00 1' 00" 62.50 38.00 42.00 71.00 0.00 75.00 35.00 45.00 4.95 0.16 75.00 1' 30" 87.50 40.00 82.00 9.07 0.29 1' 45" 100.00 37.00 70.00 2' 00" 112.50 63.00 2' 15" 125.00

Page 66: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

246

Gambar 5.4. Grafik uji geser langsung

Sumber: Dok. Lab TS-FTUM

Besaran sudut geser dalam dan besaran rekatan tersebut diperlukan untuk perhitungan geseran dari tanah untuk keperluan perhitungan pondasi maupun dinding penahan.

Gambar 5.5. Alat uji geser langsung (direct shear test)

Sumber: Dok. Lab TS-FTUM

e) Uji Tekan Bebas (unconfined compression test) Uji tekan bebas ini merupakan uji tekan searah, tanpa tahanan dari arah samping (lateral) dari contoh tanah silindris pada kondisi asli. Data yang dihasilkan dari uji ini adalah data tegangan tekan maksimum tanah uji. Data ini cukup bermanfaat untuk memperkirakan besaran daya dkung tanah pada tepian tebing dalam menerima beban. Uji tekan bebas ini relatif cepat dan bermanfaat sebagai data tambahan uji Triaxial

Gambar 5.6. Alat uji tekan bebas (unconfined compression test)

Sumber: Dok. Lab TS-FTUM

Page 67: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

247

f) Uji Berat Isi Tanah (γγγγ) Uji berat isi tanah dimaksudkan untuk menentukan berat tanah per

satuan volume. Satuan yang umum digunakan adalah gr / Cm3, kg / liter atau ton / m3. Uji didahului dengan pengambilan sampel di lapangan dengan menggunakan tabung sampel. Tanah uji berbentuk silindris yang diambil kemudian dikeluarkan untuk ditimbang dan dihitung volumenya. Perhitungan berat isi dapat ditunjukkan sebagai berikut.

γγγγ wet =- W soil wet / V , atau γγγγ dry =- W soil dry / V (8.3)

Dimana:

γ wet = Berat isis tanah basah W soil wet = berat tanah basah γ dry = Berat isis tanah kering W soil dry = berat tanah kering oven V = Volume tanah uji

Kadang berat isi tanah ini dinyatakan dalam bentuk berat isi maksimum (γγγγ maks). Berat isi maksimum merupakan berat isi paling besar yang dapat dicapai oleh tanah melalaui perlakuan pemadatan, baik itu pemadatan dengan tangan (Hand Stamper) atau dengan alat berat bermesin, dengan perlakuan kondisi kadar air tertentu. Kadar air yang memungkinkan pemadatan menghasilkan berat isi maksimum disebut sebagai kadar air optimum (w optimum). Besaran berat isi maksimum tanah dan kadar air optimum dapat dilihat pada Tabel 8.5.

Tabel 5.5. Besaran berat isi maksimum tanah dan kadar air optimum Sumber: Gaylord Jr, dkk, 1997

Rentang Berat Isi Maks Simbol Klasifikasi Tanah / Deskripsi Tanah menurut USCS pound/ft3 kg/m3 Kadar Air

Optimum (%) GW Kerikil murni bergradasi baik, kerikil bercampur pasir 125-135 2,002-2,163 8-11 GP Kerikil murni bergradasi buruk, campuran kerikil pasir 115-125 1,842-2,002 11-14 GM Kerikil berlanau, kerikil bercampur – lanau - pasir 120-135 1,922-2,163 8-12

GC Kerikil berlempung, campuran kerikil-pasir-lempung bergradasi buruk 115-130 1,842-2,082 9-14

SW Pasir murni bergradasi baik, pasir bercampur kerikil 110-130 1782-2,082 9-16

SP Pasir murni bergradasi buruk, pasir bercampur kerikil bergradasi buruk 100-120 1602-1922 12-21

SM Pasir berlanau, pasir bercampur lanau bergradasi buruk 110-125 1762-1,602 11-16

SC Pasir bercampur lempung, pasir bercampur lempung bergradasi buruk 105-125 1605-2002 11-19

ML Lanau sedikit bercampur lempung tak organik 95-120 1522-1922 12-24 CL Lempung tak organik plastisitas rendah–sedang 95-120 1522-1922 12-24 OL Campuran lanau-lempung organik plastisitas rendah 80-100 1281-1602 21-33 MH Lanau mengandung lempung tak organik, lanau elestis 70-95 1121-1522 24-40 CH Lempung tak organik dengan plastisitas tinggi 75-105 1201-1,682 19-36 OH Campuran lempung dan lanau organik 65-100 1201-1602 21-45

Page 68: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

248

g) Uji Triaxial Uji triaxial ini dilakukan untuk memperoleh kekuatan geser tanah (t)

saat tanah menerima tegangan normal dengan besaran tertentu, dan sudut geser (θ). Data sangat penting untuk perancangan pondasi telapak, tiang maupun untuk perancangan dinding penahan (retaining wall). Sampel tanah untuk uji ini disarankan berupa tanah asli tak terganggu (undisturbed specimen). Uji ini sedikit mirip dengan uji tekan bebas, dengan penahan dan pengukuran ke arah samping akibat tekanan aksial.

h) Pemboran Tanah (Soil Boring) Salah satu data penting untuk perancangan pondasi dalam adalah

mengetahui jenis tanah di tiap kedalaman / lapisan tanah. Alat uji ini dapat berupa bor dengan menggunakan tenaga manusia dan tenaga mesin (Gambar 5.7). Data yang dapat dihasilkan adalah berupa lembar bor (Boring Log) yang berisikan deskripsi fisik tanah di tiap kedalaman yang diperlukan. Deskripsi yang dimaksud umumnya tentang fisik tanah: warna tanah, jenis tanah, dan keseragaman butiran.

Uji boring biasanya disertai Uji Penetrasi Standar (SPT). Karenanya lembar data bor tersebut biasanya mencamtumkan pula data SPT berupa jumlah pukulan dan tingkat kekerasan tanah.

Gambar 5.7. Set alat boring tanah dan alat pengambil sampel

Sumber: Gaylord Jr, dkk, 1997

i) Uji Penetrasi Standar (Standard Penetration Test) Uji ini pada prinsipnya seperti memancang tiang dalam tanah.

Pengujian ini ini biasanya dilakukan bersamaan dengan pekerjaan boring, yakni mencari data kekerasan tanah yand diindikasikan dalam bentuk jumlah pukulan (n blows) yang diperlukan untuk memasukkan split sampler sedalam 30 cm. Split sampler merupakan ujung pancang yang dapat di belah untuk sekaligus memperoleh contoh tanah yang diukur kekerasannya. Dari contoh tanah tersebut dapat ditentukan jenis dan sifat tanah uji.

Data uji penetrasi standar tersebut belum memberikan infomasi besaran kekuatan. Untuk itu diperlukan konversi jumlah pukulan terhadap

Page 69: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

249

kekuatan dengan uji lain misal sondir. Tabel 5.6 menampilkan besaran jumlah pukulan dan tingkatan kepadatan untuk jenis tanah tak berkohesi (granular) dan tanah berkohesi (cohhesive soil) seperti lempung.

Gambar 5.8: Tipikal split sampler pada Ujung alat SPT Sumber: Gaylord Jr, dkk, 1997

Tabel 5.6. Jumlah pukulan hasil Uji SPT dan tingkat kepadatan tanah Sumber: Brockenbrough dkk, 2003

Tanah granuler Tanah berkohesi Jumlah pukulan Kepadatan Jumlah pukulan Kepadatan

0-4 Sangat lepas / lunak 0-1 Sangat lunak 5-10 Lepas / lunak 2-4 Lunak

11-24 Padat sedang 5-8 Kaku sedang 25-50 Padat 9-15 Kaku > 50 Sangat padat 16-30 Sangat kaku

31-60 Keras

j) Uji Sondir (Cone Penetration Test) Uji ini mirip dengan uji penetrasi standar, yang membedakan adalah

bahwa ujung alat ini berupa konus (Gambar 5.9) yang dimaksudkan memberikan tekanan pada pompa pengukur. Konus tersedia dua macam bentuk, konus tunggal dan konus ganda. Konus tunggal hanya dapat mengukur tahanan tanah ujung. Sedangkan konus ganda, selain tahanan tanah ujung dapat mengukur pula gesekan tanah (soil friction).

Gambar 5.9. Set alat sondir (Cone Penetration Test)

Sumber: Dok. Lab TS-FTUM

Ukuran kekerasan tanah maupun gesekan dapat dilihat pada manometer yang dinyatakan dalam besaran tegangan tanah (kg/cm2). Pengujian dengan alat ini relatif murah untuk diselenggarakan dengan hasil data yang cukup memadai untuk perancangan pondasi.

Page 70: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

250

Gambar 5.10: Konus tunggal dan konus ganda pada alat Sondir

Sumber: Gaylord Jr, dkk, 1997

5.2. Daya Dukung Tanah Tanah merupakan bahan yang memiliki sifat khusus dan berbeda dengan bahan lain di bidang sipil. Ini karena konsistensi tanah dapat berubah dari sifat padat elastis, plastis hingga cair tergantung dari kandungan air. Karenanya mekanika tanah memiliki pendekatan khusus yang berbeda dari mekanika fluida maupun mekanika bahan solid seperti beton, kayu maupun baja. Namun begitu terdapat beberapa analisis mekanika tanah yang mengambil pendekatan mirip dengan mekanika fluida atau hidrostatika.

5.2.1. Tegangan Efektif Tanah Tegangan ini menunjukkan besaran tegangan pada suatu titik di

kedalaman akibat berat kolom tanah yang ada di atasnya. Keberadaan muka air tanah yang mungkin ada, diperhitungkan sebagai tegangan reduksi dari tegangan efekti tanah. Tegangan efektif ini diperlukan sebagai prasyarat perhitungan mekanika tanah lainnya. Ilutrasi kondisi dan besaran tengangan efektif dapat ditunjukkan sebagai berikut:

�A = γγγγ1 . h1 (5.4) �B = γγγγ2 . (h1+h2) – γγγγw.h2 (5.5)

Dimana: γs = berat isi tanah h = kedalaman tanah

γw = berat isi air

Gambar 5.11: Ilustrasi besaran tegangan efektif tanah

Page 71: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

251

5.2.2. Tegangan Tekan Tanah

Pada kondisi tertentu para perancang perlu mengetahui kuat tekan puncak, penurunan akibat mampat tanah dimana mereka bekerja. Idealnya kekuatan tersebut diperoleh dari uji confined dengan penahan samping sesuai situasi tanah. Karena uji confined merupakan uji yang relatif rumit, untuk keperluan pekerjaan skala kecil dilakukanlah uji yang lebih sederhana berupa uji tekan bebas (unconfined test) dan atau uji lain misal uji penetrasi standar (SPT) dan uji lain terkait dengan kuat tekan – kekerasan tanah. Secara umum tegangan tekan dihitung berdasarkan rumus sebagai berikut.

� = P / A (5.6)

Dimana: P = Gaya tekan yang bekerja (kg, ton) A = Luas tanah uji (cm2, m2) � = Tegangan tekan tanah

Gambar 5.12: Ilustrasi tegangan pada tanah

Besaran pendekatan tingkat kekerasan berdasarkan hasil uji kuat tekan bebas dan uji penetrasi standar ditunjukkan pada Tabel 8.7.

Tabel 5.7. Kekerasan Tanah kohesif dari hasil uji kuat tekan bebas dan SPT Sumber: Gaylord Jr, dkk, 1997

Kuat Tekan Bebas Konsistensi Ton/ft2 Ton/m2

Karakteristik Fisik di Lapangan N Blow Uji SPT

Sangat Lunak < 0.25 < 0.82 Dengan mudah dipenetarasi beberapa inchi dengan kelingking < 2

Lunak 0.25-0.50 0.82-1.64 Dengan mudah dipenetarasi beberapa inchi dengan ibu jari 2-4

Kaku Sedang (medium Stiff) 0.50-1.0 1.64-3.28 Dengan mudah dipenetarasi beberapa inchi

dengan ibu jari dengan kekuatan sedang 5-8

Kaku (Stiff) 1.0-2.0 3.28-6.56 Dapat dipenetrasi dengan ibu jari dengan usaha sedikit kuat 9-15

Sangat Kaku (very Stiff) 2.0-4.0 6.56-

13.12

Cukup kuat menehan tekanan ibu jari dapat terpenetrasi dengan tenaga dengan kuat

16-30

Keras (Hard) > 4.0 > 13.12 Kuat menahan penetrasi ibu jari dengan kuat > 30

Kuat tekan ini sangat berguna untuk pendekatan perhitungan pemotongan / pengeprasan (cut and fill) tanah kohesif seperti lempung.

Page 72: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

252

Rumus pendekatan dan skema untuk perhitungan pemotongan dapat ditunjukkan pada persamaan 5.7 dan gambar 5.13.

Hcut = 2 qu / (γγγγs*SF) (5.7)

Dimana :

Hc = Tinggi pemotongan / pengeprasan tanah qu = tegangan tekan ultimate dari uji tekan bebas γs = Berat isi tanah SF = Angka keamanan (safety factor)

Gambar 5.13. Ilustrasi perhitungan tinggi pemotongan tanah

5.2.3. Tegangan Geser

Kuat geser tanah dangat tergantung dari angka rekatan tanah (c) besaran tegangan normal tekan (�) dan karakter geser tanah yang diindikasikan dari sudut geser dalam tanah (θ). Besaran kuat geser tanah umumnya dinyatakan dalam rumus sebagai berikut.

tttt = c + � tan θθθθ (5.8)

Dimana: t = tegangan geser c = angka rekatan / kohesi tanah � = tegangan normal akibat kolom tanah di atasnya θ = sudut geser tanah

Tabel 5.8 menunjukkan besaran sudut geser dalam dari jenis tanah granuler seperti pasir berdasarkan tingkat kekerasan

Tabel 5.8. Kekerasan dan Besaran sudut geser dalam dari jenis tanah granuler Sumber: Brockenbrough dkk, 2003

Data Sangat Lepas Lepas Padat

Sedang Padat Sangat Padat

Jml Pukulan < 4 5 - 10 11 - 30 31 - 50 > 50 Sudut Geser (θ) < 28.5o 28.5o – 32o 32o – 36o 36o – 41o 41o – 46o

Untuk kepentingan praktis, jenis tanah lanau atau pasir mengandung banyak lanau dengan besaran sudut 2o – 6o lebih kecil dari besaran sudut

Page 73: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

253

geser tanah pasir (granuler). Tabel 5.9 menunjukkan besaran pendekatan untuk jenis tanah lanau. Tabel 5.9. Kekerasan dan Besaran sudut geser dalam dari jenis tanah Lanau

Sumber: Brockenbrough dkk, 2003

Data Sangat lunak Lunak Padat

Sedang Padat Sangat Padat

Jml Pukulan < 4 5 - 10 11 - 30 31 - 50 > 50 Sudut Geser (θ) < 22.5o 22.5o – 26o 26o – 30o 30o – 35o 35o – 40o

Sedang untuk jenis tanah lempung, sudut geser sangat dipengaruhi oleh tekanan pori, tekanan tambahan akibat pengaliran air dari tanah dan kecepatan pembebanan. Jika pembebanan pada tanah oleh suatu sturuktur dianggap beban sesaat/cepat, besaran pendekatan sudut geser (θ) untuk tanah lempung dapat diambil dengan rentangan 20o – 30o. Sedangkan jika pembebanan diasumsikan berlangsung lambat, maka besaran sudut geser (θ) jenis tanah ini berkisar adalah 10o – 20o.

5.3. Pondasi

Terdapat berbagai bentuk dan bahan pondasi yang saat ini diterapkankan untuk mendukung bangunan. Bahan pondasi umumnya dibuat dari bahan yang tahan terhadap umur dan pengaruh tanah dimana pondasi tersebut di pasang. Secara umum dapat di golongkan menjadi pondasi dangkal dan pondasi dalam. Walau belum ada rekomendasi yang tepat tentang batasan kedalaman pondasi, untuk keperluan praktis, pondasi dengan kedalaman < 2.50 meter merupakan pondasi dangkal. Pondasi dapat berbentuk umpak (footing), pondasi memanjang (strip) maupun pondasi pancang.

Gambar 5.14: Macam-macam pondasi: (a) pondasi telapak (footing), (b)

Pondasi Basement dan (c) berbagai type pondasi tiang Sumber: Allen, 1999

Pondasi dangkal yang paling sederhana adalah pondasi umpak dari bahan pasangan maupun dari beton. Untuk menahan beban bangunan

Page 74: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

254

relatif ringan, pondasi umpak ini cukup kuat dan dapat diselenggarakan pada permukaan tanah. Sedangkan untuk pondasi dalam tiang dapat berupa pondasi pancang dari bahan kayu, beton ataupun baja, hingga pondasi sumuran. Bentuk-bentuk pondasi ditunjukkan pada Gambar 5.14.

5.3.1. Pondasi telapak (Footing Foundation)

Pondasi ini umumnya diterapkan di atas tanah asli relatif keras dan atau tanah urugan yang telah dipadatkan dengan tingkat kepadatan tertentu yang disyaratkan. Prinsip utama dari pondasi telapak ini adalah mengandalkan luasan telapak untuk memindahkan beban dinding atau kolom. Bahkan jika ternyata tanah cukup keras, dinding menerus dapat difungsikan sebagai pondasi.

Gambar 5.15: (a) Pondasi dinding, (b) Telapak kolom dan (c) Telapak dinding

Sumber: Allen, 1999

Pondasi telapak dapat berupa bahan pasangan batu, bahan beton tak bertulang maupun beton bertulang. Macam bentuk pondasi ini dapat dilihat pada Gambar 5.15.

Untuk maksud ketahanan terhadap adanya pengaruh kemiringan tanah dan gempa, pondasi ini memerlukan struktur pengikat baik berupa balok pengikat miring (grade beam) maupun balok pengikat (tie beam). Ilustrasi bentuk pondasi pada tanah miring ditunjukkan pada Gambar 5.16.

Gambar 5.16: Bentuk pondasi untuk tanah miring: Pondasi telapak bertingkat

(steped footing) dan pondasi dengan balok pengikat (tie beam) Sumber: Allen, 1999

Page 75: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

255

5.3.2. Pondasi Dalam: Pondasi Tiang dan Sumuran

Berdasarkan perkembangannya, bahan pondasi tiang dapat berupa kayu hingga baja tahan karat. Bentuk tampang melintang pondasi tiang dapat beragam, mulai dari bentuk tiang bulat hingga bentuk propil H (Gambar 5.17). Berdasarkan cara pembuatannya, pondasi tiang ini dapat berasal dari produk pabrik atau berupa pondasi tiang cor setempat.

Gambar 5.17: Tampang dan bahan pondasi tiang, kayu, beton dan baja

Sumber: Allen, 1999

Berdasarkan cara penyaluran beban, pondasi tiang dapat dibagi menjadi dua jenis, pondasi tiang yang mengandalkan daya dukung ujung tiang (end bearing), dan pondasi tiang yang mengandalkan gesekan tanah terhadap bahan tiang (friction bearing). Pondasi end bearing menyalurkan beban kolom melalui ujung pondasi ke tanah keras. Pondasi friction bearing dirancang dengan memperhitungkan besar gesekan selimut pondasi untuk menerima beban.

Gambar 5.18: Tipikal pondasi tiang dalam menyalurkan beban

Sumber: Allen, 1999

Pondasi tiang diselenggarakan dengan cara membor tanah dan mengisinya dengan adukan beton, serta menanam atau memasang pondasi tiang yang sudah jadi. Pembuatan pondasi dengan mencor beton pada lubang disebut sebagai pondasi tiang cor setempat. Sedang pondasi tiang yang dipasang dengan menanam bahan pondasi jadi disebut sebagai pondasi tiang bor.

Page 76: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

256

Untuk menyambung dengan kolom, pondasi tiang ganda dilakukan dengan membuat plat kaki kolom. Plat tersebut berfungsi pula sebagai pengikat antar pondasi tiang. Tipikal pemasangan pondasi tiang ditunjukkan pada Gambar 5.19.

Gambar 5.19: Plat kaki kolom di atas pondasi tiang

Sumber: Allen, 1999

Untuk penyelenggaraan pondasi sumuran diperlukan ukuran bor yang lebih besar dari ukuran yang digunakan untuk pondasi tiang. Pondasi sumuran ini dapat berbentuk silinder penuh maupun berbentuk cincin dengan mengisi tanah di dalamnya. Peralatan untuk penyelenggaraan pondasi sumuran ditunjukkan pada gambar 5.20.

Gambar 5.20: Peralatan boring pondasi tiang – sumuran

Sumber: Allen, 1999

Bentuk pondasi lain adalah pondasi tiang sistem cor setempat dengan ujung pondasi dibesarkan. Pelaksanaan pembuatan pondasi tersebut dilakukan dengan cara menuang adukan beton dalam lubang pondasi. Sebelum beton mengeras, dilakukan pemberikan tekanan melalui tumbukan. Dengan tumbukan tersebut adukan beton akan menekan tanah dan membuat tampang ujung pondasi tiang menjadi lebih besar. Pondasi tiang ini dikenal dengan sistem Frankie.Tahapan pembuatnnya ditunjukkan pada Gambar 5.21.

Page 77: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

257

Gambar 5.21. Tahapan pembuatan sistem pondasi Frankie

Sumber: Allen, 1999

Cara lain pemasangan pondasi dapat dilakukan dengan cara memancang langsung, tanpa dibor, dalam tanah. Pondasi ini disebut sebagai pondasi tiang pancang (driven pile).

5.3.3. Daya Dukung Tanah untuk Pondasi Dangkal

Syarat penyelenggaraan pondasi harus memenuhi persyaratan kestabilan untuk menahan beban bangunan diatasnya termasuk penurunan (settlement) akibat mampatnya tanah di bawah pondasi. Dengan kata lain tanah harus memiliki daya dukung yang cukup aman untuk menerima beban bangunan di atasnya.

Daya dukung tanah umumnya dinyatakan dalam besaran tegangan: ton/m2 atau kg/cm2. Besar daya dukung sangat dipengaruhi kuat geser tanah – sudut geser, perilaku keruntuhan, berat isi tanah / kepadatan tanah dan angka rekatan. Ilustrasi untuk perhitungan daya dukung pondasi dapat diilustrasikan seperti pada Gambar 5.22.

Gambar 5.22. Data-data untuk perhitungan daya dukung pondasi

Pondasi Telapak Memanjang. Besarnya daya dukung tanah paling tinggi ultimate (qu) untuk pondasi telapak memanjang (wall footing) dapat didekati dengan menggunakan formula sebagai berikut, dan grafik faktor daya dukung seperti pada Gambar 5.22.

Page 78: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

258

qu = c Nc + q Nq + 0.5 �b B N� (5.9)

Dimana: qu = daya dukung ultimate (ton/m2 atau kg/cm2) c = angka rekatan/ kohesi tanah ((ton/m2 atau kg/cm2)

q = tegangan akibat tanah di atas tanah dasar pondasi = �a. Z (ton/m2 atau kg/cm2) Z = kedalaman pondasi (m, cm) �b = berat isi tanah dibawah pondasi ((ton/m3 atau kg/cm3) B = lebar pondasi memanjang / strip (m, cm) Nc, Nq, N� = faktor daya dukung (Tabel 6.9)

Tabel 5.9. Besarnya Faktor Daya Dukung Sumber: Gaylord Jr, dkk, 1997

Untuk bentuk pondasi umpak atau footing setempat formula tersebut harus dikalikan faktor bentuk pondasi setempat. Besaran faktor bentuk (�) dapat ditunjukkan dalam Tabel 5.10.

Tabel 5.10. Besaran Faktor Bentuk Pondasi dangkal Sumber: Allen, 1999

Bentuk (Dasar) Pondasi c q � Persegi Panjang 1 + (B/L) (Ng/Nc) 1 + (B/L) tan � 1 – 0.4 B/L Persegi / bujur sangkar 1 + (Nq/Nc) 1 + Tan � 0.6 Lingkaran 1 + (Nq/Nc) 1 + Tan � 0.6

5.4. Dinding Penahan (Retaining Wall): Tekanan Lateral Tanah dan Struktur Penahan Tanah

Dinding penahan tanah merupakan komponen struktur bangunan penting utama untuk jalan raya dan bangunan lingkungan lainnya yang berhubungan tanah berkontur atau tanah yang memiliki elevasi berbeda. Secara singkat dinding penahan merupakan dinding yang dibangun untuk menahan massa tanah di atas struktur atau bangunan yang dibuat.

Bangunan dinding penahan umumnya terbuat dari bahan kayu, pasangan batu, beton hingga baja. Bahkan kini sering dipakai produk bahan

Page 79: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

259

sintetis mirip kain tebal sebagai dinding penahan tanah. Produk bahan ini sering disebut sebagai geo textile atau geo syntetic .

5.4.1. Klasifikasi Dinding Penahan

Berdasarkan bentuk dan penahanan terhadap tanah, dinding penahan dapat klasifikasikan ke dalam tiga bentuk, yakni: (1) dinding gravity, (2) dinding semi gravity dan (3) dinding non gravity. Dinding gravity merupakan dinding penahan tanah yang mengandalkan berat bahan sebagai penahan tanah umumnya berupa pasangan batu atau bronjong batu (gabion).

Gambar 5.23: Macam-macam bahan dan bentuk struktur dinding penahan

tanah : (a) gravity, (b) cantilever, (c) dinding dengan jangkar Sumber: Allen, 1999

Dinding semi gravity selain mengandalkan berat sendiri, memanfaatkan berat tanah tertahan untuk kestabilan struktur. Sedangkan dinding non gravity mengandalkan konstruksi dan kekuatan bahan untuk kestabilan.

5.4.2. Tekanan Lateral Tanah

Untuk dapat memperkirakan dan menghitung kestabilan dinding penahan, diperlukan menghitung tekanan ke arah samping (lateral). Karena massa tanah berupa butiran, maka saat menerima tegangan normal (�) baik akibat beban yang diterima tanah maupun akibat berat kolom tanah di atas kedalaman atau duga tanah yang kita tinjau, akan menyebabkan tekangan tanah ke arah tegak lurus atau ke arah samping. Tegangan inilah yang disebut sebagai tegangan tanah lateral (lateral earth pressure). Tengangan tanah akibat kolom tanah tersebut merupakan besaran tegangan efektif (�eff) yang sebanding dengan � H. Pengetahuan tentang tegangan lateral ini diperlukan untuk pendekatan perancangan kestabilan.

Tekanan tanah lateral dibedakan menjadi tekanan tanah lateral aktif dan tekanan lateral pasif. Tekanan lateral aktif adalah tekanan lateral yang ditimbulkan tanah secara aktif pada struktur yang kita selenggarakan. Sedangkan tekanan lateral pasif merupakan tekanan yang timbul pada tanah saat menerima beban struktur yang kita salurkan pada secara lateral. Besarnya tekanan tanah sangat dipengaruhi oleh fisik tanah, sudut geser,

Page 80: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

260

dan kemiringan tanah terhadap bentuk struktur dinding penahan. Ilustrasi tekanan tanah dapat ditunjukkan pada Gambar 5.24.

Gambar 5.24: Ilustrasi untuk Perhitungan Tekanan Lateral Tanah

Sumber: Bowles, 1997

Besaran tekanan tanah lateral sebagaimana diilustrasikan pada Gambar 5.24 dapat di selesaikan menurut persamaan 5.10.

P = �H2K/2 (5.10) Dimana: P = Besaran gaya lateral dalam (Kips/ft atau Ton/m) � = Berat isi tanah ( kips/ft3 atau tan/m3)

H = Ketinggian dinding (ft atau m) K = Koefisien tekanan tanah aktif atau pasif

Sin2(�+φ) Ka =

Sin2 � Sin(�-δ) [ 1+�Sin(φ+δ) Sin (φ-β)/Sin(φ-δ) Sin (φ+β) ]2 Kp = 1/Ka

Tabel 5.11: Koefisien Tekanan lateral Tanah Aktif untuk Gambar 5.23 Sumber: Gaylord Jr, dkk, 1997

Page 81: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

261

5.4.3. Kestabilan Dinding Penahan Tanah

Besaran tekanan lateral ini menjadi salah satu faktor utama yang diperhitungkan untuk perancangan kestabilan dinding penahan tanah. Tekanan lateral tersebut dapat menyebabkan dinding penahan terguling (overturning) atau bergeser (slidding). Selain besaran tekanan lateral kestabilan dinding penahan dipengaruhi pula oleh bentuk struktur dan faktor pelaksanaan konsruksi. Buruknya pemadatan tanah tertahan di belakang dinding penahan merupakan penyebab keruntuhan undermining. Ilustrasi kestabilan yang perlu diperiksa untuk dinding penahan ditunjukkan pada Gambar 5.25.

Gambar 5.25: Keruntuhan dinding penahan : (a) Guling, (b) Geser, (c) Penurunan lateral, (d) Penurunan vertikal

Sumber: Allen, 1999

5.4.4. Kestabilan Geser Dinding Penahan

Untuk memberikan kekuatan yang cukup melawan geseran horisontal, dasar dinding penahan harus memeiliki kedalaman minimum 3 ft (1m) di bawah muka tanah. Untuk dinding permanen, kekuatan tersebut harus stabil tanpa adanya struktur penahan pasif di bagian kaki dinding.

Jika syarat kekuatan diatas tak mencukupi, dapat ditambahkan pengunci geser di bawah telapak pondasi atau tiang pancang untuk menahan geseran. Selain persyaratan kekuatan tersebut, harus dipertimbangkan pula adanya kemungkinan bahaya erosi akibat aliran maupun pengaruh hujan. Bagian-bagian utama dari struktur dinding penahan terhadap geser dapat ditunjukkan pada gambar 5.26.

Page 82: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

262

Gambar 5.26. Bagian struktur dinding penahan tanah Sumber: Allen, 1999

5.4.5. Kestabilan terhadap Guling

Untuk pendekatan keamanan terhadap bahaya guling dari dinding penahan yang mengandalkan berat (gravity wall) dan semi gravity wall, dapat digunakan kriteria sebagaimana ditunjukkan Gambar 5.27.

Gambar 5.27. Kestabilan dinding penahan: (a) gravity dan (b) semi gravity Sumber: Bowles, 1997

Kestabilan untuk dinding penahan gravity dan semigravity

Letak resultan Momen pada daerah telapak (toe) D = Wa + Pve –PH b / (W + PV) Asumsi Pp (tekanan tanah pasif )di sebelah kiri diabaikan

Guling pada dinding gravity dan semi gravity Momen pada daerah telapak Fs = Wa / (PH b – Pv e > 1.50 Fs = Faktor keamanan / Factor of Safety

Page 83: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

263

Abaikan bahaya guling jika diagram resultan (R) jatuh pada daerah sepertiga tengah dasar telapak Fs = (W + PV) Tan δ + Ca B / PH > 1.50 Fs = (W + PV) Tan δ + Ca B + PP/ PH > 1.50 Ca = Adhesi antara tanah dengan dasar bahan dinding dengan tanah Tan δ = kuat geser tanah W = berat dinding termasuk tanah pada dinding

Data tanah relevan untuk pendekatan perhitungan tekanan tanah lateral dan kestabilan dinding penahan dapat ditunjukkan pada Tabel 5.11 tentang Properti tanah untuk perhitungan tekanan tanah aktif Rankine dan Tabel 5.12, tentang Faktor gesek untuk perhitungan dinding penahan.

Tabel 5.12. Properti tanah untuk perhitungan tekanan tanah aktif Rankine Sumber: Gaylord Jr, dkk, 1997

Berat Isi Tanah No Deskripsi Tanah Symbol Koef. Lateral

Rankine Ka γ (Lb/ft3) (ton/m3) Sudut

Gesek φ (Oo)

1 Pasir dan gravel sedikit / tanpa tanah halus

GW, GP, SP 0.25 120 1.92 37

2 Pasir dan gravel bercampur lanau

GM-GPGM-GW, SM-SP, SM-SW

0.29 120 1.92 33

3 Pasir dan gravel bercampur lanau dan lempung

GM,GC, SM, SC

0.45 100 1.60 22

4 Lanau dan lempung ML, MH, CL, CH

0.80 125 2.02 0

5 Lempung jenuh CL, CH 1.00 120 1.92 0

Tabel 5.13: Faktor gesek untuk perhitungan dinding penahan Sumber: Gaylord Jr, dkk, 1997

Adhesi Ca No Bahan tanah (lb/f2 (Ton/m2) 1. Tanah kohesif sangat lunak 0 - 250 0 – 1.221 2. Tanah kohesif lunak 250 – 500 1.221 – 2.441 3. Tanah kohesif kau sedang 500 – 750 2.441 – 3.662 4. Tanah kohesif kaku 750 – 950 3.662 – 4.638 5. Tanah kohesif sangat kaku 950 - 1300 4.638 – 6.347

5.4.6. Dinding Tanah Distabilisasi secara Mekanis (Mechanically Stabilized Earth Wall/MSE)

MSE dibuat dari beberapa elemen bahan yang dimaksudkan untuk penguatan dan perbaikan tanah dengan menggunakan plat baja (steel strip) atau bahan grid polimer (polymeric grid), geotekstil (geotextile) yang kuat menahan tarikan dan beban bahan di atasnya.

Page 84: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

264

Keuntungan dinding ini dibandingkan dinding konvensional dari bahan pasangan dan beton bertulang adalah:

1. Fleksibel terhadap adanya kemungkinan penurunan 2. Cukup murah 3. Cukup efisien terhadap waktu pemasangan 4. Kapabilitas yang cukup baik untuk terjadinya drainase (drainage)

Terdapat dua macam produk, produk yang dapat mulur (extensible product), dan produk yang tak dapat mulur (inextensible product). Produk yang dapat meregang memungkinkan berubah bentuk akibat beban tanpa mengalami putus karena kekuatannya telah dirancang melebihi kekuatan tanah.

Dinding ini diselenggarakan untuk keperluan semi permanen dan atau jika lapangan menyulitkan membangun dinding penahan dari bahan pasangan. Kadang bahan ini digunakan sebagai stabilisasi saat pelaksanaan pekerjaan dinding penahan yang lebih permanen. Ilustrasi pemakaian dinding penahan ini ditunjukkan pada Gambar 5.28.

Gambar 5.28. Pemakaian geotekstil dan gabion pada dinding penahan

Sumber: Brockenbrough dkk, 2003

5.4.7. Struktur Dinding dengan Paku

Struktur dinding ini diselenggarakan bersama-sama dengan pekerjaan penggalian atau pemotongan tanah (excavation). Tanah diperkuat saat dilakukan pemotongan. Perkuatan dengan paku ini menggunakan batang yang ditanam satu dengan yang lain dengan sudut miring ke bawah sebesar 38o dari bidang datar tanah (Gambar 5.29). Penanaman paku dilakukan dari atas ke bawah (Gambar 5.30).

Sedangkan penyelenggaraan dinding yang relatif tipis dilakukan dari bawah ke atas. Kesuksesan pemasangan ini sangat tergantung dari: (1) pemilihan tanah yang cocok untuk penanaman paku, (2) penggunaan bahan yang berkualitas, dan kelengkapan peralatan yang cocok. Tanah yang cocok

Page 85: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

265

umumnya berupa tanah kohesif, pasir yang diperkeras, atau batu pecah yang dipadatkan.

Gambar 5.29 Perilaku perkuatan dinding dengan paku.

Sumber: Allen, 1999

Tahapan pemasangan dinding dengan paku (nailed Wall) dilustrasikan seperti sebagaimana gambar 5.30. Pada tahap 1 dilakukan pemotongan tanah. Tinggi pemotongan ini harus diperhitungkan agar pemotongan tidak terlalu tinggi untuk mencegah keruntuhan. Pada tahap 2 dilakukan pengeboran untuk pemasangan paku. Tahap 3 adalah pemasangan paku. Perlu diingat pemasangan disarankan dari atas ke bawah sebagai upaya untuk keamanan pelaksanaan konstruksi, yakni mengindarkan keruntuhan tanah saat pelaksanaan. Pada tahap selanjutnya dilakukan pelapisan dinding, yang disemprotkan untuk kecepatan pelapisan.

Gambar 5.30. Tahapan Konstruksi dinding dengan paku atau jangkar

Sumber: Allen, 1999

Page 86: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

1. lingkup pekerjaan dan peraturan bangunan

266

Pertanyaan pemahaman: 18. Sebutkan jenis-jenis tanah menurut perbedaan fisiknya berkaitan

untuk kepentingan teknik bangunan? 19. Sebutkan dan jelaskan macam-macam uji tanah yang diperlukan

untuk teknik bangunan? 20. Sebutkan dan jelaskan macam-macam jenis pondasi yang banyak

digunakan? 21. bagaimanakah menghitung batas daya dukung tanah untuk pondasi

dangkal? 22. Apakah fungsi struktur dinding penahan tanah? 23. Sebutkan dan jelaskan macam-macam struktur dinding penahan

tanah yang banyak digunakan?

Tugas pendalaman:

Cari sebuah contoh hasil pengujian tanah dari sebuah proyek bangunan. Periksa dan hitung kembali tegangan efektif tanah, tegangan tanah, tegangan geser.

Page 87: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar pustaka

1A1

DAFTAR PUSTAKA Allen, Edward (1999). Fundamental of Building Construction: Materials and

Methods. John Willey and Sons Inc.

Amon, Rene; Knobloch, Bruce; Mazumder, Atanu (1996). Perencanaan Konstruksi Baja untuk Insinyur dan Arsitek, jilid 1 dan 2. Jakarta. Pradya Paramita

Anonim (2005). Standard Handbook for Civil Engineering. McGraw-Hill Companies.

Anonim (1979). Peraturan Kontruksi Kayu Indonesia NI-5 I 1961. Bandung. Yayasan LPMB Dep. PUTL

Anonim (1983). Peraturan Pembebanan Indonesia untuk Gedung. Bandung. Yayasan LPBM

Anonim. Undang-undang no. 18 tahun 1999, tentang Jasa Konstruksi.

Anonim (2002). SNI 03-1729-2002. Tata cara Perencanaan Struktur Baja untuk Bangunan Gedung.

Anonim (2002). SNI 03-2847-2002. Tata cara Perencanaan Struktur Beton untuk Bangunan Gedung

Anonim. Undang-undang no. 28 tahun 2002, tentang Bangunan Gedung.

Anonim. Undang-undang no. 38 tahun 2004, tentang Jalan.

Anonim. Keputusan Presiden nomor 80 tahun 2003, tentang Pedoman Pelaksanaan Pengadaan Barang/Jasa Pemerintah.

Anonim. Keputusan Presiden nomor 61 tahun 2004, tentang Perubahan atas Keputusan Presiden nomor 80 tahun 2003, tentang Pedoman Pelaksanaan Pengadaan Barang/Jasa Pemerintah.

Anonim. Keputusan Presiden nomor 32 tahun 2005, tentang Perubahan Kedua atas Keputusan Presiden nomor 80 tahun 2003, tentang Pedoman Pelaksanaan Pengadaan Barang/Jasa Pemerintah.

Anonim. Keputusan Presiden nomor 70 tahun 2005, tentang Perubahan Ketiga atas Keputusan Presiden nomor 80 tahun 2003, tentang Pedoman Pelaksanaan Pengadaan Barang/Jasa Pemerintah.

Anonim. Keputusan Presiden nomor 8 tahun 2006, tentang Perubahan Keempat atas Keputusan Presiden nomor 80 tahun 2003, tentang Pedoman Pelaksanaan Pengadaan Barang/Jasa Pemerintah.

Anonim. Keputusan Presiden nomor 79 tahun 2006, tentang Perubahan Kelima atas Keputusan Presiden nomor 80 tahun 2003, tentang Pedoman Pelaksanaan Pengadaan Barang/Jasa Pemerintah.

Page 88: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar pustaka

A2

Anonim. Keputusan Presiden nomor 85 tahun 2006, tentang Perubahan Keenam atas Keputusan Presiden nomor 80 tahun 2003, tentang Pedoman Pelaksanaan Pengadaan Barang/Jasa Pemerintah.

Bowles, Joseph E. (1997) Foundation Analysis & Design, fifth edition. McGraw-Hill Companies.

Brockenbrough, Roger. L. dan Boedecker, Kenneth J. (2003). Highway Engineering Handbook. McGraw-Hill.

CEB-FIP (2004). Planning and Design Handbook on Precast Building Structures. BFT Betonwerk.

Chen, Wai-Fah & Duan, Lian (2000). Bridge Engineering Handbook. CRC Press LLC.

Chen, Wai-Fah & M. Lui, Eric (2005). Handbook of Structural Engineering. CRC Press LLC.

Ching, Francis DK & Cassandra, Adams (2001). Building Construction Illustrated, third edition. John Wiley & Sons, Inc.

Dipohusodo, Istimawan (1994). Struktur Beton Bertulang, berdasarkan SK SNI T-15-1991-03 Departemen Pekerjaan Umum RI. Jakarta. Gramedia Pustaka Utama.

Dipohusodo, Istimawan (1996). Manajemen Proyek dan Konstruksi. Yogyakarta. Kanisius.

Engel, Heinrich (1981). Structure Systems. Van Nostrand Reinhold Company.

Ervianto, Wulfram I. (2005). Manajemen Proyek Konstruksi. Yogyakarta. Andi Ofset.

Gaylord Jr, Edwin H; Gaylord, Charles N.; dan Stallmeyer, James E. (1997) Structural Engineering Handbook, 4th. McGraw-Hill.

Gere dan Timoshenko (1994). Mechanics of Materials Third Edition. Massachussetts. Cahapman&Hall.

Gurki, J. Thambah Sembiring (2007). Beton Bertulang. Bandung. Rekayasa Sains.

Hibbeler, Russell C (2002). Structural Analysis, fifth edition. Prentice Hall.

Hodgkinson, Allan (1977). AJ Handbook of Building Structure. London. The Architecture Press.

Leet, Kenneth M. & Uang, Chia-Ming (2002). Fundamentals of Structural Analysis. McGraw-Hill.

Macdonald, Angus J. (2002). Struktur dan Arsitektur, edisi kedua.Jakarta. Erlangga

Merritt FS & Roger L Brocken Brough (1999). Structural Steel Designer’s Handbook. McGraw-Hill.

Millais, Malcolm (1999). Building Structures, A conceptual approach. London. E&FN Spoon.

Moore, Fuller (1999). Understanding Structures. McGraw-Hill Companies.

Mulyono, Tri (2005). Teknologi Beton. Yogyakarta. Andi Offset.

Page 89: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar pustaka

3A3

Nilson, Arthur H., Darwin, David, Dole, Charles W. (2004). Design of Concrete Structures, thirdteenth edition. McGraw-Hill Companies.

Oentoeng (1999). Konstruksi Baja. Yogyakarta. Andi Ofset.

Patterson, Terry L. (2003). Illustrated 2003 Building Code Handbook. McGraw-Hill.

R. Sagel; P. Kole; Kusuma, Gideon H. (1994). Pedoman Pengerjaan Beton; Berdasarkan SKSNI T-15-1991-03. Jakarta. Erlangga.

R. Sutrisno (1984). Bentuk Struktur Bangunan dalam Arsitektur Modern. Jakarta. Gramedia.

Salmon, Charles G., Johnson, John E. & Wira M (penterjemah) (1991). Struktur Baja, Disain dan Perilaku, jilid 1 dan 2, Edisi kedua. Jakarta. Erlangga.

Salvadori, Mario & Levy, Matthys (1986). Disain Struktur dalam Arsitektur. Jakarta. Erlangga.

Schodek, Daniel L. (1999). Struktur (Alih Bahasa) edisi kedua. Jakarta. Erlangga.

Schuler, Wolfgang (1983). Horizontal-Span Building Structures. John Wiley & Sons, Inc.

Schuler, Wolfgang (1989). Struktur Bangunan Bertingkat Tinggi. Bandung. Eresco.

Soegihardjo & Soedibjo (1977). Ilmu Bangunan Gedung. Depdikbud. Direktorat Pendidikan Menengah Kejuruan.

Sumarni, Sri (2007). Struktur Kayu. Surakarta. UNS Press.

Supriyadi, Bambang & Muntohar, Agus Setyo (2007). Jembatan. Yogyakarta. Beta Offset.

TY Lin & SD Stotesbury (1981). Structural Concepts and Systems for Architects and Engineers. New York. John Wiley & Sons, Inc

WC Vis & Kusuma, Gideon (1993). Dasar-dasar Perencanaan Beton Bertulang. Jakarta. Erlangga

NSPM Kimpraswil (2002). Metode, Spesifikasi dan Tata Cara, bagian 8: Bendung, Bendungan, Sungai, Irigasi, Pantai. Jakarta. Departemen Permukiman dan Prasarana Wilayah. Badan Penelitian dan Pengembangan.

Forest Products Laboratory USDA (1999). Wood Handbook: Wood as an Engineering Material. Forest Cervice Madison Wisconsin

Pembangunan Perumahan (2003). Buku Referensi untuk Kontraktor Bangunan Gedung dan Sipil, Jakarta. PT. Gramedia Pustaka Utama

Page 90: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar istilah

1B1

DAFTAR ISTILAH Abutment – bagian bawah tumpuan struktur jembatan Agregat campuran – bahan batu-batuan yang netral (tidak bereaksi) dan merupakan bentuk sebagian besar beton (misalnya: pasir, kerikil, batu-pecah, basalt) AISC – singkatan dari American Institute of Steel Construction AISCS – Spesifikasi-spesifikasi yang dikembangkan oleh AISC, atau singkatan dari American Institute of Steel Construction Specification ASTM – singkatan dari American Society of Testing and Materials Balok – elemen struktur linier horisontal yang akan melendut akibat beban transversal Balok spandrel – balok yang mendukung dinding luar bangunan yang dalam beberapa hal dapat juga menahan sebagian beban lantai Batas Atterberg – besaran kadar air (%) untuk menandai kondisi konsistensi tanah yakni terdiri dari batas cair (Liquid Limit / LL), bata plastis (Plastic Limit/ PL) maupun batas susut (shirinkage Limit). Batas Cair – besaran kadar air tanah uji (%) dimana dilakukan ketukan sebanyak 25 kali menyebabkan alur tanah pada cawan Cassangrade berimpit 1.25 cm (1/2 inch). Batas Plastis – besaran kadar air tanah sehingga saat dilakukan pilinan pada contoh tanah hingga ∅ 3 mm mulai terjadi retakan dan tidak putus Beban – suatu gaya yang bekerja dari luar Beban hidup – semua beban yang terjadi akibat pemakaian dan penghunian suatu gedung, termasuk beban-beban pada lantai yang berasal dari barang-barang yang dapat berpindah dan/atau beban akibat air hujan pada atap Beban mati – berat semua bagian dari suatu gedung yang bersifat tetap, termasuk segala beban tambahan, finishing, mesin-mesin serta peralatan tetap yang merupakan bagian yang tak terpisahkan dari gedung tersebut Beton – suatu material komposit yang terdiri dari campuran beberapa bahan batu-batuan yang direkatkan oleh bahan-ikat, yaitu dibentuk dari agregat campuran (halus dan kasar) dan ditambah dengan pasta semen (semen +air) sebagai bahan pengikat. Beton Bertulang – beton yang diperkuat dengan tulangan, didesain sebagai dua material berbeda yang dapat bekerja bersama untuk menahan gaya yang bekerja padanya. Beton Cast-in-place – beton yang dicor langsung pada posisi dimana dia ditempatkan. Disebut juga beton cast- in situ.

Page 91: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar istilah

2 B2

Beton Precast – beton yang dicor di tempat yang berbeda dengan site, biasanya di tempat yang berdekatan dengan lokasi site Beton Prestressed – beton yang mempunyai tambahan tegangan tekan longitudinal melalui gaya tarik pada serat yang diberi pra-tegang di sepanjang elemen strukturnya. Beton struktural – beton yang digunakan untuk menahan beban atau untuk membentuk suatu bagian integral dari suatu struktur. Fungsinya berlawanan dengan beton insulasi (insulating concrete). Bracing – konfigurasi batang-batang kaku yang berfungsi untuk menstabilkan struktur terhadap beban lateral Cincin tarik (cincin containment) – cincin yang berada di bagian bawah struktur cangkang, berfungsi sebagai pengaku Daktilitas – adalah kemampuan struktur atau komponennya untuk melakukan deformasi inelastis bolak-balik berulang di luar batas titik leleh pertama, sambil mempertahankan sejumlah besar kemampuan daya dukung bebannya; Defleksi – lendutan balok akibat beban Dinding geser (shear wall, structural wall) – dinding beton dengan tulangan atau pra-tegang yang mampu menahan beban dan tegangan, khusunya tegangan horisontal akibat beban gempa. Faktor reduksi – suatu faktor yang dipakai untuk mengalikan kuat nominal untuk mendapatkan kuat rencana;

Gaya tarik – gaya yang mempunyai kecenderungan untuk menarik elemen hingga putus.

Gaya tekan – gaya yang cenderung untuk menyebabkan hancur atau tekuk pada elemen. Fenomena ketidakstabilan yang menyebabkan elemen tidak dapat menahan beban tambahan sedikitpun bisa terjadi tanpa kelebihan pada material disebut tekuk (buckling).

Geser – keadaan gaya yang berkaitan dengan aksi gaya-gaya berlawanan arah yang menyebabkan satu bagian struktur tergelincir terhadap bagian di dekatnya. Tegangan geser umumnya terjadi pada balok.

Girder – susunan gelagar-gelagar yang biasanya terdiri dari kombinasi balok besar (induk) dan balok yang lebih kecil (anak balok) Goyangan (Sideways) – fenomena yang terjadi pada rangka yang memikul beban vertikal. Bila suatu rangka tidak berbentuk simetris, atau tidak dibebani simetris, struktur akan mengalami goyangan (translasi horisontal) ke salah satu sisi.

HPS – singkatan dari high-performance steel, merupakan suatu tipe kualitas baja

Page 92: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar istilah

3B3

HVAC – singkatan dari Heating, Ventilating, Air Conditioning, yaitu hal yang berhubungan dengan sistem pemanasan, tata udara dan pengkondisian udara dalam bangunan Joist – susunan gelagar-gelagar dengan jarak yang cukup dekat antara satu dan yang lainnya, dan biasanya berfungsi untuk menahan lantai atau atap bangunan. Biasanya dikenal sebagai balok anak atau balok sekunder. Kolom – elemen struktur linier vertikal yang berfungsi untuk menahan beban tekan aksial Komposit – tipe konstruksi yang menggunakan elemen-elemen yang berbeda, misalnya beton dan baja, atau menggunakan kombinasi beton cast-in situ dan pre-cast, dimana komponen yang dikombinasikan tersebut bekerja bersama sebagai satu elemen struktural. Kuat nominal – kekuatan suatu komponen struktur atau penampang yang dihitung berdasarkan ketentuan dan asumsi metode perencanaan sebelum dikalikan dengan nilai faktor reduksi kekuatan yang sesuai Kuat perlu – kekuatan suatu komponen struktur atau penampang yang diperlukan untuk menahan beban terfaktor atau momen dan gaya dalam yang berkaitan dengan beban tersebut dalam suatu kombinasi seperti yang ditetapkan dalam tata cara ini Kuat rencana – kuat nominal dikalikan dengan suatu faktor reduksi kekuatan φ Kuat tarik leleh – kuat tarik leleh minimum yang disyaratkan atau titik leleh dari tulangan dalam MPa Kuat tekan beton yang disyaratkan (fC’ ) – kuat tekan beton yang ditetapkan oleh perencana struktur (benda uji berbentuk silinder diameter 150 mm dan tinggi 300 mm), untuk dipakai dalam perencanaan struktur beton, dinyatakan dalam satuan MPa. Las tumpul penetrasi penuh – suatu las tumpul, yang fusinya terjadi diantara material las dan metal induk, meliputi seluruh ketebalan sambungan las Las tumpul penetrasi sebagian – suatu las tumpul yang kedalaman penetrasinya kurang dari seluruh ketebalan sambungan; Lentur – keadaan gaya kompleks yang berkaitan dengan melenturnya elemen (biasanya balok) sebagai akibat adanya beban transversal. Aksi lentur menyebabkan serat-serat pada sisi elemen memanjang, mengalami tarik dan pada sisi lainnya akan mengalami tekan, keduanya terjadi pada penampang yang sama. Lintel – balok yang membujur pada tembok yang biasanya berfungsi untuk menahan beban yang ada di atas bukaan-bukaan dinding seperti pintu atau jendela LRFD – singkatan dari load and resistance factor design.

Page 93: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar istilah

4 B4

Modulus elastisitas – rasio tegangan normal tarik atau tekan terhadap regangan yang timbul akibat tegangan tersebut. Momen – gaya memutar yang bekerja pada suatu batang yang dikenai gaya tegak lurus akan menghasilkan gaya putar (rotasi) terhadap titik yang berjarak tertentu di sepanjang batang. Momen puntir – momen yang bekerja sejajar dengan tampang melintang batang. Momen kopel – momen pada suatu titik pada gelegar Mortar – campuran antara semen, agregat halus dan air yang telah mengeras Plat Komposit – plat yang dalam aksi menahan bebannya dilakukan oleh aksi komposit dari beton dan plat baja / steel deck sebagai tulangannya. Pondasi – bagian dari konstruksi bangunan bagian bawah (sub-structure) yang menyalurkan beban struktur dengan aman ke dalam tanah. Rangka batang ruang – struktur rangka batang yang berbentuk tiga dimensional, membentuk ruang Rangka kaku – suatu rangka struktur yang gaya-gaya lateralnya dipikul oleh sistem struktur dengan sambungan-sambungannya direncanakan secara kaku dan komponen strukturnya direncanakan untuk memikul efek gaya aksial, gaya geser, lentur, dan torsi; Rangka tanpa Bracing (Unbraced frame) — sistem rangka dimana defleksi lateral yang terjadi padanya tidak ditahan oleh pengaku atau dinding geser (shear wall) Sag – simpangan yang terjadi pada struktur kabel, yang merupakan tinggi lengkungan struktur tersebut sengkang – tulangan yang digunakan untuk menahan tegangan geser dan torsi dalam suatu komponen struktur, SNI – singkatan dari Standar Nasional Indonesia Spesi-beton – campuran antara semen, agregat campuran (halus dan kasar) dan air yang belum mengeras Spesi-mortar – campuran antara semen, agregat halus dan air yang belum mengeras Struktur bangunan – bagian dari sebuah sistem bangunan yang bekerja untuk menyalurkan beban yang diakibatkan oleh adanya bangunan di atas tanah. Struktur Balok dan Kolom (post and beam) – sistem struktur yang terdiri dari elemen struktur horisontal (balok) diletakkan sederhana di atas dua elemen struktur vertikal (kolom) yang merupakan konstruksi dasar Struktur Cangkang – bentuk struktural berdimensi tiga yang kaku dan tipis serta mempunyai permukaan lengkung. Struktur Grid – salah satu analogi struktur plat yang merupakan struktur bidang, secara khas terdiri dari elemen-elemen linier kaku panjang seperti

Page 94: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar istilah

5B5

balok atau rangka batang, dimana batang-batang tepi atas dan bawah terletak sejajar dengan titik hubung bersifat kaku. Struktur Funicular – sistem struktur yang berbentuk seperti tali, kurva atau kumpulan segmen elemen-elemen garis lurus yang membentuk lengkung Struktur Membran – konfigurasi struktur yang terbentuk dari lembaran tipis dan fleksibel. Struktur Plat – struktur planar kaku yang secara khas terbuat dari material monolit yang tingginya relatif kecil dibandingkan dengan dimensi-dimensi lainya. Struktur Rangka Batang – susunan elemen-elemen linier yang membentuk segitiga atau kombinasi segitiga, sehingga menjadi bentuk rangka yang tidak dapat berubah bentuk bila diberi beban eksternal tanpa adanya perubahan bentuk pada satu atau lebih batangnya. Struktur Rangka Kaku (rigid frame) – struktur yang terdiri atas elemen-elemen linier, umumnya balok dan kolom, yang saling dihubungkan pada ujung-ujungnya oleh joints (titik hubung) yang dapat mencegah rotasi relatif di antara elemen struktur yang dihubungkannya. Struktur Tenda – bentuk lain dari konfigurasi struktur membran, dapat berbentuk sederhana maupun kompleks dengan menggunakan membran-membran. Struktur Vierendeel – struktur rangka kaku yang digunakan secara horisontal. Struktur ini tampak seperti rangka batang yang batang diagonalnya dihilangkan. Perlu diingat bahwa struktur ini adalah rangka, bukan rangka batang. Jadi titik hubungnya kaku. Sub-structure – struktur bagian bawah. Pada struktur jembatan merupakan bagian yang mendukung bentang horisontal Super-structure – struktur bagian atas. Pada struktur jembatan, merupakan bagian struktur yang terdiri dari bentang horisontal. Sway Frame – suatu rangka yang mempunyai respon terhadap gaya horisontal dalam bidang tidak cukup kaku untuk menghindari terjadinya tambahan gaya internal dan momen dari pergeseran horisontal, sehingga memungkinkan terjadinya goyangan (sway) Tegangan – intensitas gaya per satuan luas Tegangan tumpu (bearing stress) – tegangan yang timbul pada bidang kontak antara dua elemen struktur, apabila gaya-gaya disalurkan dari satu elemen ke elemen yang lain. Tegangan-tegangan yang terjadi mempunyai arah tegak lurus permukaan elemen. Tegangan utama (principle stresses) – interaksi antara tegangan lentur dan tegangan geser dapat merupakan tegangan normal tekan atau tarik, yang disebut sebagai tegangan utama. Tinggi efektif penampang (d) – jarak yang diukur dari serat tekan terluar hingga titik berat tulangan tarik Titik hubung (joint) – titik pertemuan batang-batang elemen struktur, dimana titik ini merupakan pertemuan gaya-gaya yang terjadi pada elemen struktur tersebut

Page 95: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar istilah

6 B6

Tendon – elemen baja misalnya kawat baja, kabel batang, kawat untai atau suatu bundel dari elemen-elemen tersebut, yang digunakan untuk memberi gaya prategang pada beton

Torsi – puntiran yang timbul pada elemen struktur apabila padanya diberikan momen puntir langsung atau secara tak langsung. Tegangan tarik maupun tekan akan terjadi pada elemen yang mengalami torsi. Triangulasi – konfigurasi struktur segitiga yang bersifat stabil, tidak bisa berubah bentuk atau runtuh Tulangan – batang, kawat atau elemen lain yang ditambahkan pada beton untuk memperkuat beton menahan gaya. tulangan polos – batang baja yang permukaan sisi luarnya rata, tidak bersirip dan tidak berukir tulangan ulir – batang baja yang permukaan sisi luarnya tidak rata, tetapi bersirip atau berukir tulangan spiral – tulangan yang dililitkan secara menerus membentuk suatu ulir lingkar silindris Un-sway Frame – suatu rangka yang mempunyai respon terhadap gaya horisontal dalam bidang cukup kaku untuk menghindari terjadinya tambahan gaya internal dan momen dari pergeseran horisontal tersebut. Umur bangunan – periode/waktu selama suatu struktur dipersyaratkan untuk tetap berfungsi seperti yang direncanakan;

Page 96: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar tabel

1C1

DAFTAR TABEL 1.1. Daftar SNI struktur bangunan 8 1.2. Contoh safety plan resiko kecelakaan dan pencegahannya 11 1.3. Contoh safety plan tata cara pengoperasian alat 13 1.4. Contoh safety plan tata cara pengoperasian alat 13

2.1. Tampilan layar MS Word 50

3.1. Berat sendiri bahan bangunan dan komponen bangunan 130 3.2. Beban hidup pada lantai bangunan 131 3.3. Koefisien angin menurut peraturan pembebanan Indonesia 133 3.4. Parameter daktilitas dan reduksi untuk struktur gedung 137 3.5. Konversi Satuan Amerika Serikat (US) terhadap

Satuan Baku Internasional (SI Units) 149

4.1. Desain Momen 203

5.1. Klasifikasi Tanah menurut USCS 240 5.2. Nomor Pengenal, Ukuran Lubang Ayakan (Sieve Size)

untuk Uji Tanah 243 5.3. Contoh analisa saringan menurut SNI 1968-1990-F 243 5.4. Hasil Uji Geser Langsung (Direct Shear Test) 245 5.5. Besaran berat isi maksimum tanah dan kadar air optimum 247 5.6. Jumlah pukulan hasil Uji SPT dan tingkat kepadatan tanah 249 5.7. Kekerasan tanah kohesif dari hasil uji kuat tekan bebas

dan SPT 251 5.8. Kekerasan dan besaran sudut geser dalam dari jenis

tanah granuler 252 5.9. Kekerasan dan besaran sudut geser dalam dari jenis

tanah lanau 253 5.10. Besaran faktor bentuk pondasi dangkal 258 5.11. Koefisien tekanan lateral tanah aktif untuk Gambar 5.23 260 5.12. Properti tanah untuk perhitungan tekanan tanah aktif Rankine 263 5.13. Faktor gesek untuk perhitungan dinding penahan 263

6.1. Sifat mekanis baja struktural 269 6.2. Beban tarikan minimum baut 283

7.1. Karakteristik baja tulangan 344 7.2. Penyimpangan yang diijinkan untuk panjang bentang 345 7.3. Penyimpangan yang diijinkan untuk massa teoritis 345 7.4. Penyimpangan yang diijinkan untuk berat teoritis 345

Page 97: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar tabel

C2

7.5. Penyimpangan yang diijinkan dari diameter nominal 345 7.6. Tebal minimum penutup beton 354 7.7. Diameter bengkokan minimum 358 7.8. Toleransi untuk tulangan dan selimut beton 358 7.9. Kuat tekan beton 363 7.10. Tegangan leleh baja 364 7.11. Faktor reduksi kekuatan 364 7.12. Lendutan ijin maksimum 365 7.13. Rasio luas tulangan terhadap luas bruto penampang 373 7.14. Tinggi balok minimum 374 7.15. Daftar nilai AS untuk balok T 379 7.16. Tebal minimum plat tanpa balok 385

8.1. Kelas kuat kayu 401 8.2. Kelas awet kayu 401 8.3. Spesifikasi ukuran paku 407 8.4. Nilai K untuk perhitungan kuat lateral paku dan sekerup 409 8.5. Ukuran sekerup 409 8.6. Faktor kekuatan lateral sekerup lag 411 8.7. Kekuatan per alat sambung untuk cincin dan plat geser 416 8.8. Angka kelangsingan 418

9.1. Format matriks evaluasi untuk memilih jenis jembatan 435 9.2. Tipe jembatan dan aplikasi panjang jembatan 435 9.3. Aplikasi tipe jembatan berdasar panjang bentangnya 451

Page 98: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar gambar

D1

DAFTAR GAMBAR 1.1. Proyek konstruksi 1 1.2. Konstruksi gedung 1 1.3. Jalan raya 2 1.4. Macam pekerjaan konstruksi teknik sipil 4 1.5. Keselamatan kerja konstruksi 10 1.6. Papan promosi K3 10 1.7. Peralatan pelindung mata 16 1.8. Jenis peralatan pelindung wajah 16 1.9. Macam-macam pelindung pendengaran 17 1.10. Jenis helm pelindung kepala 17 1.11. Jenis sepatu dan boots pelindung kaki 18 1.12. Jenis sarung tangan pelindung 19 1.13. Jenis peralatan pelindung jatuh 20 1.14. Contoh rambu-rambu peringatan K3 21 1.15. Proses penyelengaraan konstruksi 22 1.16. Prosedur ijin mendirikan bangunan 23 1.17. Skema struktur organisasi utama 29 1.18. Skema struktur organisasi lengkap pelaksana proyek kontruksi 31 1.19. Urutan kegiatan pelaksanaan pelelangan 36 2.1. Toolbar aplikasi program MS Office 43 2.2. Tampilan layar MS Word 44 2.3. Pengetikan dokumen dengan MS Word 45 2.4. Kotak dialog font 46 2.5. Kotak dialog format paragraf 46 2.6. Menu file 47 2.7. Kotak dialog print 48 2.8. Tampilan layar MS Excel 49 2.9. Chart wizard dialog 54 2.10. Tampilan layar MS PowePoint 56 2.11. Tampilan layar dengan pilihan bentuk slide 57 2.12. Tampilan format placeholder 58 2.13. Tampilan wordart gallery 59 2.14. Tampilan layar MS Project 63 2.15. Tampilan layar MS Project untuk template 64 2.16. Tampilan Project information 65 2.17. Tampilan tabel resource sheet 71 2.18. Tampilan hasil MS Project 72 2.19. Tampilan tabel tracking 73

Page 99: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar gambar

D2

2.20. Arah sumbu lokal 75 2.21. Arah sumbu lokal dan sumbu global 76 2.22. Arah sumbu lokal dan perjanjian tanda 76 2.23. Tampilan awal STAAD/Pro 77 2.24. Kotak dialog new file 78 2.25. Kotak dialog pemilihan model struktur 78 2.26. Kotak dialog pemilihan unit satuan 79 2.27. Tampilan program aplikasi STAAD/Pro 79 2.28. Penggambaran geometry bentuk struktur 80 2.29(a) Penentuan properti penampang struktur 81 2.29(b) Penentuan konstanta bahan struktur 82 2.30. Penentuan perletakan struktur 83 2.31. Penentuan definisi beban-beban struktur 82 2.32. Penentuan model analisis struktur 85 2.33. Tampilan menu edit pada text editor 86 2.34. Tampilan menu edit command file 86 2.35. Tampilan awal AutoCad 89 2.36. Kotak dialog pilihan template 90 2.37. Kotak dialog untuk pilihan file yang akan dibuka 91 2.38. Kotak dialog untuk menyimpan file 91 2.39. Toolbar format teks dan area penilisan 92 2.40. Teknik menggambar lingkaran 93 2.41. Kotak dialog untuk menentukan jenis miltiline 94 2.42. Kotak dialog untuk menentukan jenis arsiran 96 2.43. Kotak dialog penentuan dimensi obyek 97 2.44. Kotak dialog untuk pilihan jenis tampilan dimensi 97 2.45. Kotak dialog untuk menentukan atribut obyek 98 2.46. Teknik menggandakan obyek 99 2.47. Teknik memindahkan obyek 100 2.48. Teknik menggandakan obyek dengan offset 100 2.49. Teknik melakukan array 101 2.50. Teknik mencerminkan obyek dengan mirror 102 2.51. Teknik memotong obyek dengan trim 103 2.52. Teknik memperpanjang obyek dengan extend 103 2.53. Teknik mempertemukan obyek dengan fillet 104 2.54. Teknik mempertemukan obyek dengan chamfer 105 2.55. Teknik memperpanjang obyek dengan stretch 105 2.56. Kotak dialog untuk menentukan obyek sebagai block 107 2.57. Kotak dialog untuk memanggil obyek.block dengan insert 108 2.58. Kotak dialog untuk obyek snap 108 2.59. Contoh gambar obyek meshes 109 2.60. Teknik menggambar dengan rulesurf 110 2.61. Teknik menggambar dengan tabsurf 110 2.62. Teknik menggambar dengan edgesurf 111 2.63. Teknik menggambar dengan revsurf 111 2.64. Toolbar menu surfece 112

Page 100: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar gambar

D3

2.65. Toolbar menu solids 112 2.66. Contoh obyek 3D solid primitif 113 2.67. Teknik melakukan extrude obyek 111 3.1. Struktur post and lintel bangunan batu di Mesir 115 3.2. Struktur post and lintel bangunan batu di Parthenon 116 3.3. Struktur lengkung pada bangunan Roma 116 3.4. Struktur lengkung kubah bangunan 117 3.5. Penampang sistem struktur pada bangunan katedral 117 3.6. Struktur rangka baja Menara Eifel, Paris 118 3.7. Klasifikasi elemen struktur 120 3.8. Klasifikasi struktur menurut mekanisme transfer beban 121 3.9. Jenis-jenis elemen struktur 122 3.10. Susunan sistem struktur penahan bentang horisontal

untuk bentang pendek 125 3.11. Susunan sistem struktur penahan bentang horisontal

untuk bentang lebar atau panjang 126 3.12. Skema pembebanan struktur 128 3.13. Aliran angin di sekitar bangunan 132 3.14. Aksi gaya -gaya pada tinjauan struktur 140 3.15. Keruntuhan struktur dan respon struktur mencegah runtuh 141 3.16. Analisa kestabilan struktur 142 3.17. Contoh komponen struktur untuk bangunan yang umum 143 3.18. Pemisahan elemen struktural 144 3.19. Berbagai jenis hubungan dan pemodelannya 146 3.20. Pendekatan pemodelan pembebanan pada struktur plat 147 3.21. Arah gaya pada suatu bidang 150 3.22. Gaya normal dan gaya lintang 150 3.23. Momen 151 3.24. Bentuk momen 152 3.25. Penguraian gaya 152 3.26. Cara menggabungkan gaya 153 3.27. Cara menggabungkan gaya dengan lukisan kutub 154 3.28. Komponen reaksi contoh soal 155 3.29. Komponen reaksi tekan pada suatu struktur 156 3.30. Bentuk struktur utama 157 3.31. Bentuk dudukan 158 3.32. Konsol dengan beban terpusat 159 3.33. Balok konsol dengan beban terbagi merata 160 3.34. Muatan terbagi segitiga pada struktur konsol 161 3.35. Balok di atas dua tumpuan 161 3.36. Struktur balok dua dudukan dengan beban miring 163 3.37. Balok dua dudukan dengan beban terbagi rata 165 3.38. Contoh soal balok dua dudukan dengan beban segitiga 167 3.39. Balok dua dudukan dengan beban trapesium 168 3.40. Balok dua dudukan dengan beban gabungan 169

Page 101: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar gambar

D4

3.41. Tipikal struktur rangka batang 169 3.42. Tipikal bentuk struktur rangka batang sederhana 170 3.43. Sketsa contoh soal struktur rangka batang 171 3.44. Pemotongan untuk mencari S1 dan S6 174 3.45. Pemotongan untuk mencari gaya batang S5 , S6 dan S7 175 3.46. Pemotongan untuk mencari gaya S9 175 3.47. Tegangan normal tarik pada batang prismatik 176 3.48. Tegangan normal tekan pada batang prismatik 176 3.49. Geser pada sambungan baut 177 3.50. Batang yang mengalami puntiran (torsion) 177 3.51. Torsi tampang lingkaran solid dan lingkaran berlubang 178 3.52. Struktur balok yang mengalami lentur dan geser 178 3.53. Balok yang mengalami geseran arah memanjang 179 4.1. Rangka Batang dan Prinsip-prinsip Dasar Triangulasi 182 4.2. Mekanisme Gaya-gaya pada Rangka Batang 183 4.3. Kestabilan Internal pada Rangka Batang 184 4.4. Penggunaan batang kaku 185 4.5. Diagram gaya batang 185 4.6. Jenis-jenis umum rangka batang 190 4.7. Tekuk batang: hubungan dengan pola segitiga 192 4.8. Tekuk lateral pada rangka 192 4.9. Rangka batang ruang tiga dimensi 193 4.10. Balok pada gedung 195 4.11. Jenis dan perilaku balok 196 4.12. Pengekang lateral untuk balok kayu 198 4.13. Torsi yang terjadi pada balok 199 4.14. Penampang balok dan ketahanan terhadap torsi 199 4.15. Pusat geser (shear center) pada balok 200 4.16. Garis tegangan utama 201 4.17. Beban eksentris pada kolom 207 4.18. Bentuk-bentuk penampang kolom 210 4.19. Gedung dengan struktur rangka beton 211 4.20. Tipikal struktur gedung berlantai banyak 212 4.21. Contoh sistem rangka ruang 212 4.22. Elemen dasar pembentuk sistem rangka ruang 213 4.23. Macam-macam sistem rangka ruang 214 4.24. Struktur bangunan modern dengan permukaan bidang

dan kabel 215 4.25. Perbandingan perilaku struktur ’post and beam’ dan

rangka kaku 216 4.26. Efek variasi kekakuan relatif balok dan kolom 219 4.27. Efek turunnya tumpuan pada struktur rangka kaku 220 4.28. Rangka kaku bertingkat banyak 221 4.29. Rangka khusus: struktur Vierendeel 221 4.30. Jenis-jenis struktur berdasarkan momen lentur 222

Page 102: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar gambar

D5

4.31. Penentuan ukuran dan bentuk penampang pada rangka 224 4.32. Struktur rangka ruang, plat dan grid 225 4.33. Struktur plat satu arah 226 4.34. Plat berusuk satu arah 227 4.35. Sistem balok dan plat dua arah 227 4.36. Struktur grid dua arah sederhana 228 4.37. Sistem slab & balok dua arah dan sistem wafel 229 4.38. Penggunaan drop panel dan column capitals 230 4.39. Gaya-gaya pada struktur rangka ruang 231 4.40. Jenis-jenis struktur rangka ruang dengan modul berulang 231 4.41. Struktur plat lipat 232 4.42. Pengelompokan sistem bangunan tinggi 233 4.43. Rangka sederhana dengan bracing 235 4.44. Sistem bracing umum 236 5.1. Ayakan untuk uji ukuran butir dan gradasi tanah 242 5.2. Alat uji hidrometer 242 5.3. Alat uji batas cair dan batas plastis 244 5.4. Grafik uji geser langsung 246 5.5. Alat uji geser langsung 246 5.6. Alat uji tekan bebas 246 5.7. Alat boring tanah dan alat pengambil sampel 248 5.8. Tipikal split sampler pada ujung alat SPT 249 5.9. Alat sondir 249 5.10. Konus tunggal dan konus ganda pada alat sondir 250 5.11. Ilustrasi besaran tegangan efektif tanah 250 5.12. Ilustrasi tegangan pada tanah 251 5.13. lustrasi perhitungan tinggi pemotongan tanah 252 5.14. Macam-macam pondasi 253 5.15. Pondasi dinding, telapak kolom, dan telapak dinding 254 5.16. Bentuk pondasi untuk tanah miring 254 5.17. Tampang dan bahan pondasi tiang 255 5.18. Tipikal pondasi tiang dalam menyalurkan beban 255 5.19. Plat kaki kolom di atas pondasi tiang 256 5.20. Peralatan boring pondasi tiang sumuran 256 5.21. Tahapan pembuatan sistem pondasi Frankie 257 5.22. Ilustrasi perhitungan daya dukung pondasi 257 5.23. Macam-macam bentuk struktur dinding penahan tanah 259 5.24. Ilustrasi perhitungan tekanan lateral tanah 260 5.25. Keruntuhan dinding penahan 261 5.26. Bagian struktur dinding penahan tanah 262 5.27. Kestabilan dinding penahan gravity dan semi gravity 262 5.28. Pemakaian geotekstil dan gabion 264 5.29. Perilaku perkuatan dinding dengan paku 265 5.30. Tahapan konstruksi dinding dengan paku atau jangkar 265

Page 103: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar gambar

D6

6.1. Struktur bangunan baja 267 6.2. Bentuk baja profil canai panas 270 6.3. Bentuk baja profil cold forming 270 6.4. Standar tipe penampang profil baja canai panas 272 6.5. Beberapa profil elemen struktur rangka individu 273 6.6. Beberapa profil lembaran panel dan dek 273 6.7. Sistem konstruksi untuk konstruksi baja 275 6.8. Perkiraan batas bentang untuk berbagai sistem baja 278 6.9. Bentang yang dapat dicapai untuk beberapa sistem struktur 279 6.10. Baut dan spesifikasinya 281 6.11. Jenis sambungan-sambungan baut 284 6.12. Jenis keruntuhan sambungan 285 6.13. Pengelasan SMAW 288 6.14. Pengelasan SAW 289 6.15. Pengelasan GMAW 289 6.16. Pengelasan busur nyala 291 6.17. Contoh sambungan lewatan 293 6.18. Jenis las 294 6.19. Jenis las tumpul 295 6.20. Macam-macam pemakaian las sudut 296 6.21. Kombinasi las baji dan pasak dengan las sudut 297 6.22. Posisi pengelasan 298 6.23. Persiapan tepi untuk las tumpul 299 6.24. Cacat-cacat las yang mungkin terjadi 300 6.25. Contoh aplikasi batang tarik 304 6.26. Beberapa tipe penampang batang tarik 305 6.27. Pemakaian batang tarik bulat 306 6.28. Jarak antar plat yang dibutuhkan batang tarik 307 6.29. Beberapa tipe penampang batang tekan 308 6.30. Faktor panjang efektif pada kondisi ideal 309 6.31. Ikatan lateral sistem rangka lantai 310 6.32. Deformasi lentur dan sebuah gelagar 311 6.33. Lenturan pada gelagar 312 6.34. Contoh lubang pada sayap gelagar 312 6.35. Lubang pada gelagar 313 6.36. Keruntuhan badan gelagar 313 6.37. Contoh aplikasi struktur gelagar plat 315 6.38. Komponen umum gelagar yang dikeling 316 6.39. Komponen umum gelagar yang dilas 316 6.40. Jenis gelagar plat yang dilas 317 6.41. Sambungan balok sederhana 319 6.42. Sambungan balok dengan dudukan tanpa perkuatan 310 6.43. Penampang kritis untuk lentur pada dudukan 310 6.44. Sambungan dudukan dengan perkuatan 321 6.45. Sambungan dengan plat konsol segitiga 322 6.46. Sambungan menerus balok yang dilas ke sayap kolom 323

Page 104: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar gambar

D7

6.47. Sambungan menerus balok dengan baut ke sayap kolom 324 6.48. Sambungan menerus balok yang dilas ke badan kolom 325 6.49. Sambungan menerus balok ke balok tidak secara kaku 325 6.50. Sambungan menerus balok ke balok secara kaku 326 6.51. Sambungan sudut portal kaku 326 6.52. Sistem dan dimensi plat alas kolom 327 6.53. Sambungan alas kolom yang menahan momen 327 6.54. Struktur baja komposit 328 6.55. Berbai macam struktur komposit 329 6.56. Perbandingan lendutan balok dengan/tanpa aksi komposit 330 6.57. Alat penyambung geser komposit yang umum 331 7.1. Bangunan struktur beton 333 7.2. Struktur beton bertulang 334 7.3. Bagan alir aktivitas pengerjaan beton 335 7.4. Jenis baja tulangan 344 7.5. Diagram tegangan - regangan 346 7.6. Sistem konstruksi untuk konstruksi beton 347 7.7. Perkiraan batas bentang untuk berbagai sistem beton 352 7.8. Detail penampang beton bertulang 353 7.9. Detail penampang balok dan plat 354 7.10. Syarat-syarat untuk penulangan plat 355 7.11. Syarat penulangan balok yang harus dipenuhi 356 7.12. Detail kaitan untuk penyaluran kait standar 360 7.13. Kait-kait pada batang-batang penulangan 360 7.14. Kait-kait pada sengkang 361 7.15. Pembengkokan 361 7.16. Jenis tumpuan pada plat beton 367 7.17. Perilaku lentur pada beban kecil 368 7.18. Perilaku lentur pada beban sedang 368 7.19. Perilaku lentur pada bidang ultimit 369 7.20. Jenis-jenis struktur plat beton 372 7.21. Profil balok T 376 7.22. Lebar efektif balok T 377 7.23. Detail susunan penulangan sengkang 381 7.24. Struktur plat rusuk satu arah 382 7.25. Struktur plat dua arah dan prinsip penyaluran beban 383 7.26. Struktur plat dua arah dengan balok 384 7.27. Struktur plat rata 384 7.28. Struktur plat rata dengan panel drop 385 7.29. Struktur plat wafel 386 7.30. Tipikal kolom beton bertulang 387 7.31. Detail susunan penulangan tipikal 389 7.32. Spasi antara tulangan-tulangan longitudinal kolom 390 7.33. Detail struktur dinding beton bertulang 391

Page 105: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar gambar

D8

8.1. Kekuatan serat kayu dalam menerima beban 395 8.2. Metode penggergajian kayu 396 8.3. Tampang melintang kayu dan arah penyusutan 397 8.4. Penyusunan kayu saat proses pengeringan 397 8.5. Cacat kayu 398 8.6. Cacat produk kayu gergajian 398 8.7. Arah serat dan kekuatan kayu terhadap tekan dan tarik 400 8.8. Arah serat dan kekuatan kayu terhadap lentur dan geser 400 8.9. Sistem konstruksi untuk struktur kayu 402 8.10. Perkiraan batas bentang untuk berbagai sistem kayu 406 8.11. Beragam produk paku 407 8.12. Tipe utama produk sekerup 409 8.13. Detail pemasangan sekerup 410 8.14. Contoh sambungan gigi 412 8.15. Model baut di pasaran 412 8.16. Perilaku gaya pada sambungan baut 413 8.17. Syarat jarak minimum perletakan baut 414 8.18. Produk alat sambung cincin belah dan pemasangannya 415 8.19. Produk alat sambung cincin dan plat geser 415 8.20. Perilaku gaya pada sambungan cincin dan plat geser 415 8.21. Produk alat penyambung plat logam 416 8.22. Penampang kolom batang gabungan 418 8.23. Kaki kolom kayu dengan plat dan jangkar 420 8.24. Kolom tunggal, kolom ganda, dan kolom laminasi 420 8.25. Sambungan kolom dengan balok 421 8.26. Struktur balok dan kayu solid 421 8.27. Struktur balok I dari produk kayu buatan 422 8.28. Sambungan balok dengan balok 422 8.29. Kesalahan pembebanan pada balok 422 8.30. Struktur balok lantai bertumpu pada balok kayu induk 423 8.31. Sambungan yang salah dan benar pada balok 423 8.32. Contoh lain sambungan balok 424 8.33. Berbagai bentuk struktur rangka batang kayu 424 8.34. Penggunaan struktur rangka batang kayu 425 8.35. Struktur rangka batang kayu dengan plat sambung 425 8.36. Penyimpanan struktur rangka fabrikasi 426 8.37. Syarat dan cara mengangkat struktur rangka 426 8.38. Struktur jembatan kayu 427 8.39. Struktur jembatan dengan kayu laminasi 427 8.40. Struktur pelengkung kayu 428 9.1. Tipikal jembatan 429 9.2. Jembatan truss Warren 431 9.3. Pendukung gelagar jembatan 432 9.4. Arah jembatan 433 9.5. Konsep desain jembatan Ruck-a-Chucky 434

Page 106: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang

daftar gambar

D9

9.6. Jembatan gelagar baja 438 9.7. Jembatan gelagar datar 439 9.8. Perakitan potongan gelagar datar 439 9.9. Pengaku web 440 9.10. Prinsip balok tiered dan balok komposit 441 9.11. Potongan gelagar komposit 441 9.12. Tipe sambungan geser 442 9.13. Gelagar grillage 443 9.14. Jembatan Chidorinosawagawa 443 9.15. Gelagar kotak 444 9.16. Tipikal potongan superstruktur jembatan beton bertulang 445 9.17. Potongan FHWA precast prestressed voided 447 9.18. Potongan AASHTO balok I 447 9.19. Caltrans precast standard ”I” girder 448 9.20. Caltrans precast standard ”Bulb-Tee” girder 448 9.21. Potongan FHWA precast pretensioned box 449 9.22. Caltrans precast standard ”bathtub” girder 450 9.23. Jembatan California’s Pine Valley 451 9.24. Detail jembatan California’s Pine Valley 452 9.25. Jembatan rangka batang (truss) 453 9.26. Berbagai tipe rangka batang (truss) 453 9.27. Titik sambung rangka batang 454 9.28. Jembatan Rahmen 455 9.29. Jembatan π - Rahmen 456 9.30. Berbagai tipe jembatan pelengkung 457 9.31. Jembatan pelengkung Langer 458 9.32. Jembatan gantung 460 9.33. Jembatan gantung bentang satu, tiga, dan banyak 461 9.34. Jenis jembatan kabel tarik 462 9.35. Sub struktur jembatan pier dan bent 463 9.36. Standar kolom arsitektural Caltrans 464 9.37. Jenis-jenis abutmen 465 9.38. Sistem lantai 466 9.39. Penggunaan lapis aus untuk lantai jembatan 467 9.40. Lantai dengan menggunakan kayu 467 9.41. Geladak komposit 468 9.42. Geladak orthotropic 468 9.43. Hubungan rasuk baja tipe I dan balok lantai 469 9.44. Metode pendirian 470 9.45. Jenis-jenis penahan (bearing) 473 9.46. Penahan Elastomeric 477 9.47. Tipe sambungan ekspansi 475 9.48. Pagar Terali 476

Page 107: ANALISIS SISTEM STRUKTUR BANGUNAN - siapbelajar.com · 1. lingkup pekerjaan dan peraturan bangunan 181 2. ANALISIS SISTEM STRUKTUR BANGUNAN 2.2. Struktur Rangka Batang Rangka batang