1iiiiiiiiiiiiiiiij~i~ii~i~ii~~~i~iii~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_pages_from... ·...

24

Upload: others

Post on 01-Jan-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn
Page 2: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111*30000002323010*

Page 3: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

UNIVERSITI TUN HUSSIEN ONN J\JALA YSJA

BORANG PENGESAHAN STATUS PROJEK SARJAi\'A +

JUDUL : COMPUTATIONAL INTELLIGENT METHOD FOR OPTI;\J..\L ROT:\RY DESIGN SYSTEl\l

SESI PENGAJIAN: 2008/2009

Saya: KANTAN AIL P.SAMINATHAN (7]0414-01-5031) (HURUF BESAR)

mcngaku mcmbcnarkan ProjcI-y{P'SM/Sarjana/D~alsafah)* ini disimpan di Pcrpu5takaan dcngan syarat-syarat kcgunaan scpcrti bcriJ..:ut:

I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn i\laiaySi:l 2. Pcrpustakaan dibcnarkan mcmbllat salinan lIntuk tUjU:lIl pcngajian sahaja. 3. Pcrpustakaan dibcnarkan mcmbuat salinan Projck Sa~iana ini sebagai ball an pertu!;aran

antara institusi pcngajian tinggi. 4. **Sila tandakan(,) )

III=:JII SULIT

D TERHAD

[JJ TIDAK TERHAD

/\f/- I ~,t<-~

(TANDATANGAN PENULIS)

Alamat Tctap: NO.120 F. JLN SAN CHOON. 85300. LABIS JOHOR

Tarikh: 05 NOV 2008

(Mcngandllngi maklumat yang bcrdarjah keseiamatan at:1l1 kcpcntingan Malaysia scpcrti yang termaktub di daiam AKTA RAHSIA RASl\'lI 1972)

(Mcngandllngi maklllmat TERHAD yang tebh ditcntubn oleh organisasilbadan di mana pcnyclidikan dijal:lIlbn)

l-IJ. i\101-lD. :\ZL\0.' Bl\' ABD S.LLlJ~DY.

0!ama Pcm'clia

CAT ATAN:; POlong yang lid:!k bcrkcn:!:!n. "'" Jib lcsis ini SULIT alall TERHAD. sib bmpirbn SUr.lt d:lrip:ld:1 pilJ:lk

bcrkuasaiorganis:!si bcrkcnaan dCllg:lll mCIlY:l1:11.;m sc:Lili "ehh (bTl klllr,iJ ic'I' 1111 pcrlll dikclask:ln scbagai SULIT :11:1lI TERHAD.

+ Tcsis dilllakslldk:ll1 scbag:li tcsis b:1gi U:lI:1iJ Doktor F:!l"ILdl d:1J1 ~:jrl;II!' •.. If.' pcnyclidikan. :11:111 discrtai bagi p2ngaji:ln SCC;lr.l f:crj:1 Lur"w d:1f1 !'2Tl\..:lidd:lll ::::1 11 Laporan Pro,jck S:1rj:Ut:l (PS)

Page 4: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

"1 declared that I read this project and in my point of view this project is qualified in

terms of scope and quality for purpose of awarding the degree of

Master Electrical Engineering.

Signature

Supervisor TUAN HAJJ M . AZLAN BIN ABD.SHUKOR

Date S\" \ :}M~

Page 5: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

COMPUTATIONAL INTELLIGENCE METHOD FOR OPTIMAL ROT AR Y

DESIGN SYSTEM

KANT AN AIL P.SAMINATHAN

Project submitted as a partial fulfillment of the requirement for the degree of

Master of Electrical Engineering

Faculty of Electrical and Electronics Engineering

University Tun Hussein Onn Malaysia

NOVEMBER 2008

Page 6: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

"I hereby declare that the work in this thesis is my own except for quotations and

summaries which have been duly acknowledged"

Signature

r;14 ----::, .. t.'~~~~~· .. ·~ ...................... .

Name of Student KANT AN AIL P.SAMINATHAN

Date 5 NOVEMBER 2008

11

Page 7: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

Especially dedicated to:

Wife, Amma, Brother, Sister,

And Friends

lvfy love for YOli all remains forever .....

111

Page 8: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

ACKNO\VLEDGEMENT

I would like to thank a few people who have made this thesis possible. This

thesis is as much as theirs as it is mine. I would like to thank my thesis supervisor,

Tuan Haji Mohd. Azlan Bin Abd. Shukor, for his guidance and the time he has

devoted throughout this project. Wish thanks to those people who put their works

and resources on the Internet, especially Maung Hew Sithu Myo for his Tsai' s

software package. They have saved me enormous amount of time.

1\'

I would like to acknowledge the Public Service Department of rvlalaysia

(JPA) for sponsoring my master degree study. I would also like to thank Mr.Loh Wei

Hong and Mr. Thing frim i-Math Sdn. Bhd and also Encik Ramli (Lab Technician). I

remember the countless email that I have sent him to ask for his guidance and he has

always helped me especially in LQR and matlab programming.

Finally, I would like to thank my friend especially Mr. Ong Joo Hun who has

always given me a full support in studies. Heartfelt gratitude dedicated to my wi Ce.

mother and family members for their kindness, care and encouragements.

Thanks to my friends who have to put up with me when I got frustrated by

my thesis work. Lastly, I would like to thank my family for encouraging and

supporting me, not only for the length of this thesis, but for all my years at

university.

Page 9: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

ABSTRACT

The application of computational intelligence techniques to the field of

industrial robot control is discussed. The core ideas behind using computation,

evolutionary computation and fuzzy logic techniques are presented, along with a

selection of specific real-world applications. The practical advantages and

disadvantages relative to more traditional approaches are made clear. The objective

of this project was to investigate and compare different algorithms for the calculation

of velocity from position information. The best algorithm was applied to a small

robot arm system which consists of a controller (PC software), analog-to-digital and

digital-to-analog converter PC card, power amplifier, DC motor, gear train and

external load. Generally in robotic systems a velocity calculation is difficult or

impossible to implement because of noise. Here in the project, fuzzy logic will be

used to filter the noise from the position data before calculating velocity. The

purpose of this research is to design fuzzy logic feedback controller to position the

rotational system with one flexible joint. The system produces oscillations that need

to be dampen. Here the PD (without) controller, ON-OFF controller, Linear

Quadratic Regulator controller (LQR) and Fuzzy Logic controller (sugeno method)

are being used to solve the mentioned oscillatory problem. In order to control the

overall Rotary Flexible Joint System, the Fuzzy Logic controller (FLC) is designed

base upon the coefficients of the existing LQR controller. Comparison between four

controllers was being made through simulation and experiment and the results

showed that the fuzzy controller performed better than the other controllers.

Page 10: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

VI

ABSTRAK

Aplikasi teknik pengiraan pintar di dalam bidang kawalan robotik industri

telah dibincangkan. Idea as as sebalik penggunaan pengiraan, pengiraan persifat

evolusi dan teknik logik kabur yang dibentangkan bersamaan dengan pemilihan yang

tepat dan khusus bagi aplikasi dunia sebenar. Kebaikan dan keburukan praktikal

adalah lebih kepada pendekatan tradisional yang nyata. Objektif projek ini adalah

untuk menyelidiki dan membandingkan antara algoritma untuk pengiraan kelajuan

dari segi posisi informasi. Algoritma yang terbaik telah diaplikasikan pada lengan

robot yang mengandungi bahagian kawalan computer (perisian komputer), analog

kepada digital dan digital kepada analog, pengubah kad perisian komputer, amplifier

kuasa, motor a.t, gear dan beban luaran. Dalam sistem robotik pengiraan kelajuan

adalah rumit untuk dilaksanakan kerana gangguan. Kawalan logik kabur telah

digunakan untuk menapis gangguan dari segi data posisi sebelum pengiraan kelajuan

dibuat. Kajian ini dijalankan untuk mereka bentuk sistem kawalan suap balik logik

kabur untuk memposisikan semula suatu sistem putaran yang disambungkan kepada

suatu sambungan fleksibel. Sistem ini menghasilkan ayunan yang perlu dikurangkan.

Disini kawalan PD, kawalan 'ON -OFF', kawalan pengatur kuadratik datar dan

kawalan (kaedah sugeno) yang telah digunakan untuk menyelesaikan masalah

ayunan tersebut. Bagi mengawal keseluruhan 'RatOl)' Flexible Joint System',

kawalan logik kabur telah direka dengan berdasarkan angkali pengawal pengatur

kuadratik datar. Perbandingan antara keempat-empat kawalan telah dibuat melalui

simulasi dan eksperimen. Keputusan menunjukkan pengawal logik kabur berfungsi

licik daripada kawalan-kawalan yang lain.

Page 11: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

CHAPTER

CONTENTS

ITEM

THESIS STATUS CONFIRMATION

SUPERVISOR~S CONFIRMATION

TITLE

DECLARATION

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAK

CONTENTS

LIST OF FIGURES

LIST OF TABLES

I INTRODUCTION

1 .0 Introduction

1.1 Background

1.2 Project Aims and Objectives

1.3 Scopes of Project

1.4 Problem Statement

1.5 Project overview

1.6 Significance of Research

1.7 Application

1.8 Organization of the Thesis Document

PAGE

II

iii

IV

v

VI

vii

XII

xvi

2

4

4

5

5

9

10

11

VII

Page 12: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

11 LITERA TURE REVIEW

2.0 Introduction

2.1 Literature Overview

2.2 Fuzzy Rules

2.3 Fuzzy Logic Classification

2.3.1 Matlab's Fuzzy Logic Toolbox

2.3.2 Fuzzy Inference System

2.3.3 Membership Function

2.3.4 Fuzzy Logic Operators

2.3.5 IF-then Rules

III METHODOLOGY

3.0 Introduction

3.1 Motivation for Nonlinear Analysis

3.2 Fuzzy Control

3.3 Proportional Fuzzy Controller

3.4 Proportional-Derivative Fuzzy Controller

IV MATHEMATICAL MODELING

4.0 Introduction

4.1 Model Description

4.2 Mathematical Model of the Position Control

4.3 Mathematical Equations of the l\/lotion

4.4 Deriving the System Dynamic Equations

V SYSTKM DEVELOPMENT

5.0 Introduction

13

1-+

18

20

20

20

21

24

24

29

30

"" .L1

36

36

37

-+1

-+6

..JS

\·111

Page 13: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

5.1 Modeling of the Flexible Robotic Link

5.2 Modeling of the DC Motor

49

52

5.3 Combining the Flexible Robotic Link and the DC Motor Model 54

VI SOFTW ARE AND HARDWARE

6.1 Hardware

6.1.1 Rotary Servo Plant

6.1.2 Rotary Flexible Joint

6.1.3 Control Hardware

6.1.4 Power Modules - UPM

6.1.5 MultiQ PCI

6.1.6 Servomotor System

6.2 Software

6.2.1 Control Software

6.2.2 WinCon

6.2.3 Control - WinCon Server

6.3 WinCon Integration

6.3.1 Creating the Model

6.3.2 Connecting to the Client

6.3.3 Compiling the Model

6.3.4 Running the Code

6.3.5 Plotting Data

6.3.6 Applying a Voltage to the Motor

6.3.7 Measuring fTom the Tachometer

6.3.8 Measuring from the Potentiometer

6.4 MathWorks Ins.

6.5 Ardence

6.6 The Matlab design

6.6.1 Matlab an Introduction

6.6.2 Matlab Simulation Design

56

57

57

58

59

60

61

61

62

63

63

64

66

67

67

69

69

71

72

72

73

74

74

74

75

IX

Page 14: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

6.6.3 The Current Controller

6.6.4 The Significance of Feedback

VII SYSTEM CONFIGURATION AND ASSEMBLY

VIII

7.0 Introduction

7.1 System Nomenclature and Components

7.2 Rotary Servo Plant with Encoder

7.3 Charging the Springs

7.4 Potentiometer

7.5 Encoder

7.6 E;.,.1:ernal Gear

7.6.1 Low Gear Ratio

7.6.2 High Gear Ratio

7.6.3 Assembly Gear System

7.7 Typical Connection for the SR V02-Rotflex

7.8 Testing the Rotflex

RESULT AND ANALYSIS

8.1 Simulated Result

8.1.1 Without Controller

8.1.2 ON-OFF Controller

8.1.3 LQR Controller

8.1.4 Fuzzy Logic Controller

8.2 Experimental Result

8.2.1 Without Controller

8.2.2 ON-OFF Controller

8.2.3 LQR Controller

8.2.4 Fuzzy Logic Controller

75

76

77

79

80

82

84

84

85

85

85

86

87

88

89

90

92

94

96

99

99

10]

102

104

x

Page 15: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

8.3 Comparisons

8.3.1 Comparisons for the Simulated Result

8.3.2 Comparisons for the Measured Result

IX CONCLUSION AND RECOMMENDATION

9.1 Conclusion

9.2 Future Recommendations

REFERENCES

APPENDIXES

Xl

107

107

109

112

113

114

116

Page 16: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

XII

LIST OF FIGURES

FIGURES TITLE PAGE

1.0 The Modeling Process 6

1.1 Project Environment 7

1.2 Quanser DC Motor 8

1.3 Cargo Pendulation of Ship-Mounted Cranes 10

1.4 Rotary Cranes Using Fuzzy Logic 11

2.0 Membership functions built on the Gaussian distribution curve 22

2.1 General Fuzzy Logic Controller 7" _oJ

3.0 Fuzzy Logic Controller 30

3.1 Fuzzy Controller 3]

3.2 Membership Functions for e(1) and [((1) 31

3.3 I/O Map of the Proportional Fuzzy Controller 32

3.4 Block Diagram for the MISO Fuzzy Controller 33

3.5 General form of the Control System with the Fuzzy Controller 35

4.0 A 3D model of a Rotflex 37

4.1 Armature circuit in the time-domain 38

4.2 PV Controller for the SRV02 Plant 40

4.3 Flexible Joint Module 42

4.4 Flexible Joint Illustration 42

4.5 Flexible Joint - Stationary 43

4.6 Flexible Joint - Moving 43

4.7 Simplified Model for System Dynamics 46

5.0 Flexible Joint Robotic Arm 49

5. ] Impulse Response of Robotic Link 51

Page 17: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

XIII

5.2 DC Motor Representation 52

5.3 DC Motor Step Response 5-1

5.4 DC Motor and Flexible Link Schematic 5-1

6.1 Rotary Flexible Joint 58

6.2 Control Hardware 58

6.3 Power Module 59

6.4 Connections to Power Module 59

6.5 Connections to MultiQ terminal board 60

6.6 Win Con software for analysing output 62

6.7 Lab VIEW 7.0 Software 63

6.S Wincon Server 64

6.9 Build a Simulink Diagram 66

6.10 Quanser Toolbox and Data Acquisition Blocks 66

6.11 Connect to the Client that is running your Experiment 67

6.12 Set the WinCon Options 68

6.13 Set Simulation Parameters 68

6.14 Select the Variable to Plot 70

6.15 The Trace shows the Measurement ITom the Encoder in Counts 70

6.16 Putting out a voltage to the DI A 71

6.17 Measuring ITom the Tachometer 72

6.18 Measuring ITom the Potentiometer 73

6.19 The Current Controller Block 76

7.0 ROTFLEX Model for Configuration 78

7.1 Attaching to the SRV02 78

7.2 ROTFLEX top view 79

7.3 ROTFLEX side view 80

7.4 Rotary Servo with Encoder 80

7.S SRV02 Front view 81

7.6 SRV02 Under the Top Plate 81

7.7 SRV02 Connections View 82

7.8 Selecting a base anchor point 83

7.9 Pull the arm towards the final anchor point 83

7.10 Schematic for Encoder Wiring 8-1

7.11 Low Gear Configuration 85

Page 18: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

Xl\"

7.12 High Gear Configuration 85

8.0 Controlled in-servomotor's position signal 8 (t) for the rotary case 91

using the without controller (simulated plot)

8.1 Controlled in-arm deflection angle a (t) for the rotary case using 91

the without controller (simulated plot)

8.2 Scatter with data points connected by smoothed lines for without 92

controller

8.3 Rotary Flexible Joint controller with the ON-OFF and without 92

controller diagram

8.4 Servomotor's position signal 8 (t) for the rotary case using the 93

ON-OFF controller (simulated plot)

8.5 Arm deflection angle a (t) for the rotary case using the ON-OFF 93

controller (simulated plot)

8.6 Rotary Flexible Joint controller with the LQR controller diagram 95

8.7 Servomotor's position signal 8 (t) for the rotary case using the 95

LQR controller (simulated plot)

8.8 Arm deflection angle a (t) for the rotary case using the LQR 96

Controller (simulated plot)

8.9 Rotary Flexible Joint controller with the Fuzzy controller diagram 97

8.10 Simulated plot for servo load angle with Fuzzy Logic Controller 97

8.11 Simulated plot for arm deflection angle with Fuzzy Logic 98

Controller

8.12 Scatter with data points connected by smoothed lines for 98

fuzzy logic

8.13 Experimental servomotor's position signal 8 (t) for without 99

controller

8.14 Experimental plot for arm deflection angle without controller 100

8.15 Experimental plot for servo load angle ON-OFF controller 101

8.16 Experimental plot for arm deflection angle ON-OFF controller 101

8.17 Rotary Flexible Joint controller with the LQR controller diagram 103

8.18 Experimental plot for servo load angle ON-OFF controller 103

8.19 Experimental plot for arm deflection angle ON-OFF controller 104

8.20 Rotary Flexible Joint controller with the Fuzzy Logic lOS

Controller diagram

Page 19: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

xv

8.2] Experimental plot results for servo load angle fuzzy controller 105

8.22 Experimental plot for arm deflection angle fuzzy controller 106

8.23 Simulated plot results for servo load angle (comparisons for 107

all controller)

8.24 Simulated plot results for arm deflection angle (comparisons for 108

all controller)

8.25 Experimental plot results for servo load angle (comparisons for 110

all controller)

8.26 Experimental plot results for arm deflection angle (comparisons ] ] 0

for all controller)

Page 20: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

\:\'1

LIST OF TABLES

TABLES TITLE PAGE

2.0 Rules for the Joint Angle Fuzzy Controller 19

2.1 Rules for the Tip Fuzzy Controller 19

3.0 P-D Fuzzy Controller Rules 34

4.0 List of the Nomenclature 42

7.0 Component Names for Rotflex 79

7.1 General Component Names 81

7.2 Typical Connections 87

8.0 Performance of Position Control (Simulation Section) 108

8.1 Performance of Position Control (Experimental Section) 111

Page 21: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

CHAPTER I

INTRODUCTION

1.0 Introduction

Rotary Flexible Joint Module which acts as robot is playing an increasingly

important role in industry to meet the high demands of automated systems. They are

expected to have a capability to sense environmental information process that

information and perform appropriate actions for a wide range of tasks. A major

challenge for these robots is that traditional control techniques generally require an

accurate mathematical model of the system and its environment thus any inaccurate

modeling will naturally have a direct negative effect on their performance. For this

reason, computational intelligence techniques are now regularly being employed,

particularly neural computation (Miller, et aI., 1990, Lewis et aI., 1998), evolutionary

computation (Davidor, 1991) and fuzzy logic (Lee, 1990), since they provide

powerful tools for the realization of better and more efficient control systems without

the need for accurate models. These techniques all employ a general control

framework, with associated parameters that are adapted to optimize the relevant

performance measures. These measures can cover the obvious requirements of speed

and accuracy, as well as other important requirements such as stability, reliability

and safety. There is already an enormous literature on this subject. In this thesis the

general principles involved will be explain with particular reference to existing

Page 22: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

applications of these techniques in industrial robotics and any other research in this

area. Throughout the thesis the advantages and disadvantages of each technique

compared with other approaches will be identify.

2

Quanser Rotary Flexible Joint System module was used in the project. The

modules included a track, one mass with a DC motor and one empowered mass, a

teeter-totter that the track can be placed on, a spring for connecting the masses, a

pendulum rod, a power amplifier, an ISA or PCI computer interface board and the

Wincon software that interfaces with SIMULINK. The Quanser systems also had an

interface with MATLAB, which allowed implementing real-time controller designs

in SIMULINK with ease. Develop a state space representation of a rigid-link,

flexible joint robotic manipulator actuated by a DC motor, identify system parameter

values of the actual system, evaluate the simulation vs. experiment results, critique

the proposed simulation model and then augment the model in an effort to improve

simulation accuracy. The utilization of the WinCon real-time interface is to actuate

the robotic link and to collect measurements from the numerous sensors embedded

on the physical plant.

1.1 Background

In the computational world, there are two broad areas of logic: crisp logic and

fuzzy logic. Crisp logic arises out of the fundamental concepts of such people as

Aristotle and Pythagoras who based their work on the idea that everything in the

universe can be described by numerical formulae and relationships. Crisp logic is

best known as Boolean logic. In Boolean logic, problems are simplified by reducing

the possible states into variable which have, e.g. J or 0, all or off, true or false. Since

the eighteenth century, however, there has been some debate as to the introduction of

vagueness into the realm of control theory. This came about initially through the

Page 23: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

work of philosophers. David Hume, for example, sought to involve common sense

and the reasoning based on the knowledge that people gather in making future

decisions. The German philosopher Immanuel Kant saw a flaw in conventional

mathematics and set theory and thought that mathematics could only provide clean

definitions, whilst leaving contradictory principles unresolved.

The original 0, 1 or binary set theory was invented by the nineteenth century

German mathematician Georg Cantor. The Polish philosopher Jan Lukasiewicz

developed the first logic of vagueness in 1920 when he created sets with possible

membership values of 0, 112, and 1. Albert Einstein and his theory of relativity as

well as Werner Heisenberg and his theory of uncertainty further questioned the logic

of crisp logic. The concept of fuzzy logic as we know it today was invented in the

1960's by Lotfi Zadeh. It is an ex1ension of Boolean logic where members of the set

can have varying degrees of three memberships. Fuzzy Logic is an approach to

handle vagueness or uncertainty and, in particular, linguistic variables. Classical set

theory allows for an object to be either a member of the set or excluded from the set.

Fuzzy Logic is a multi-valued type oflogic that allows intermediate values to be

defined between conventional threshold values. Notions like rather warm or pretty

cold can be formulated mathematically using fuzzy logic and processed by

computers.

Fuzzy Logic words can be organized under several headings. Quantification

includes the terms All, Most, Many, About Half, Few and No. Equality includes

always, frequently, often, occasionally, seldom and never. Likelihood terms are

certain, likely uncertain, unlikely and certainly not. Fuzzy systems are used for

estimating, decision making and in mechanical control systems such as air

conditioning, automobile controls and subway systems. Since 1987 the subway

system in the city of Sendai, Japan has been using a fuzzy system to keep the trains

rolling, braking and accelerating without losing a second or jarring a passenger.

3

Page 24: 1IIIIIIIIIIIIIIIij~I~II~I~II~~~I~III~lr~111111111111111eprints.uthm.edu.my/id/eprint/969/1/24_Pages_from... · I. Laporan Projck Sarjana adalah hakmilik Univcrsiti Tun HlIssicn Onn

1.2 Project Aims and Objectives

The objective in this project is to design a of a fuzzy logic controller for a .

Rotary Flexible Joint system. The objective of the controller is to drive the

manipulator through a desired trajectory without exciting vibration. The design of a

fuzzy logic controller deals with the following:

i) Identii}ring the variables and structure of the controller.

ii) Choosing fuzzy inference rules that the controller uses.

iii) Modeling the Rotary Flexible Joint in Fuzzy Logic Toolbox

4

iv) Designing closed-loop (feedback) controller to dampen the arm vibrations

using Fuzzy Logic Controller

v) Compare LQR controller and Fuzzy Logic Controller.

vi) Evaluating the performance of the controller to determine if any of the

above elements, such as the number of membership functions that

describe a variable, should be modified.

1.3 Scopes of Project

The scope of the project is to develop a state space representation of a rigid­

link, flexible joint robotic manipulator actuated by a DC motor, identify system

parameter values of the actual system and evaluate the difference between LQR

controller and fuzzy logic controller. The utilization of the WinCon real-time

interface to actuate the robotic link and to collect measurements from the numerous

sensors embedded on the Rotary Flexible Joint System.