sintesis dan karakterisasi nanokatalis
Embed Size (px)
TRANSCRIPT
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
1/87
i
SINTESIS DAN KARAKTERISASI NANOKATALISCuO/TiO2 YANG DIAPLIKASIKAN PADA PROSES
DEGRADASI LIMBAH FENOL
tugas akhir 2
disusun dalam rangka penyelesaian Studi Strata 1
untuk memperoleh gelas Sarjana Sains
Oleh
Mastuti Widi Lestari
4350407040
Kimia S1
JURUSAN KIMIA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS NEGERI SEMARANG
2012
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
2/87
ii
PERSETUJUAN PEMBIMBING
Tugas Akhir II ini telah disetujui oleh Pembimbing untuk diajukan ke
Sidang Panitia Ujian Tugas Akhir II Jurusan Kimia, Fakultas Matematika dan
Ilmu Pengetahuan Alam, Universitas Negeri Semarang.
Semarang, November 2012
Pembimbing I Pembimbing II
Drs. Subiyanto H.S., M.Si. Ir. Sri Wahyuni, M.Si.NIP. 19510421 197501 1 002 NIP. 19651228 199102 2 001
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
3/87
iii
PERNYATAAN
Penulis menyatakan bahwa yang tertulis di dalam Tugas Akhit II yang
berjudul: Sintesis dan Karakterisasi Nanokatalis CuO/TiO2 yang Diaplikasikan
Pada Proses Degradasi Limbah Fenol
di susun oleh:
nama : Mastuti Widi Lestari
NIM : 4350407040
Benar-benar hasil karya penulis sendiri, bukan jiplakan dari karya tulis
orang lain, baik sebagian atau seluruhnya. Pendapat atau temuan orang lain yang
terdapat dalam Tugas Akhir II ini dikutip atau dirujuk berdasarkan kode etik
ilmiah.
Semarang, November 2012Penulis
Mastuti Widi Lestari
NIM. 4350407040
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
4/87
iv
PENGESAHAN
Tugas Akhir II yang berjudul:
Sintesis dan Karakterisasi Nanokatalis CuO/TiO2 yang Diaplikasikan Pada
Proses Degradasi Limbah Fenoldi susun oleh:
nama : Mastuti Widi Lestari
NIM : 4350407040
telah dipertahankan dihadapan sidang Panitia Ujian Tugas Akhir II FMIPA
UNNES pada tanggal
Panitia Ujian,Ketua Sekretaris
Prof. Dr. Wiyanto, M.Si. Dra. Woro Sumarni, M. Si.
NIP. 19631012 198803 1 001 NIP. 19650723 199303 2 001
Ketua Penguji
Harjito, S.Pd, M.Sc.NIP. 19720623 200501 1 001
Anggota Penguji/ Anggota Penguji/Pembimbing I Pembimbing II
Drs. Subiyanto H.S., M.Si. Ir. Sri Wahyuni, M.Si.NIP. 19510421 197501 1 002 NIP. 19651228 199102 2 001
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
5/87
v
MOTTO DAN PERSEMBAHAN
MOTTO
A warrior of light knows that the ends do not justify the
means, because there are no ends, there are only means.
(Paulo Coelho)
PERSEMBAHAN
Karya kecil ini ku persembahkan untuk
kedua orang tuaku yang tak hentinya
mendoakanku.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
6/87
vi
KATA PENGANTAR
Alhamdulillah, segala puji dan syukur penulis panjatkan kepada Allah
SWT atas limpahan rahmat dan karunia-Nya, sehingga penulis dapat
menyelesaikan Tugas Akhir II dengan judul Sintesis dan Karakterisasi
Nanokatalis CuO/TiO2 yang Diaplikasikan Pada Proses Degradasi Limbah
Fenol.
Pada kesempatan ini, penulis mengucapkan terima kasih kepada semua
pihak yang telah membantu, baik dalam penelitian maupun penyusunan Tugas
Akhir II. Ucapan terima kasih penulis sampaikan kepada:
1. Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri
Semarang.
2. Ketua Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam,
Universitas Negeri Semarang.
3. Bapak Drs. Subiyanto H.S., M.Si., dosen pembimbing I yang telah
memberikan ilmu, petunjuk dan bimbingan dengan penuh kesabaran sehingga
Tugas Akhir II ini dapat terselesaikan.
4.
Ibu Ir. Sri Wahyuni, M.Si., dosen pembimbing II yang telah memberikan
motivasi, bimbingan, pengarahannya dan bantuan baik materiil maupun
spiritual sehingga Tugas Akhir II ini menjadi lebih baik.
5. Bapak Harjito, S.Pd., M.Sc., penguji utama yang telah memberikan
pengarahan, motivasi dan bimbingan dalam penyusunan Tugas Akhir II ini.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
7/87
vii
6. Bapak dan Ibu Dosen Jurusan Kimia FMIPA UNNES yang memberikan
bekal ilmu kepada penulis.
7. Bapak, Ibu atas bantuan doa, finansial dan semangat sehingga Tugas Akhir II
ini berjalan lancar.
8. Nani Maharani dan Binar Panunggal serta keluarga besar yang telah
memberikan doa dan motivasi .
9. Sahabat-sahabat kimia angkatan 2007 yang sebagai teman bertukar pikiran
sekaligus motivator dalam penyelesaian Tugas Akhir II ini.
10. Seluruh teknisi laboratorium kimia UNNES yang dengan kesabaran memberi
fasilitas selama penelitian.
11. Semua pihak yang terkait yang tidak dapat penulis sebutkan satu persatu,
yang telah membantu dalam penyusunan Tugas Akhir II ini.
Demikian ucapan terima kasih dari penulis, mudah-mudahan Tugas Akhir II ini
dapat bermanfaat dan dapat memberikan konstribusi positif bagi perkembangan
ilmu pengetahuan dalam dunia penelitian.
Semarang, November 2012
Penulis
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
8/87
viii
ABSTRAK
Lestari, Mastuti Widi. 2012. Sintesis dan Karakterisasi Nanokatalis CuO/TiO2yang Diaplikasikan Pada Proses Degradasi Limbah Fenol. Tugas Akhir II.Jurusan Kimia, Program Studi Kimia, Fakultas Metematika dan IlmuPengetahuan Alam, Universitas Negeri Semarang. Pembimbing I: Drs.Subiyanto H.S., M.Si., Pembimbing II: Ir. Sri Wahyuni, M.Si.
Kata kunci : CuO/TiO2, degradasi fenol.
Telah dilakukan sintesis katalis berukuran nanometer CuO/TiO2 dengan metodesol-gel dimodifikasi menggunakan Polietilen Glikol (PEG). CuO/TiO2yang telahdisintesis dan dikarakterisasi kemudian diaplikasikan untuk degradasi fenol.CuO/TiO2disintesis dengan variasi temperatur kalsinasi, yaitu 400C, 500C dan600C, yang kemudian diberi nama K-400, K-500 dan K-600. Data XRDmenunjukkan bahwa K-400 menunjukkan fasa anatase sedangkan K-500 dan K-600 terdapat puncak rutil. Perhitungan ukuran partikel dari data XRDmenunjukkan masing-masing ukuran CuO/TiO2, yaitu 6,89 nm, 17,716 nm dan41,877 nm. Hal ini menunjukkan bahwa semakin tinggi temperatur kalsinasimenyebabkan kenaikan ukuran partikel dan terbentuknya fasa rutil. Karakterisasimenggunakan metode BET menunjukkan masing-masing luas permukaanCuO/TiO2 yaitu, 89,2 m
2/g, 76,87 m2/g dan 29,94 m2/g. Hal ini menunjukkan
bahwa semakin tinggi temperatur kalsinasi akan mengurangi luas permukaanCuO/TiO2. Dari hasil karakterisasi menggunakan XRD dan BET maka dipilih K-400 untuk diaplikasikan sebagai katalis. K-400 dikarakterisasi dengan SEM-EDXmenunjukkan bahwa morfologi kristal yang terbentuk tidak homogen dan masihterdapat unsur karbon yang berasal dari reaktan pada saat sintesis. Uji aktifitaskatalis pada degradasi fenol menunjukkan waktu optimum degradasi pada t=50menit dengan persentase degradasi 60,625%. Proses degradasi dilakukanmenggunakan oksigen sebagai zat pengoksidasi pada reaktorslurry. Hasil analisisGC-MS menunjukkan terbentuknya senyawa 2-propanon yang diduga merupakanhasil oksidasi dari fenol.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
9/87
ix
DAFTAR ISI
Halaman
HALAMAN JUDUL.............................................................................................. i
PERSETUJUAN PEMBIMBING....................................................................... ii
PERNYATAAN.................................................................................................... iii
HALAMAN PENGESAHAN.............................................................................. iv
MOTTO DAN PERSEMBAHAN ......................................................................... v
KATA PENGANTAR.......................................................................................... vi
ABSTRAK.......................................................................................................... viii
DAFTAR ISI......................................................................................................... ix
DAFTAR GAMBAR........................................................................................... xii
DAFTAR TABEL.............................................................................................. xiii
DAFTAR LAMPIRAN...................................................................................... xiv
BAB 1. PENDAHULUAN .....................................................................................1
1.1.Latar Belakang ................................................................................................... 1
1.2.Permasalahan...................................................................................................... 3
1.3.Tujuan Penelitian ............................................................................................... 4
1.4.Manfaat Penelitian ............................................................................................. 4
BAB 2. TINJAUAN PUSTAKA ............................................................................5
2.1 Fenol ................................................................................................................... 5
2.2 Pengolahan Limbah Fenol dengan Degradasi .................................................... 7
2.3 Proses Degradasi Katalitik Limbah Fenol........................................................ 10
2.4 Katalis .............................................................................................................. 12
2.5 Nanopartikel CuO/TiO2untuk Proses Degradasi ............................................. 14
2.6 Pengukuran Kadar Fenol Menggunakan Spektrofotometer UV-Visible ......... 16
BAB 3. METODE PENELITIAN .......................................................................18
3.1 Populasi dan Sampel ........................................................................................ 18
3.2 Variabel Penelitian ........................................................................................... 18
3.2.1 Variabel Bebas ........................................................................................ 18
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
10/87
x
3.2.2 Variabel Terikat ...................................................................................... 18
3.2.3 Variabel Terkendali ................................................................................. 18
3.3 Rancangan Penelitian ....................................................................................... 19
3.3.1 Bahan dan Alat ........................................................................................ 19
3.3.1.1 Bahan .......................................................................................... 19
3.3.1.2 Alat .............................................................................................. 19
3.4 Cara Kerja ........................................................................................................ 20
3.4.1 Preparasi Nanokatalis CuO/TiO2secara Sol-Gel Modifikasi ................. 20
3.4.2 Karakterisasi Nanokatalis CuO/TiO2 ...................................................... 21
3.4.2.1 Penentuan Fase dan Ukuran Kristal CuO/TiO2......................... 21
3.4.2.2 Penentuan Luas Permukaan, Rerata Jari-jari dan
Volume Pori CuO/TiO2............................................................. 21
3.4.2.3 Analisis Morfologi dan Komposisi CuO/TiO2.......................... 22
3.4.3 Uji Aktifitas Nanokatalis CuO/TiO2 untuk Degradasi Fenol .................. 23
3.4.4 Pengujian Fenol Sisa Degradasi Menggunakan Metode Adisi Standar .. 23
BAB 4. HASIL PENELITIAN DAN PEMBAHASAN.....................................26
4.1 Preparasi Nanokatalis CuO/TiO2secara Sol-Gel Modifikasi .......................... 26
4.2 Karakterisasi Nanokatalis CuO/TiO2 ............................................................... 27
4.2.1 Penentuan Fase dan Ukuran Kristal CuO/TiO2..................................... 28
4.2.2 Penentuan Luas Permukaan, Rerata Jari-jari Pori dan
Volume Pori CuO/TiO2 ......................................................................... 30
4.2.3 Analisis Morfologi dan Komposisi CuO/TiO2........................................ 31
4.3 Uji Aktifitas Nanokatalis CuO/TiO2untuk Degradasi Fenol ........................... 35
4.4 Analisis Senyawa Hasil Degradasi Fenol ........................................................ 38
BAB 5. PENUTUP ................................................................................................40
5.1 Kesimpulan ...................................................................................................... 40
5.2 Saran ................................................................................................................. 41
DAFTAR PUSTAKA ........................................................................................... 42
LAMPIRAN .......................................................................................................... 46
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
11/87
xi
DAFTAR GAMBAR
2.1 Struktur fenol .............................................................................................. 6
2.2 Reaksi oksidasi fenol................................................................................... 9
2.3 Struktur kristal CuO .................................................................................. 14
2.4 Struktur fase Kristal TiO ........................................................................... 15
2.5 Reaksi pengompleksan fenol dan 4-aminoantipirin .................................. 17
3.1 Rangkaian alat proses oksidasi katalitik ................................................... 20
4.1 Pola difraksi sinar-X CuO/TiO2 ................................................................ 28
4.2 Foto SEM K-400 dengan perbesaran 500 kali dan 20.000 kali ................ 32
4.3 Foto SEM CuO/TiO2dalam Manivel et al.,2010 dengan perbesaran
3000 kali .................................................................................................... 32
4.4 Spektrum EDX K-400 ............................................................................... 33
4.5 Kurva persentase degradasi berbanding waktu degradasi ......................... 36
4.6 Kromatogram senyawa hasil degradasi fenol ........................................... 38
4.7 Spektrum massa senyawa hasil degradasi fenol........................................ 39
Gambar Halaman
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
12/87
xii
DAFTAR TABEL
2.1 Penelitian oksidasi katalitik senyawa fenol............................................... 12
4.1 Perubahan warna dan kenampakan CuO/TiO2berdasarkan perlakuan
temperatur kalsinasi .................................................................................. 27
4.2 Komposisi fase kristal TiO2pada CuO/TiO2............................................ 29
4.3 Ukuran partikel kalsinasi CuO/TiO2dari analisis XRD ........................... 30
4.4 Hasil karakterisasi luas permukaan spesifik, rerata jari-jari pori dan
volume total CuO/TiO2 ............................................................................. 31
4.5 Komposisi padatan CuO/TiO2................................................................... 33
4.4 Analisis kadar fenol sisa degradasi ........................................................... 36
4.5 Analisis kromatogram senyawa hasil degradasi fenol .............................. 38
HalamanTabel
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
13/87
xiii
DAFTAR LAMPIRAN
1. Skema Cara Kerja .................................................................................. 51
2. Hasil Karakterisasi Menggunakan XRD ................................................ 55
3. Perhitungan Ukuran Kristal.................................................................... 58
4. Hasil Karakterisasi Menggunakan BET ................................................. 60
5. Hasil Karakterisasi Menggunakan SEM-EDX....................................... 66
6.
Perhitungan Kadar Fenol Sisa Degradasi ............................................... 687. Hasil Analisis Fenol Sisa Degradasi Menggunakan GC-MS ................. 70
8. Dokumentasi Penelitian ......................................................................... 73
Lampiran Halaman
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
14/87
1
BAB 1
PENDAHULUAN
1.1 Latar Belakang
Aktivitas perindustrian yang semakin pesat menghasilkan berbagai jenis
limbah logam berat dan organik yang dapat menjadi permasalahan serius bagi
kesehatan dan lingkungan (Slamet et al., 2005). Limbah yang mengandung
senyawa beracun tidak dapat digunakan kembali secara ekonomi dan pada banyak
hal, pengolahan secara biologis tidak dapat dilakukan karena limbah tidak
biodegradable(Sadana dan Katzer; dalam Massa et al., 2004).
Komponen-komponen organik yang berbahaya diantaranya adalah fenol
yang terdapat dalam limbah cair sebagai hasil buangan dari industri penyulingan
minyak bumi, gas, farmasi, tekstil, dan industri rumah tangga. Limbah fenol
berbahaya karena merupakan limbah organik yang termasuk dalam kategori
Bahan Berbahaya Beracun (B3) (Swantomo et al., 2009). Senyawa ini dapat
dikatakan aman bagi lingkungan jika konsentrasinya berkisar antara 0,5 s.d 1,0
mg/L sesuai dengan KEP No.51/MENLH/10/1995 dan ambang batas fenol dalam
air baku air minum adalah 0,002 mg/L seperti dinyatakan oleh BAPEDAL
(Slamet et al., 2005).
Beberapa metode telah dilakukan untuk pengolahan limbah; recovery,
pengabuan, adsorbsi, pengolahan secara biologis dan oksidasi kimia. Oksidasi
senyawa organik dalam katalis padat telah dikembangkan. Senyawa organik dapat
diubah menjadi karbondioksida dan air pada temperatur dan tekanan yang relatif
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
15/87
2
rendah melalui proses oksidasi katalitik (Stuber et al., 2001). Sebagai oksidator,
digunakan gas seperti oksigen, ozon, H2O2, permanganat, klorin dan hipoklorit
pada tekanan atmosfer dan diatas tekanan atmosfer pada beberapa katalis seperti
mangan oksida (Hamilton et al.; dalam Harmankaya dan Gndz, 1998).
Perkembangan penggunaan katalis untuk proses oksidasi katalitik masih
belum memuaskan. Seperti misalnya, katalis yang digunakan untuk mengoksidasi
hanya bekerja pada konsentrasi rendah dalam media encer dan tidak dapat
dipisahkan pada akhir proses (Sadana dan Katzer; dalam Massa et al., 2004).
Umumnya katalis yang digunakan adalah katalis heterogen. Katalis heterogen
yang digunakan biasanya dalam bentuk logam murni atau oksidanya. Kesulitan
yang sering dijumpai dalam penggunaan katalis logam murni antara lain memiliki
stabilitas termal yang rendah dan mudah mengalami penurunan luas permukaan
akibat pemanasan dan sintering. Hal inilah yang mendorong untuk memperbaiki
kinerja dan mengatasi kelemahan katalis logam murni dengan mendispersikan
komponen logam pada pengemban yang memiliki luas permukaan besar.
Pemakaian pengemban dapat memperpanjang waktu pakai katalis dan luas
permukaan pengemban yang besar akan meningkatkan dispersi logam.
Pengemban yang sering digunakan adalah senyawa logam transisi (Sariman;
dalam Wardhani, 2009).
Katalis heterogen berbasis tembaga oksida seperti CuO/Al2O3mempunyai
kemampuan yang luar biasa dalam proses oksidasi fenol dan beberapa senyawa
berbahaya lainnya (Luna et al., 2009). Pada temperatur 160-250oC, tembaga
oksida merupakan katalis yang paling aktif untuk oksidasi fenol dan aktivitasnya
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
16/87
3
dapat bertambah jika dicampur dengan Co, Zn dan Ti (Pintar dan Levec, 1992;
dalam Silva et al., 2003). Dari pernyataan tersebut, akan dilakukan penelitian
yang bertujuan mensintesis nanokatalis CuO/TiO2dengan menambahkan larutan
polimer Polyethylene Glycol (PEG). PEG berfungsi sebagai zat pendispersi.
Katalis yang disintesis diharapkan mampu menghasilkan katalis dengan luas
permukaan yang besar dan dapat diaplikasikan untuk degradasi limbah fenol.
Kelebihan dari metode ini adalah prosesnya yang tidak rumit, tidak membutuhkan
waktu yang lama dan ukuran kristal mencapai nanometer (1-100 nm).
Katalis dengan kristalinitas yang baik dan luas permukaan yang besar
diperoleh dengan melakukan variasi terhadap temperatur pemanasan. Variasi
temperatur dilakukan untuk mendapatkan karakter kristal terbaik. Apabila
temperatur kalsinasi terlalu rendah, maka PEG tidak akan terdekomposisi
sempurna sehingga menjadi pengotor bagi kristal yang dihasilkan. Sedangkan
temperatur yang terlalu tinggi, menyebabkan hilangnya sebagian komponen
penyusun kristal, dalam hal ini CuO dan TiO2. Untuk mengetahui perbandingan
komposisi CuO dan TiO2pada katalis maka perlu diuji menggunakan SEM-EDX.
Kristalinitas yang baik, luas permukaan yang besar dan komposisi antara CuO dan
TiO2yang sesuai, diharapkan mampu diperoleh hasil degradasi fenol yang baik
pula.
1.2 Perumusan Masalah
Beberapa hal penting yang ingin diketahui dari degradasi dengan katalis
CuO/TiO2 adalah :
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
17/87
4
1. Bagaimana pengaruh variasi temperatur kalsinasi terhadap karakter
kristal yang dihasilkan?
2. Berapa pengaruh variasi waktu degradasi limbah fenol menggunakan
katalis CuO/TiO2terhadap konsentrasi fenol sisa.
1.3 Tujuan Penelitian
Penelitian ini bertujuan untuk :
1. Mengetahui pengaruh variasi temperatur kalsinasi CuO/TiO2 terhadap
karakter kristalnya.
2. Mengetahui pengaruh waktu degradasi terhadap konsentrasi fenol
tersisa dari proses degradasi menggunakan katalis CuO/TiO2.
1.4 Manfaat Penelitian
Adapun manfaat yang dapat diperoleh dari pelaksanaan penelitian ini
adalah :
1. Memberikan informasi mengenai cara sintesis nanokatalis CuO/TiO2
dengan menggunakan larutan polimer.
2.
Memberikan informasi mengenai pengaruh variasi temperatur kalsinasi
CuO/TiO2terhadap karakteristik kristal.
3. Memberikan informasi mengenai proses degradasi katalitik limbah
fenol menggunakan katalis padat.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
18/87
5
BAB 2
TINJAUAN PUSTAKA
2.1 Fenol
Pencemaran lingkungan karena adanya limbah perlu mendapat perhatian
serius, salah satunya pencemaran perairan yang disebabkan oleh limbah cair.
Limbah cair mengandung logam berat dan senyawa aromatik. Pada konsentrasi
tertentu, limbah ini dapat merusak ekosistem perairan. Industri di bidang farmasi,
petrokimia, tekstil, cat dan pestisida menghasilkan limbah yang mengandung
senyawa organik, salah satunya adalah fenol (Wardhani, 2009). Dalam industri
tekstil, fenol terdapat dalam zat warna sebagai senyawa organik tidak jenuh. Zat
warna tekstil merupakan gabungan dari senyawa organik tidak jenuh, kromofor
dan auksokrom (Sari, 2011).
Fenol adalah senyawa aromatik yang mengandung gugus hidroksi yang
terikat pada cincin benzena. Pada keadaan murni, fenol berbentuk padatan putih.
Rumus molekul fenol adalah C6H5OH, mempunyai berat molekul 94,12 g/mol,
densitas 1,0576 g/cm3pada 20C dan kelarutannya dalam air 87 g/L pada 25C
(Baron; dalam Sari, 2011). Senyawa fenol mempunyai titik didih yang tinggi
karena adanya ikatan hidrogen. Titik leleh fenol sebesar 43C sedangkan titik
didihnya yaitu 182C. Fenol larut dalam air tetapi sebagian besar turunan fenol
tidak larut dalam air (Ruswiyanto; dalam Astutik, 2010). Dalam Prabowo dan
Wijayanto (2010), disebutkan bahwa ukuran molekul fenol adalah 6.
Gugus hidroksil dalam fenol menyebabkan kereaktifannya tinggi. Fenol
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
19/87
6
memiliki sifat yang cenderung asam artinya ia dapat melepaskan ion H+ dari
gugus hidroksilnya. Pengeluaran ion tersebut menjadikan anion fenoksida C6H5O-
yang dapat dilarutkan dalam air dibandingkan dengan alkohol alifatik lainnya.
Sifat asam fenol dapat dibuktikan dengan mereaksikan fenol dengan NaOH. Fenol
dapat melepaskan H+ pada keadaan yang sama, alkohol alifatik lainnya tidak
dapat bereaksi seperti itu (Fessenden dan Fessenden, 1992).
Gambar 2.1. Struktur Fenol (Fessenden dan Fessenden, 1992)
Jumlah fenol yang besar dalam air dapat menyebabkan turunnya kadar
oksigen terlarut sehingga fenol disebut polutan. Akibat berkurangnya kadar
oksigen terlarut dalam sistem perairan, akan menimbulkan dampak negatif yang
lebih luas lagi, misalnya menganggu ekosistem kehidupan hewan dan tumbuhan
dalam air, juga dapat mematikan secara langsung bakteri aerob (Baron; dalam
Sari, 2011).
Senyawa fenol dapat memberikan efek yang buruk terhadap manusia pada
konsentrasi tertentu, antara lain berupa kerusakan hati dan ginjal, penurunan
tekanan darah, pelemahan detak jantung, hingga kematian. Senyawa ini dapat
dikatakan aman bagi lingkungan jika konsentrasinya berkisar antara 0,5 s.d 1,0
mg/L sesuai dengan KEP No.51/MENLH/ 10/1995 dan ambang batas fenol dalam
baku air minum adalah 0,002 mg/L seperti dinyatakan oleh BAPEDAL (Slamet et
al., 2005).
OH
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
20/87
7
2.2 Pengolahan Limbah Fenol dengan Degradasi
Pada tahun-tahun terakhir, banyak dilakukan solusi pengolahan limbah
fenol agar dapat dibuang ke saluran umum dengan aman. Metode pengolahan
limbah cair secara umum dibagi menjadi tiga, pengolahan secara biologi, fisika
dan secara kimia. Pengolahan limbah secara biologi yang sering digunakan adalah
pengolahan limbah dengan lumpur aktif. Pengolahan limbah secara fisik, meliputi
flotasi, filtrasi, aerasi, ozonisasi dan membran. Sedangkan pengolahan limbah
secara kimia, meliputi penukaran ion, elektrolisis, adsorpsi, UV dan oksidasi
(Sari, 2009). Pengolahan limbah fenol secara biologi tidak dapat dilakukan
apabila fenol dalam konsentrasi tinggi sedangkan pengolahan limbah secara fisika
membutuhkan biaya yang relatif mahal, proses operasi yang sukar dan
membutuhkan tenaga yang besar. Maka dari itu, dipilih pengolahan limbah fenol
secara kimiawi.
Pengolahan limbah kimiawi secara oksidasi memberikan solusi alternatif
saat konsentrasi fenol yang terkandung dalam limbah tinggi dan senyawa harus
diolah pada suhu yang tinggi. Proses oksidasi kimiawi dimaksudkan untuk
mendegradasi senyawa fenol menjadi CO2dan H2O yang lebih ramah lingkungan.
Maka dari itu, dapat juga disebut sebagai proses degradasi. Merujuk pada
Harmankaya-Gunduz (1998), proses oksidasi dilakukan dengan mereaksikan
senyawa organik dengan oksigen sebagai sumber oksidan. Sumber oksidan lain
dapat berupa ozon, H2O2, permanganat, klorin dan hipoklorit.
Menurut Devlin dan Harris dalam Luna et al. (2009), degradasi fenol
dimulai dengan pembentukan hidroquinon dan katekol. Senyawa yang terbentuk
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
21/87
8
ini kemudian teroksidasi selama proses reaksi untuk menghasilkan senyawa
organik seperti quinon, aldehida dan keton. Asam-asam organik, CO2dan produk
polimerisasi biasanya terbentuk pada akhir reaksi. Devlin dan Harris telah
melakukan analisis menyeluruh baik untuk mengindentifikasi senyawa
intermediet yang terbentuk dan juga untuk mengemukakan jaringan reaksi
oksidasi fenol, yang ditunjukkan pada Gambar 2.2.
Proses oksidasi senyawa organik membutuhkan waktu yang panjang
(sekitar 1 jam), temperatur yang relatif tinggi (200-450C) dan tekanan yang besar
(70-250 atm) (Meytal-Sheintuch, 1998). Dalam studi tentang proses oksidasi
fenol, terdapat dua keadaan yang berbeda, yaitu keadaan induksi dan keadaan
tetap (steady state). Lamanya keadaan induksi diketahui bergantung pada kondisi
proses, seperti termperatur, tekanan parsial oksigen dan penambahan katalis.
Penambahan parameter-parameter tersebut dapat menurunkan lama waktu saat
keadaan induksi (Harmankaya-Gunduz, 1998) dan selektivitas dari pembentukan
CO2 dapat dipengaruhi oleh tipe katalis dan kondisi operasional (Katzer et al.;
dalam Luna et al., 2009).
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
22/87
9
Gambar.2.2. Reaksi oksidasi fenol (Devlin dan Harris;dalam Eftaxias (2002)
fenol
katekolhidrokuinon
o-benzokuinon
p-benzokuinon asam propanoat
asam suksinatasam mukonat
asam 2,5-diokso-
3-heksenadionat
1,4-diokso-
2-butena
asam 4-okso-2-
butenoat
asam maleat
asam akrilik
asam 3-hidroksi-propanoat
asam 3-okso-propanoat
asam malonat
asam asetat
asam oksalatasam glioksilatglioksal
asam formiat
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
23/87
10
Katalis telah diterapkan dalam proses proses oksidasi senyawa organik,
namun perkembangannya belum optimal. Laju reaksi relatif lambat karena belum
ditemukan katalis padat yang cocok dan mampu beroperasi secara stabil. Selain
itu, proses tersebut mahal apabila digunakan untuk mencapai oksidasi sempurna
senyawa organik menjadi CO2 dan H2O, maka diperlukan alternatif oksidasi
parsial agar dapat diolah lebih lanjut menggunakan metode lain (misalnya secara
biologi) (Hamilton et al.; dalam Harmankaya-Gunduz, 1998). Penambahan katalis
yang cocok sangat membantu untuk memperlunak kondisi operasi selama proses
oksidasi limbah fenol.
2.3 Proses Degradasi Katalitik Limbah Fenol
Proses degradasi katalitik sering disebut sebagai proses oksidasi katalitik,
atau CWAO (Catalytic Wet Air Oxidation). Oksidasi katalitik membutuhkan
energi yang lebih rendah dan dapat mempercepat laju reaksi dibandingkan
oksidasi non-katalitik. Proses oksidasi katalitik juga fleksibel digunakan untuk
berbagai pengolahan polutan organik maupun anorganik, seperti nitrogen (N),
halogen (X), belerang (S) dan fosfor (P). Selain itu, katalis yang digunakan dapat
diregenerasi (Golestani et al., 2011).
Mekanisme reaksi oksidasi katalitik senyawa fenol telah dipelajari dalam
bentuk senyawa murni. Fenol dapat didegradasi walaupun prosesnya diikuti
pembentukan sejumlah senyawa intermediet. Distribusi senyawa intermediet yang
mirip satu sama lain ditunjukkan pada kehadiran katalis padat. Pembentukan
katekol, hidrokinon, asam maleat dan asam oksalat terjadi pada proses
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
24/87
11
menggunakan katalis tembaga oksida (Eftaxias, 2002).
Katalis yang biasa digunakan dalam proses ini adalah katalis heterogen.
Katalis heterogen yang telah digunakan dibagi menjadi tiga kelompok besar, yaitu
logam mulia berpenyokong, oksida logam, dan karbon aktif. Katalis logam mulia
meliputi Pt, Pd, Ru dan Ag dengan berpenyangga TiO2, -Al2O3, MnO2, CeO2dan
ZrO2. Sedangkan katalis oksiga logam meliputi CuO, CoO, Cr2O3, MnO2, Fe2O3,
ZnO dan TiO2(Luna et al., 2009). Pada aplikasinya, katalis logam mulia biasanya
lebih stabil, namun dari segi ekonomi, katalis ini cenderung mahal. Katalis oksida
logam cukup efisien dalam proses degradasi katalitik, namun memiliki
ketidaksempurnaan yaitu komponen aktif biasanya dapat terlepas dari katalis
dikarenakan kondisi pada saat reaksi (Pestunova, 2003). Pada Tabel 2.1,
ditunjukkan penelitian mengenai proses degradasi katalitik senyawa fenol dengan
menggunakan berbagai katalis.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
25/87
12
Tabel 2.1. Penelitian oksidasi katalitik senyawa fenol
Peneliti Katalis yang Digunakan Hasil
Harmankayadan Gunduz,1998
Pestunova et al.,2003
Wardhani, 2009
Golestani et al.,2011
Membandingkan keaktifanlima katalis yaitu :- CuO-ZnO/Al2O3- CuO/Al2O3- CuO/Silika gel- MnO2- V2O5
Membandingkan katalislogam murni Fe, Mn danCu masing-masing
berpenyangga -Al2O3,TiO2dan CeO2
ZnO/Zeolit Alam
Komposit MnO2/CeO2
Katalis CuO-ZnO/Al2O3 adalahkatalis yang paling aktif. Lajureaksi pada periode induksimeningkat seiring dengan
bertambahnya waktu.
Sumber oksidan adalah H2O2.Katalis Cu adalah katalis yang
paling aktif. Namun katalis Fe
berpenyangga -Al2O3cukup aktif,paling selektif pada pembentukanCO2.
Konsentrasi maksimum ZnO yangterdopan pada zeolit adalah 4,67mmol/gram dengan 36,57 % fenolterdegradasi.
Oksidasi katalitik dalam fixed beddengan temperature 80C dantekanan 0,5 MPa, mendegradasi
fenol sebesar 62,3 %.
2.4 Katalis
Katalis adalah substansi yang dapat meningkatkan laju reaksi pada suatu
reaksi kimia yang mendekati kesetimbangan namun tidak terlibat secara permanen
dalam reaksi tersebut (Agustine, 1996). Jadi reaksi katalitik adalah reaksi yang
mengalami perubahan laju reaksi yang disebabkan oleh keberadaan katalis.
Katalis yang memperlambat laju reaksi disebut sebagai inhibitor (Triyono, 2002).
Katalis hanya mempercepat reaksi, tidak memulai reaksi yang secara
termodinamika tidak dapat berlangsung. Entalpi reaksi dan juga faktor-faktor
termodinamika yang lain hanya merupakan keadaan alami dari reaktan dan
produk sehingga tidak dapat berubah oleh adanya katalis. Faktor kinetik yang
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
26/87
13
dipengaruhi oleh katalis adalah laju reaksi, tenaga pengaktifan dan keadaan
transisi (Triyono, 2002). Katalis juga mampu memperbesar kemungkinan
terjadinya tumbukan efektif antara molekul reaktan, karena molekul-molekul
reaktan akan teradsorpsi pada permukaan aktif katalis sehingga kemungkinan
terjadinya tumbukan antar molekul-molekul reaktan akan semakin besar (Ulyani,
2008).
Menurut Suwanprasop (2005), proses keseluruhan reaksi katalitik dibagi
menjadi tujuh, meliputi : (1) Difusi reaktan melalui batas layer pada permukaan
katalis. (2) Difusi reaktan ke dalam pori-pori. (3) Adsorpsi reaktan pada
permukaan dalam pori-pori katalis. (4) Reaksi kimia pada permukaan katalis. (5)
Desorpsi produk dari permukaan katalis. (6) Difusi produk keluar dari pori-pori.
(7) Difusi produk menjauh dari katalis melalui batas layer dari katalis menjadi
fase gas.
Komponen aktif merupakan pusat aktif katalis yang berfungsi untuk
mempercepat dan mengarahkan reaksi yang berhubungan dengan aktivitas dan
selektivitas. Sedangkan pengemban memberikan tiga fungsi yang penting pada
sistem katalis. (1) menambah luas permukaan dari logam atau oksida logam
dengan menyediakan matriks yang memungkinkan penyebarannya sebagai
partikel yang sangat kecil. (2) mencegah sintering pada material katalis aktif,
menambah sifat hidrofobik dan kondisi termal, hidrolitis, dan stabilitas kimia. (3)
Kestabilan penyangga akan sangat mempengaruhi umur katalis (Meytal dan
Sheintuch, 1998).
Dalam Meytal-Sheintuch (1998) dituliskan, katalis yang digunakan pada
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
27/87
14
proses oksidasi katalitik memiliki sifat sebagai berikut :
1)
Menghasilkan tingkat oksidasi yang tinggi,
2) Non-selektif dan menunjukkan oksidasi lengkap,
3) Stabil secara fisik dan kimiawi dalam larutan asam yang panas,
4) Mempertahankan aktivitas yang tinggi untuk penggunaan jangka panjang dan
insensitif terhadap racun dalam aliran,
5) Kuat secara mekanik dan tahan erosi.
2.5 Nanopartikel CuO/TiO2untuk Proses Degradasi
Tembaga mempunyai dua macam oksida yang telah diketahui yaitu
tenorite (CuO) dan cuprite (Cu2O). Keduanya termasuk dalam semikonduktor tipe
p (Johan et al., 2011). CuO adalah senyawa semikonduktor dengan struktur
monoklinik. CuO merupakan anggota paling sederhana senyawa tembaga dan
menunjukkan berbagai sifat fisik yang berguna seperti superkonduktivitas suhu
tinggi, efek korelasi elektron dan dinamika putar. Sebagai semikonduktor tipe-p,
CuO telah digunakan dalam banyak aplikasi seperti dalam gas sensor, katalis,
baterai, superkonduktor suhu tinggi, konversi energi surya dan bidang emisi
(Ghane et al., 2010). Gambar 2.3 menunjukkan struktur kristal CuO.
Gambar 2.3 Struktur kristal CuO (Wang, 2006)
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
28/87
15
Dalam Wang (2006), CuO murni adalah sebuah padatan hitam dengan kepadatan
6,4 g/cm3
, mempunyai titik leleh yang tinggi yaitu 1330C dan tidak larut dalam
air.
Titanium dioksida (TiO2) adalah senyawa yang tersusun atas ion Ti4+dan
O2 dalam konfigurasi oktahedron. Kristal TiO2 mempunyai tiga macam bentuk
yang telah dikenal, yaitu rutil, anatase, dan brukit, tetapi hanya rutil dan anatase
yang mudah diamati di alam sedangkan brukit sulit diamati karena tidak stabil
(Wijaya et al., 2006). Fase brukit dan anatase berubah menjadi rutil ketika sampel
dikalsinasi pada suhu yang tinggi. Akan tetapi, brukit dan anatase dapat stabil
pada temperatur tinggi jika terdapat dopan pada saat sintesisnya, yang juga
berguna untuk menghindari berubah menjadi fase rutil (Fransisco dan Mastelaro,
2002). Jenis struktur yang berbeda berpengaruh pada perbedaan massa jenis (3,9
g/cc untuk anatase dan 4,2 g/cc untuk rutil), dan hal ini berpengaruh pada luas
permukaan dan sisi aktif dari TiO2 tersebut (Arutanti et al., 2009). Gambar 2.4
menunjukkan struktur kristal fase-fase TiO2.
Gambar 2.4 Struktur Fase Kristal TiO2(Morales, 2007)
Anatase
Rutile
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
29/87
16
TiO2 dalam bidang industri berperan sebagai pigmen, adsorben,
pendukung katalitik, dan semikonduktor. Senyawa ini mempunyai banyak
kelebihan, antara lain nontoksik, stabil, nonkorosif, dan ramah lingkungan
(Wijaya et al., 2006).
Nanokatalis CuO/TiO2 telah diaplikasikan dalam beberapa penelitian. Lee
et al.(2002) mensintesis tembaga oksida tersupportTiO2dengan metode sol-gel
kemudian diaplikasikan pada proses pembakaran benzena. CuO yang tersebar
pada permukaan TiO2 berperan sebagai situs aktif pada dekomposisi oksidatif
benzena. Aktifitas katalitik meningkat pada katalis yang mengandung TiO2 -
anatase. Dalam penelitian Slamet et al.(2007) hasil karakterisasi XRD CuO/TiO2
padapeak2=35,6 menunjukkan fase CuO dimana prekursor Cu yang digunakan
adalah Cu-Asetat dan Cu-Nitrat. Secara fotokatalitik, katalis CuO/TiO2
mempunyai kemampuan mendegradasi fenol lebih baik dibandingkan hanya TiO2
yaitusebesar 97,18%, sedangkan pada TiO2sebesar 93,81%.
2.6 Pengukuran Kadar Fenol Menggunakan Spektrofotometer
UV-Visible
Pengukuran kadar fenol secara spektrofotometer UV-Vis menggunakan 4-
aminoantipirin sebagai zat pengompleks. Prinsip kerjanya adalah semua fenol
dalam air akan bereaksi dengan 4-aminoantipirin pada pH 7,90,1 dalam suasana
larutan kalium ferisianida dan akan membentuk warna kecoklatan dari antipirin
(SNI 06-6989.21-2004 Cara Uji Fenol secara spektrofotometri). Menurut Kidak
dan Ince; dalam Lestari (2011) reaksi yang terjadi adalah sebagai berikut:
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
30/87
17
N
N
CH3
C6H5
O
H2N
H3C
OH
OH-
[Fe(AMPH)6]3-
+ CN-
C6H5
CH3
N
N
O
N
CH3
O-
+
Amino antipirin Phenol [AMPH]-(Amino antipirin phenol)
[Fe(CN)6]3-
+ 6[AMPH]-
Amino antipirin Fe3+
Gambar 2.5 Reaksi Pengompleksan fenol dan 4-aminoantipirin
Sebelum pengukuran kadar fenol sisa, kompleks fenol diukur panjang gelombang
maksimumnya.
Dalam Ali dan Siew (2006), untuk menghitung persentase degradasi (%D)
digunakan persamaan:
% =0
0. 100%
dengan C0adalah pada saat 0 menit (mula-mula) dan Ctadalah konsentrasi pada
saat tmenit.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
31/87
18
BAB 3
METODE PENELITIAN
3.1 Populasi dan Sampel
Populasi dalam penelitian ini adalah larutan fenol yang telah mengalami
proses degradasi katalitik. Sedangkan sampel dalam penelitian ini adalah cuplikan
dari larutan fenol yang telah mengalami proses degradasi katalitik.
3.2 Variabel Penelitian
3.2.1 Variabel Bebas
Sesuai dengan tujuan penelitian yang ingin dicapai, maka variabel yang
akan dipelajari dalam penelitian ini adalah sebagai berikut:
1)
Variasi temperatur kalsinasi yaitu 400C, 500C dan 600oC.
2) Variasi waktu proses degradasi limbah fenol dengan katalis CuO/TiO2yaitu 8
menit, 15 menit, 30 menit, 50 menit, 110 menit dan 155 menit.
3.2.2 Variabel Terikat
Variabel terikat dalam penelitian ini adalah :
1.
Karakter Kristal CuO/TiO2yang meliputi tipe kristal, ukuran kristal, luas
permukaan dan bentuk morfologi kristal.
2. Konsentrasi limbah fenol yang berkurang setelah proses degradasi.
3.2.3 Variabel Terkendali
Variabel terkendali dalam penelitian ini adalah :
1. Waktu pengadukan pada saat sintesis katalis.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
32/87
19
2. Temperatur pada saat proses degradasi limbah fenol dan laju alir gas
oksigen.
3.3 Rancangan Penelitian
3.3.1 Bahan dan Alat
3.3.1.1 Bahan
Bahan yang digunakan dalam penelitian ini adalah Cu(NO3)2.3H
2O p.a
(E.Merck), Titanium Isopropoxide (TiIPP) p.a (Sigma Aldrich, 97%),
Polyethilene glycol (PEG) (BM 4000), HCl p.a (E.Merck, 37%), Etanol
p.a (E.Merck, 99%), Fenol p.a (E.Merck), NH3 p.a (E.Merck, 25%),
K2HPO4 p.a(E.Merck), KH2PO4 p.a (E.Merck), 4-aminoantipirin p.a
(E.Merck), K3Fe(CN)6p.a (E.Merck), larutan Ca(OH)2, aquademin, dan
gas oksigen (PT. Samator Gas).
3.3.1.2 Alat
Alat yang digunakan dalam penelitian ini adalah seperangkat alat gelas
(Pyrex), magnetikstirrer (IKAMAG), cawan crus, termometer, hot plate,
oven (Memmert), furnace (Barnstead Thermolyne 1400), X-Ray
Diffractometer (XRD) (PANalytical PW3373), Gas Sorption Analyzer
NOVA 1000 (Quantachrome), Gas Chromatography-Mass
Spectrophotometer (GC-MS) (Shimadzu QP-2010s), Scanning Electron
Microscope Energy Dispersive X-Ray Spectroscopy (SEM-EDX) (LEO
1530VP) dan Spektrofotometer UV-Vis (Shimadzu). Rangkaian alat
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
33/87
20
proses oksidasi katalitik limbah fenol ditunjukkan seperti pada Gambar
3.1.
Gambar 3.1. Rangkaian alat proses oksidasi katalitik
3.4 Cara Kerja
3.4.1 Preparasi Nanokatalis CuO/TiO2secara SolGel Modifikasi
Metode preparasi nanokatalis CuO/TiO2diadaptasi dari penelitian Tuan et
al. (2009) dan Liherlinah et al. (2009). Pada gelas kimia A, garam
Cu(NO3)2.3H2O sebanyak 0,76 gram dilarutkan dengan 2,2 ml aquademin. Pada
gelas kimia B, campuran 3,6 ml etanol dan 1,2 ml HCl diaduk selama 30 menit.
Kemudian ditambahkan 18,4 ml TiIPP. Campuran diaduk sebentar dan
ditambahkan dengan 4,5 ml aquademin. Campuran pada gelas B diaduk selama 1
jam. Larutan pada gelas piala A dimasukan kedalam gelas piala B sambil terus
diaduk. Campuran ditambahkan dengan larutan PEG (5 gram dalam 50 ml
aquademin). Penambahan PEG dilakukan tetes demi tetes sambil terus diaduk.
Hasilnya dituang ke cawan porselin untuk diuapkan ke dalam oven. Setelah
O2
Air masuk
Air keluar
Pendingin air
termometer
Labu
leher 3
Penangas air
Hotplate stirrer
Magnet pengadukGas keluar
Air kapur
Hotplate stirrer
Penangas air
O2
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
34/87
21
kering, campuran dipindahkan ke dalam cawan krus untuk dipanaskan pada suhu
400C, 500C dan 600C selama 2 jam. Padatan CuO/TiO2 yang dihasilkan
dibiarkan dingin kemudian digerus menggunakan lumpang alu sampai halus.
3.4.2 Karakterisasi Nanokatalis CuO/TiO2
Nanokatalis CuO/TiO2yang telah disintesis dikarakterisasi menggunakan
XRD untuk mengetahui fase kristal, kristalinitas dan ukuran kristal, Gas Sorption
AnalyzerNOVA-1000 untuk mengetahui luas permukaan, rerata jari-jari pori dan
volume pori, dan SEM-EDX untuk melihat morfologi permukaan kristal dan
komposisinya.
3.4.2.1 Penentuan Fase dan Ukuran Kristal CuO/TiO2
Fase kristal dan ukuran CuO/TiO2 didapat dari analisis
kromatogram XRD. Penentuan ukuran kristal dilakukan dengan metode
persamaan Scherrer :
dengan D adalah ukuran (diameter) kristalin, adalah panjang
gelombang sinar-x yang digunakan, B adalah sudut Bragg, B adalah
FWHM satu puncak yang dipilih dan Kadalah konstanta material yang
nilainya kurang dari satu. Nilai yang umumnya dipakai untuk K0,9
(Abdullah dan Khairurrijal, 2010).
3.4.2.2 Penentuan Luas Permukaan, Rerata Jari-jari dan Volume Pori
Penentuan luas permukaan, rerata jari-jari dan volume pori katalis
menggunakan instrumen Sorption Analyzer NOVA 1000dengan metode
BET (Brunauer-Emmet-Teller). Pada pengukuran BET, sampel
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
35/87
22
divakumkan agar tidak ada atom-atom gas yang menempel pada
permukaan sampel. Gas dalam jumlah tertentu dialirkan dan
menghasilkan tekanan awal P0. Suhu diatur serendah mungkin dan tetap
konstan. Sebagian atom gas lalu menempel pada permukaan sampel
(teradsorpsi). Semakin lama jumlah molekul gas yang menempel pada
permukaan sampel semakin banyak dan hingga akhirnya seluruh
permukaan sampel tertutup penuh oleh molekul gas. Tidak ada molekul
gas yang teradsorpsi lebih lanjut sehingga tekanan dalam kamar tidak
berubah lagi atau disebut dengan tekanan kesetimbangan (P). Perbedaan
tekanan awal (P0) dan tekanan kesetimbangan (P) memberikan
informasi jumlah atom gas yang diadsorpsi permukaan sampel
(Abdullah dan Khairurrijal, 2010). Alur perolehan data pengukuran
sampel dengan metode BET dan perhitungan data BET dicantumkan
dalam lampiran.
3.4.2.3 Analisis Morfologi dan Komposisi CuO/TiO2
Analisis morfologi CuO/TiO2 menggunakan instrumen SEM.
Sedangkan EDX digunakan untuk menentukan persen komposisi Cu
pada Titania. CuO/TiO2yang dikarakterisasi menggunakan SEM-EDX
adalah salah satu dari hasil sintesis CuO/TiO2dengan variasi temperatur
kalsinasi. Hasil analisis SEM adalah gambar foto kenampakan padatan,
sedangkan EDX adalah kurva komposisi penyusun sampel.
Foto kenampakan yang didapat, menunjukkan homogenitas
morfologi kristal pada sampel dan adanya sintering yang mungkin
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
36/87
23
terjadi. Sedangkan pada kurva komposisi, akan ditunjukkan komposisi
persen massa dari CuO dan TiO2. Dari data ini, maka dapat dihitung
massa CuO yang teremban pada TiO2. Pada penelitian diharapkan
adanya sejumlah CuO yang teremban pada TiO2, namun tidak
melampaui batas acuan massa CuO dalam sintesis sebesar 5% dari
massa nanokatalis CuO/TiO2.
3.4.3 Uji Aktifitas Nanokatalis CuO/TiO2untuk Degradasi Fenol
Larutan fenol 100 ppm sebanyak 250 ml ditambah dengan 0,5 gram katalis
CuO/TiO2 ditempatkan ke dalam labu leher tiga alas bulat. Campuran diaduk
hingga homogen. Botol berisi larutan Ca(OH)2 dihubungkan pada reaktor labu
alas bulat untuk mengetahui adanya gas CO2yang terbentuk. Campuran fenol dan
katalis dipanaskan hingga temperatur 70C.Pada saat temperatur mencapai 70C,
gas oksigen dialirkan dengan kecepatan 200 ml/menit. Pemanasan dilanjutkan
hingga suhu 90C.Reaksi dilakukan dengan variasi waktu 8 menit, 15 menit, 30
menit, 50 menit, 110 menit dan 155 menit pada suhu 90C.Setelah reaksi selesai,
campuran dibiarkan dingin dan di-sentrifuge, selanjutnya filtrat sebanyak 10 ml
diencerkan dengan aquademin sampai volume 200 ml. Larutan ini digunakan
sebagai sampel pada uji fenol terdegradasi menggunakan Spektrofotometer UV-
Vis.Untuk mengetahui senyawa yang terkandung dalam fenol terdegradasi, filtrat
diuji menggunakan GC-MS.
3.4.4 Pengujian Fenol Sisa Degradasi Menggunakan Metode Adisi Standar
Metode adisi standar dilakukan dengan menambahkan larutan standar (Vs)
pada salah satu dari dua cuplikan sampel (Hendayana, 1994). Sampel fenol
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
37/87
24
terdegradasi pada masing-masing variasi waktu (8 menit, 15 menit, 30 menit, 50
menit, 110 menit, 155 menit) diambil 10 ml kemudian ditempatkan dalam labu
ukur 200 ml. Masing-masing sampel diencerkan dengan aquademin sampai tanda
batas. Ke dalam labu ukur 500 ml, dimasukkan larutan fenol 100 ppm sebanyak
25 ml kemudian diencerkan dengan aquademin sampai tanda batas. Larutan ini
disebut larutan standar fenol. Pada sampel 8 menit, diambil sebanyak 25 ml dan
ditempatkan ke dalam erlenmeyer A dan 25 ml ke dalam erlenmeyer B. Pada
erlenmeyer A ditambahkan aquademin sampai volume total 50 ml. Pada
erlenmeyer B ditambahkan 25 ml larutan standar fenol. Masing-masing larutan
ditambahkan 1,25 ml NH4OH 0,5 N dan pH diatur menjadi 7,90,1 dengan
larutan penyangga fosfat. Larutan dikomplekskan dengan 0,5 ml 4-aminoantipirin
2% dan ditambah dengan 0,5 ml larutan kalium ferisianida 8% sambil terus
diaduk sampai timbul warna merah. Untuk pengujian sampel 15 menit, 30 menit,
50 menit, 110 menit dan 155 menit dilakukan hal yang sama seperti pada sampel
8 menit. Masing masing larutan diukur absorbansinya menggunakan UV-Vis.
Perhitungan konsentrasi fenol sisa menggunakan persamaan sebagai
berikut:
1 =
2 =
+
dimana A1 dan A2 adalah absorbansi cuplikan encer dan cuplikan plus standar
encer, adalah absorbtivitas molar, b adalah tebal kuvet, Vx adalah volume
sampel, Vt adalah volume total, Cs adalah konsentrasi larutan standar dan Cx
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
38/87
25
adalah konsentrasi sampel. Perhitungan Cxdilakukan dengan membagi persamaan
kedua dengan pertama menghasilkan:
=1
(2 1)
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
39/87
26
BAB 4
HASIL PENELITIAN DAN PEMBAHASAN
4.1 Hasil Preparasi Nanokatalis CuO/TiO2 secara Sol-Gel
Modifikasi
Sintesis nanokatalis CuO/TiO2 dilakukan dengan metode sol gel
dimodifikasi menggunakan PEG sebagai zat pendispersi. Prekusor yang
digunakan adalah TiIPP dan garam Cu(NO3)2.3H2O. Pada sintesis ini juga
menggunakan etanol, HCl dan air. Etanol berfungsi sebagai agen pembentuk sol,
HCl sebagai pencegah terbentuknya agregat dan air sebagai zat penghidrolisis.
Pada saat HCl dan etanol diaduk, didapat campuran tak berwarna. Sol berwarna
putih didapat ketika TiIPP ditambahkan pada campuran HCl dan etanol. Sol putih
memadat ketika ditambahkan air. Hal ini dikarenakan terjadinya hidolisis TiIPP
oleh air. Padatan putih menjadi biru ketika ditambahkan larutan Cu(NO3)2.
Pembentukan gel oleh PEG tidak berhasil. Hal ini mungkin dikarenakan oleh
kurangnya jumlah PEG yang ditambahkan dan pengadukan yang relatif singkat.
Tahapan reaksi sintesis TiO2secara sol-gel menurut Sanchez et al.,(2011) adalah
sebagai berikut:
Ti(C3H7O)4+ 2HO(CH2CH2O)nH Ti[O(CH2CH2O)n]2+ 4C3H7OH (4.1)
TiIPP PEG Ti-polimer Isopropanol
Ti[O(CH2CH2O)n]2+ 4H2O Ti(OH)4+ 2OH(CH2CH2O)nH (4.2)
Ti-polimer Air Ti(IV)hidroksida PEG
Cu(NO3)2.3H2O + H2O Cu(NO3)2+ 4H2O (4.3)
Tembaga (II) nitrat Air Tembaga (II) nitrat Airtrihidrat
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
40/87
27
Cu(NO3)2 + HO(CH2CH2O)nH CuO(CH2CH2O)n+ 2HNO3 (4.4)
Tembaga (II) nitrat PEG Cu-polimer Asam nitrat
CuO(CH2CH2O)n+ 2H2O Cu(OH)2+ HO(CH2CH2O)nH (4.5)
Cu-polimer Air Cu(II)hidroksida PEG
Ti(OH)4 + Cu(OH)2 TiCu(OH)6
kalsinasi CuO/TiO2(anatase) (4.6)
Ti(IV)hidroksida Cu(II)hidroksida
Hasil kenampakan padatan CuO/TiO2dapat dilihat di Tabel 4.1.
Tabel 4.1. Perubahan warna dan kenampakan CuO/TiO2berdasarkan perlakuan
temperatur kalsinasiSampel
TemperaturKalsinasi (C)
KodeSampel
Warna Kenampakan
CuO/TiO2 400 K-400 Hitam HalusCuO/TiO2 500 K-500 Hitam HalusCuO/TiO2 600 K-600 Abu-abu Halus
K-400 berwarna hitam, hal ini menunjukkan adanya Cu, demikian juga
pada K-500. Warna hitam K-400 lebih pekat dibandingkan dengan K-500.
Sedangkan K-600 sampel yang dihasilkan berwarna abu-abu. Pemanasan dengan
suhu semakin tinggi menyebabkan warna nanokatalis CuO/TiO2 semakin muda.
Menurut Yang (2008:35), warna abu-abu disebabkan karena auto-reduksi Cu(II)
menjadi Cu(I). Kristal yang terbentuk kemudian dikarakterisasi menggunakan
XRD dan BET. Kristal yang memenuhi kriteria sebagai katalis yang baik, diuji
menggunakan SEM-EDX untuk mendapatkan informasi bentuk morfologi dan
komposisi kristalnya.
4.2 Hasil Karakterisasi Nanokatalis CuO/TiO2
Karakterisasi nanokatalis CuO/TiO2dilakukan untuk mengetahui karakter
senyawa yang telah disintesis. Karakterisasi yang dilakukan pada penelitian ini
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
41/87
28
antara lain untuk mengetahui hasil pola difraksi; luas permukaan, rerata jari-jari
dan volume pori; dan analisis morfologi dan komposisi nanokatalis CuO/TiO2.
4.2.1 Penentuan Fase dan Ukuran Kristal CuO/TiO2
Sampel yang telah disintesis diamati pola difraksi untuk selanjutnya
dianalisis fasa kristalnya dalam sampel. Gambar 4.1 menunjukkan pengaruh
temperatur kalsinasi terhadap fasa kristal dari katalis CuO/TiO2 yang disintesis
dengan metode sol gel modifikasi.
20 40 60 80
0
400
800 20 40 60 80
0
400
800 20 40 60 80
400
800 20 40 60 80
400
800 20 40 60 80
400
800
TiO2anatase #751537
2
CuO #800076
A
ACuO/TiO
2400
oC
RR
AA
CuO/TiO2500
oC
R
R
A
CuO
ACuO/TiO
2600
oC
Gambar 4.1. Pola difraksi sinar-X CuO/TiO2
Pada Gambar 4.1 puncak yang ditandai A dan R menerangkan fasa anatase
dan rutil TiO2. Berdasarkan data Powder Diffraction File (PDF) #751537, TiO2
anatase mempunyai struktur kristal yang berbentuk tetragonal dengan panjang
sumbu a=b=3730 , c=9370 . Pada K-400, K-500 dan K-600 muncul puncak
difraktogram pada 2 = 25,6yang menunjukkan kecocokan difraktogram PDF
standar TiO2anatase yaitu pada 2 = 25,69. Selain itu pada K-400, 2 = 54,72
i
n
t
e
n
s
i
t
a
s
K-400
K-500
K-600
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
42/87
29
menunjukkan kecocokkan terhadap difraktogram standar yaitu pada 2 = 54,775.
Pada K-500 dan K-600, 2 = 54,72 mengalami pergeseran ke 2 = 54,48 dan
54,59. Namun pada K-500 dan K-600 terbentuk fase TiO2rutil yang ditunjukkan
pada masing-masing 2 = 27,56; 36,16 dan 27,46; 36,34 yang mirip dengan
PDF standar TiO2rutil #781510. Hal ini menunjukkan bahwa pemanasan terlalu
tinggi menyebabkan terbentuknya fase rutil pada TiO2. Tabel 4.2 menunjukkan
perbandingan komposisi fase anatase dan rutil kristal TiO2pada masing-masing
sampel.
Tabel 4.2 Komposisi fase kristal TiO2pada CuO/TiO2
Kode Sampel Anatase Rutil
K-400K-500K-600
16,27%11,322%8,964%
-6,104%8,167%
Berdasarkan data difraktogram standar CuO PDF #800076 puncak khas
CuO terlihat pada 2= 35,54, 38,97 dan 48,85. Difraktogram pada K-500 dan
K-600 menunjukkan kecocokan dengan difragtogram standar CuO pada masing-
masing 2 = 38,94 dan 38,95. Pada K-400, terdapat pergeseran difraktogram
pada 2 = 38,18 dan 48,47.
Kenaikan temperatur kalsinasi menyebabkan terbentuknya fase rutil pada
TiO2. Dalam Zhu et al. (2011), TiO2 rutil lebih stabil pada suhu tinggi, namun
mempunyai luas permukaan yang lebih kecil dibandingkan TiO2anatase. Hal ini
menyebabkan TiO2 rutil kurang baik untuk diaplikasikan sebagai support. Dari
hasil analisis fasa kristal TiO2, K-400 memiliki kriteria untuk diaplikasikan
sebagai support karena mempunyai fasa anatase lebih banyak dibandingkan
dengan K-500 dan K-600. Puncak CuO pola difraksi K-400 yang tidak terlihat
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
43/87
30
pada 2 = 38,9disebabkan CuO terdispersi pada permukaan TiO2. Hal ini mirip
dengan penelitian Ding et al.(2005) yang menyatakan bahwa puncak CuO tidak
terlihat pada pola difraksi CuO/Ti0.5Zr0.5O2 karena luas permukaan Ti0.5Zr0.5O2
yang besar, sehingga partikel CuO terdispersi pada permukaan Ti0.5Zr0.5O2. Maka
pada K-400 mempunyai situs aktif CuO yang menempel pada permukaan TiO2.
Tabel 4.3 menunjukkan hasil analisis ukuran kristal CuO/TiO2 melalui
metode Debye-Scherer.
Tabel 4.3 Ukuran partikel katalis CuO/TiO2dari analisis XRD
Kode SampelUkuran Partikel
(nm)K-400K-500K-600
6,89017,71641,877
Pada Tabel 4.3, ukuran kristal menunjukkan kenaikan seiring dengan penambahan
temperatur kalsinasi. Hal ini disebabkan pemanasan pada suhu terlalu tinggimenyebabkan terjadinya sintering. K-400 menunjukkan ukuran kristal yang paling
kecil. Ukuran kristal yang semakin kecil akan meningkatkan luas permukaan
nanokatalis CuO/TiO2sehingga aktifitas katalitiknya akan semakin baik.
4.2.2 Penentuan Luas Permukaan, Rerata Jari-jari dan Volume Pori
CuO/TiO2
Luas permukaan katalis yang semakin besar menyebabkan kontak yang
terjadi antara reaktan dan permukaan katalis juga semakin besar sehingga fenol
yang terdegradasi lebih banyak. Selain luas permukaan katalis, ukuran jari-jari
pori yang besar dapat membantu molekul fenol untuk dapat masuk ke dalam pori
katalis. Data hasil karakterisasi kristal CuO/TiO2 menggunakan metode BET
ditunjukkan pada Tabel 4.4.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
44/87
31
Tabel 4.4 Hasil karakterisasi luas permukaan spesifik, rerata jari-jari pori danvolume total CuO/TiO2
Kode SampelLuas PermukaanSpesifik (m2/g)
Rerata Jari-jariPori ()
Volume Pori(cc/g)
K-400K-500K-600
89,276,8729,94
36,5352,91102,5
0,16670,20330,1505
Luas permukaan nanokatalis CuO/TiO2 semakin rendah pada kenaikan
suhu pemanasan. Hal ini disebabkan terjadinya sintering pada pemanasan yang
terlalu tinggi. Menurut Wardhani (2009), sintering merupakan suatu proses
berkumpulnya partikel-partikel logam secara kompak yang membentuk
gumpalan-gumpalan pada permukaan pori pengemban sehingga menutup
sebagaian pori dan sisi aktif katalis. Data tersebut menyatakan bahwa terdapat
hubungan antara ukuran kristal dan luas permukaan nanokatalis CuO/TiO2.
Kenaikan suhu pemanasan menyebabkan ukuran kristal nanokatalis CuO/TiO2
semakin besar dan memiliki luas permukaan yang semakin kecil. Ukuran rerata
jari-jari pori semakin besar pada kenaikan suhu pemanasan. Namun pada volume
pori tidak menunjukkan suatu keteraturan berdasarkan kenaikan suhu pemanasan.
4.2.3 Analisis Morfologi dan Komposisi CuO/TiO2
SEM digunakan untuk mengetahui bentuk morfologi padatan yang telah
dipreparasi. Analisis menggunakan SEM-EDX dilakukan setelah memilih
nanokatalis CuO/TiO2yang paling memenuhi syarat sebagai katalis diantara tiga
katalis yang disintesis dengan variasi temperatur kalsinasi. Hasil pengujian XRD
dan BET, padatan yang mempunyai ukuran partikel paling kecil dan luas
permukaan paling besar ditunjukkan pada K-400. Padatan tersebut kemudian
dianalisis menggunakan SEM-EDX. Hasil analisis SEM yang berupa foto
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
45/87
32
kenampakan padatan, ditunjukkan pada Gambar 4.2 dengan perbesaran 500 kali
dan 20.000 kali. Foto SEM tersebut kemudian dibandingkan dengan foto SEM
CuO/TiO2dalam penelitian Manivel et al.(2010), yang ditunjukkan pada Gambar
4.3.
Menurut Manivel et al.(2010), warna putih dalam gambar menunjukkan
partikel TiO2 dan dopan CuO adalah bidang-bidang kecil berwarna abu-abu.
Dopan CuO menempati bagian dalam pori TiO2.
Gambar 4.2. Foto SEM K-400 dengan perbesaran 500 kali dan 20.000 kali
Gambar 4.3 Foto SEM CuO/TiO2dalam Manivel et al., 2010dengan perbesaran 3000 kali
TiO2
CuO
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
46/87
33
Pada Gambar 4.2, warna abu-abu menyebar hampir pada seluruh
permukaan partikel. Hal ini menunjukkan bahwa partikel CuO hanya tersebar
pada permukaan TiO2, tidak sampai terdopan pada pori TiO2. Kristal yang
dihasilkan memiliki bentuk yang tidak homogen dan masih terdapat agregat. Hal
ini disebabkan oleh pengadukan yang kurang lama dan penambahan PEG yang
belum optimal. Gambar 4.4 menunjukkan hasil analisis EDX komposisi kristal
CuO/TiO2 dan Tabel 4.5 menunjukkan komposisi CuO dan TiO2 pada padatan
CuO/TiO2.
Gambar 4.4 Spektrum EDX K-400
Tabel 4.5 Komposisi padatan CuO/TiO2
Senyawa % Massa
CCl
TiO2CuO
7,752,3385,644,29
Spektrum EDX memperlihatkan munculnya puncak Ti dan Cu pada kristal
CuO/TiO2. Puncak Ti ditunjukkan dengan warna hijau, sedangkan puncak Cu
ditunjukkan dengan warna merah. Hasil analisis berdasarkan EDX, diketahui %
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
47/87
34
massa CuO yang terdapat pada kristal CuO/TiO2adalah 4,29%. Hal ini berbeda
dengan massa CuO acuan pada saat sintesis kristal CuO/TiO2. Massa CuO yang
ditambahkan sebesar 5% dari berat keseluruhan. Terdapatnya perbedaan % massa
dikarenakan sebagian kecil logam Cu berkurang pada saat proses sintesis. Dari
data EDX juga menunjukkan bahwa masih adanya unsur karbon dalam kristal
CuO/TiO2. Hal ini disebabkan pada saat akan dilakukan kalsinasi padatan belum
kering. Maka senyawa organik dari reaktan pada saat sintesis tidak terdekomposisi
sempurna.
Berdasarkan hasil karakterisasi nanokatalis CuO/TiO2 didapatkan
informasi bahwa kristalinitas CuO/TiO2 tidak semakin baik pada penambahan
suhu pemanasan. Semakin tinggi suhu menyebabkan fase TiO2berubah menjadi
rutil dan ukuran kristal yang semakin besar karena terjadinya sintering. Hasil
analisis data XRD ditunjukkan terbentuknya fasa rutile pada K-500 dan K-600.
Luas permukaan yang semakin besar berbanding terbalik dengan penambahan
suhu pemanasan, namun ukuran pori semakin besar seiring dengan semakin tinggi
suhu pemanasan. K-400 menunjukkan luas permukaan yang paling besar, namun
memiliki rerata jari-jari pori paling kecil, yaitu 36,53 . Katalis dengan ukuran
pori tersebut dianggap cocok untuk diaplikasikan pada proses oksidasi fenol
karena tidak terlalu besar dan tidak terlalu kecil untuk menyerap molekul fenol
yang berukuran 6 . Analisis menggunakan SEM-EDX menunjukkan bahwa
morfologi kristal K-400 masih belum homogen.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
48/87
35
4.3 Uji Aktifitas Nanokatalis CuO/TiO2untuk Degradasi Fenol
Limbah fenol yang digunakan dalam penelitian ini adalah limbah fenol
sintetis dengan konsentrasi fenol 100 ppm. Kandungan fenol tersisa diketahui
dengan uji spektrofotometer menggunakan metode adisi standar. Proses degradasi
limbah fenol dengan nanokatalis CuO/TiO2menggunakan gas oksigen sebagai zat
pengoksidasi. Katalis yang digunakan dalam proses ini adalah K-400.
Pengambilan sampel dilakukan pada saat proses proses degradasi dengan waktu
yang bervariasi. Sebelum pengukuran kadar fenol sisa, kompleks fenol diukur
panjang gelombang maksimumnya. Berdasarkan data penelitian diperoleh
absorbansi maksimum kompleks fenol pada panjang gelombang maksimum 507
nm. Hasil analisis kadar fenol tersisa bergantung waktu disajikan dalam Tabel 4.6
dan Gambar 4.5.
Tabel 4.6 Analisis kadar fenol sisa degradasi menggunakan katalis CuO/TiO2
Sampel AbsorbansiKadar fenolsisa (ppm)
%D
8 menit A1 0.034 10.625 36.25A2 0.05
15 menit A1 0.03 7.895 52.632A2 0.049
30 menit A1 0.029 7.25 56.5A2 0.049
50 menit A1 0.021 6.563 60.625A2 0.037
110 menit A1 0.032 9.412 43.529A2 0.049
155 menit A1 0.033 9.706 41.765A2 0.05
Sebelum A1 0.04 16.667A2 0.052
Keterangan :
A1= Absorbansi cuplikan sampel
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
49/87
36
A2= Absorbansi cuplikan sampel+standar%D = % fenol terdegradasi
Gambar 4.5 Kurva persentase degradasi berbanding waktu degradasi
Hasil pengukuran kadar fenol tersisa dalam proses degradasi fenol
menggunakan nanokatalis CuO/TiO2menunjukkan waktu optimum pada saat t=50
menit yaitu sebanyak 60,625%. Gambar 4.4 menunjukkan penurunan persentase
degradasi pada t=110 menit. Hal ini kurang sesuai dengan teori bahwa semakin
lama waktu degradasi, maka semakin banyak persentase degradasi yang diperoleh.
Waktu optimum proses degradasi didapat dari data persentase degradasi yang
tidak mengalami perubahan signifikan dengan bertambahnya waktu proses.
Ketidaksesuaian ini diakibatkan oleh fenol yang telah jenuh oleh CuO/TiO2, maka
pemisahan fenol dengan CuO/TiO2 menjadi lebih sukar. Larutan yang jenuh
mempengaruhi proses pembacaan absorbansi pada sampel. Pada saat pengukuran
sampel juga dijumpai kesulitan yaitu pengaturan pH agar homogen pada setiap
0
1020
30
40
50
60
70
0 50 100 150
%Degradasi
waktu degradasi (menit)
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
50/87
37
OO
H
O
C6H4 HC6H4
OH
+
OH
C6H4 OOH+
O
HC6H4
OH
C6H4 H + CuO/TiO2 C6H4 H
O
+ H CuO/TiO2
sampel. Hal ini juga mempengaruhi kelinieran absorbansi fenol sisa bergantung
waktu.
Pada proses oksidasi katalitik telah diketahui bahwa terjadi reaksi radikal
bebas di permukaan katalis (Eftaxias, 2002). Menurut Wu et al. (2003),
mekanisme radikal pada proses oksidasi katalitik fenol adalah sebagai berikut:
Pada mekanisme tersebut, C6H4H=O adalah radikal penoksi dan C6H4HOOO
adalah radikal peroksi. Aktivasi kedua radikal diinisiasi dari reaksi antara fenol,
oksigen dan katalis. Menurut Gates (1991) dalam Wu et al. (2003), pada proses
dimana logam transisi memudahkan radikal bebas pada reaksi, kemungkinan
logam bereaksi secara cepat dengan polutan organik.
4.4 Analisis Senyawa Hasil Degradasi Fenol
Analisis senyawa hasil degradasi fenol dilakukan dengan menggunakan
instrumen Gas Chromatography-Mass Spectrophotometer (GC-MS). Hasil yang
dipilih untuk dianalisis menggunakan GC-MS adalah hasil degradasi dengan
waktu reaksi 50 menit. Kromatogram GC hasil degradasi fenol dengan waktu
O
HC6H4 + O2 C6H4
O
H
OO
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
51/87
38
reaksi 50 menit disajikan pada Gambar 4.6, sedangkan analisis kromatogram GC
senyawa hasil degradasi fenol disajikan pada Tabel 4.7.
Gambar 4.6 Kromatogram senyawa hasil degradasi fenol
Tabel 4.7 Analisis kromatogram senyawa hasil degradasi fenol
Dari keterangan pada Tabel 4.7, kromatogram GC hasil degradasi fenol
memunculkan 2 puncak dengan puncak paling dominan yaitu nomor 2 dengan
kelimpahan 63,47% dan waktu retensi 2,319 menit. Puncak nomor 1 dengan
kelimpahan 36,53% diduga adalah pengotor dari sampel fenol sisa degradasi.
Analisis MS menunjukkan puncak nomor 2 adalah 2-propanon. Spektrum
massa puncak nomor 2 disajikan pada Gambar 4.7.
Gambar 4.7 Spektrum massa senyawa hasil degradasi fenol
Munculnya puncak ion molekul pada m/z=58 menyatakan bahwa massa molekul
senyawa tersebut sama dengan massa molekul 2-propanon. Ion molekul dengan
PuncakWaktu Retensi
(menit)Kelimpahan
(%)Kemungkinan
Senyawa12
2,1522,319
36,5363,47
3-nonuna-2-ol2-propanon
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
52/87
39
CH3 C CH3
OCH3
CH3 C+
O
m/z=58 melepas CH3 membentuk pecahan molekul dengan m/z=43. Berikut
fragmentasi yang terjadi :
Hasil analisis menggunakan GC-MS menunjukkan bahwa waktu retensi
2,319 menit merupakan puncak dominan dengan persentase 63,47%. Puncak
tersebut diduga sebagai senyawa hasil degradasi fenol. Senyawa hasil degradasi
fenol berupa 2-propanon diduga diperoleh dari oksidasi fenol menjadi alkohol
sekunder yang teroksidasi lebih lanjut menjadi 2-propanon.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
53/87
40
BAB 5
PENUTUP
5.1 Kesimpulan
Berdasarkan hasil penelitian, maka simpulan yang diperoleh adalah sebagai
berikut :
1. Pengaruh variasi temperatur kalsinasi terhadap karakter kristal CuO/TiO2
yang dihasilkan adalah:
a. Kristal CuO/TiO2 yang disintesis dengan metode sol-gel modifikasi
larutan polimer PEG, mempunyai fase TiO2anatase pada temperatur
kalsinasi 400C dan pada kenaikan temperatur kristal akan berubah
fase menjadi TiO2rutil.
b.
Kenaikan temperatur kalsinasi mengakibatkan kenaikan ukuran kristal
CuO/TiO2karena terjadi sintering.
c. Pada pengukuran menggunakan metode BET, luas permukaan
nanokatalis CuO/TiO2 mengalami penurunan pada kenaikan
temperatur kalsinasi.
Analisis menggunakan SEM-EDX menunjukkan bahwa nanokatalis
CuO/TiO2 yang disintesis menggunakan metode sol-gel modifikasi
mempunyai bentuk yang belum homogen dan pendistribusian CuO pada
TiO2juga belum homogen.
2. Nanokatalis CuO/TiO2dapat diaplikasikan sebagai katalis degradasi fenol
dengan waktu optimum t=50 menit sebesar 60,625%.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
54/87
41
5.2 Saran
Berdasarkan hasil penelitian, maka saran yang diberikan oleh penulis adalah
sebagai berikut :
1. Perlu dilakukan optimalisasi lebih lanjut terhadap metode sintesis
nanokatalis CuO/TiO2 yaitu dari segi waktu reaksi, waktu kalsinasi,
jumlah CuO yang ditambahkan, dan lain-lain.
2. Perlu dilakukan optimasi lebih lanjut mengenai konsentrasi katalis dan
tekanan pada proses oksidasi katalitik fenol.
3. Perlu dilakukan penelitian lebih lanjut mengenai pemanfaatan ulang
katalis yang telah digunakan untuk proses degradasi.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
55/87
42
DAFTAR PUSTAKA
Abdullah M. & Khairurrijal, 2010. Karakterisasi Nanomaterial; Teori,Penerapan, dan Pengolahan Data. Bandung: CV. Rezeki Putera.
Agustine, R. L. 1996. Heterogeneous Catalyst for the Synthetic Chemist. NewYork: Marcel Dekker Inc.
Ali, R. & O.B. Siew. 2006. Photodegradation of New Methylene Blue N inAqueous Solution Using Zinc Oxide and Titanium Oxide as Catalyst.
Jurnal Teknolog 45(F): 31-42.
Arutanti, O., dkk. 2009. Penjernihan Air Dari Pencemar Organik dengan ProsesFotokatalis pada Permukaan Titanium Dioksida (TiO2). Jurnal
Nanosains dan Nanoteknologi. ISSN 1979-0880.
Astutik, P. 2010.Efektivitas Degradasi Fenol Secara Fotokatalitik MenggunakanPadatan ZnTiO3 yang Dipreparasi Dengan Metode Sol-Gel. TugasAkhir 2. Semarang: FMIPA Universitas Negeri Semarang.
Ding, G. H., X. Y. Jiang & X. M. Zheng. 2005. Effect of Carrrier on CuO/TiO 2and CuO/Ti0.5Zr0.5O2 Catalysts in the NO+CO Reaction. ChineseChemical Letters Vol.16, No.2: 275-278.
Eftaxias, A. 2002. Catalytic Wet Air Oxidation of Phenol in a Trickle BedReactor: Kinetics and Reactor Modelling. Dissertation. Taragona:Rovira Virgili University.
Fessenden, R. J. & J. S. Fessenden. 1992. Kimia Organik. Jilid II. Jakarta :Erlangga.
Fransisco, M. S. P. & V. R. Mastelaro. 2002. Inhibition of the Anatase-Rutile withAddition of CeO2 to CuO-TiO2 System: Raman Spectroscopy, X-rayDiffraction, and Textural Studies. Chem Mater,14: 2514-2518.
Ghane, M., et al. 2010. Synthesis and Characterization of a Bi-Oxide nanoparticleZnO/CuO by Thermal Decomposition of Oxalate Precursor Method.
International Journal of Nano Dimension. ISSN : 2008-8868.
Golestani, A., et al. 2011. Modeling of Catalyst Deactivation in Catalytic Wet AirOxidation of Phenol in Fixed Bed Three-Phase Reactor. Worls Academyof Science and Technology 73.
Harmankaya, M. & G. Gndz. 1995. Catalytic of Phenol in Aqueous Solution.Tr. J. of Engineering and Environmental Sciences. 1998:9-15.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
56/87
43
Hendayana, S., dkk. 1994.Kimia Analitik Instrumen. Semarang: IKIP SemarangPress
Johan, M. R., et al. 2011. Annealing Effect on the Properties of Copper OxideThin Films Prepared by Chemical Deposition. Int. J. Electrochem.,6(2011): 6094-6104.
Lee, G. H., et al. 2002. Catalytic Combustion of Benzene Over Copper OxideSupported on TiO2 Prepared by Sol-Gel Method. J. Ind. Eng. Chem.,Vol.8, No. 6: 572-577.
Lestari, D. S. 2011. Preparasi Nanokomposit Zno/Tio2 Dengan MetodeSonokimia Serta Uji Aktivitasnya Untuk Fotodegradasi Fenol. Tugas
Akhir 2. Semarang: Universitas Negeri Semarang.
Liherlinah et al. 2009. Sintesis Nanokatalis CuO/ZnO/Al2O3 untuk MengubahMetanol Menjadi Hidrogen untuk Bahan Bakar Kendaraan Fuel Cell.
Jurnal Nanosains dan Nanoteknologi. ISSN 1979-0880
Luna, A. J., et al. 2009. Total Catalytic Wet Oxidation Of Phenol and ItsChlorinated Derivates With MnO2/CeO2Catalyst In A Slurry Reactor.
Brazilian Journal of Chemical Engineering, Vol. 26 No.03: 493-502.
Meytal, Y. I. M. & M. Sheintuch. 1998. Catalytic Abatement of Water Pollutants.Ind. Eng. Chem. Res., 37: 309-326.
Massa, P. A., et al. 2004. Catalyst System For The Oxidation of Phenol In Water.Latin American Applied Research, 34: 133-140.
Manivel, A., et al.2010. CuO-TiO2Nanocatalyst for Photodegradation of AcidRed 88 in Aqueous Solution. Science of Advanced Materials Vol.2, 51-57.
Pestunova, O. P. , O. L. Ogorodnikova & V. N. Parmon. 2003. Studies on the
Phenol Wet Peroxide Oxidation in the Presence of Solid Catalysts.Chemistry for Sustainable Development 11: 227-232.
Prabowo, A. R. & Wijayanto, H. 2010. Penurunan Kadar Fenol denganMemanfaatkan Baggase Fly Ash dan Chitin sebagai Adsorben.Surabaya: Institut Teknologi Surabaya
Sanchez, K. D. A, et al.2011. Preparation, Characterization and PhotocatalyticProperties of TiO2 Nanostructured Speres Synthesized by Sol-GelMethod Modified with Ethylene Glycol. J. Sol-Gel Technol. 58:360-365.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
57/87
44
Sari, A. P. 2011. Penurunan Kadar Fenol Secara Fotokatalitik MenggunakanSrTiO3 Dalam Limbah Industri Tekstil di Sungai Jenggot Kota
Pekalongan.Tugas Akhir 2. Semarang: Universitas Negeri Semarang.
Silva, A. M. T., et al. 2003. Catalytic Studies in Wet Oxidation of Effuents FromFormaldehyde Industry. Chemical Engineering Science: 963-970.
Slamet, R. Arbianti & Daryanto. 2005. Pengolahan Limbah Organik (Fenol) danLogam (Cr6+atau Pt4+) Secara Simultan Dengan Fotokatalis TiO2, ZnO-TiO2 dan CdS-TiO2.Makara Teknologi, Vol. 9 No. 2.
Slamet, R. Arbianti & E. Marliana. 2007. Pengolahan Limbah Cr(VI) dan Fenoldengan Fotokatalis Serbuk TiO2dan CuO/TiO2.Reaktor, Vol. 11 No.2,
Desember 2007, Hal. : 78-85.
Stuber, F. et al. 2001. Catalytic Wet Air Oxidation of Phenol Using ActiveCarbon: Performance of Discontinuous and Continuous Reactors.
Jurnal of Chemical Technology and Biotechnology, 76:743-751.
Suwanprasop, S. 2005. Oxidation of Phenol on Fixed Bed of Active Carbon.Thesis. Toulouse: INP Toulouse France.
Swantomo, D., N. A. Kundari & S. L. Pambudi. 2009. Adsorpsi Fenol DalamLimbah Dengan Zeolit Alam Terkalsinasi. Seminar Nasional V SDMTeknologi Nuklir. ISSN 1978-0176.
Tuan, N. M. et al.2009. Low Temperature Synthesis of Nano-TiO2 anatase onNafion Membrane for Using on DMFC.Journal of Physics: ConferenceSeries 187.
Triyono. 2002. Kimia Katalis. Yogyakarta: Fakultas Matematika dan IlmuPengetahuan Alam: Universitas Gadjah Mada.
Ulyani, V. 2008. Reaksi Katalisis Oksidasi Vanili Menjadi Asam Vanilat
Menggunakan Katalis TiO2-Al2O3 (1:1) Yang Dibuat Dengan PEG6000. Skripsi. Depok: FMIPA Universitas Indonesia.
Wardhani, S. 2009. Studi Pengaruh Konsentrasi Zn(II) Pada Preparasi KatalisZeolit-Zno Terhadap Oksidasi Fenol. Malang : Universitas Brawijaya.
Wang, L. 2006. Preparation and Characterization of Properties ofElectrodeposited Copper Oxide Films. Disertation. Texas: TheUniversity of Texas at Arlington.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
58/87
45
Wijaya, K., et al. 2005. Synthesis of Fe2O3- montmorillonite and its application asa photocatalyst for degradation of congo Red Dye. Indonesian Journal
of Chemistry, 5 (1) 41-47.
Wu, Q., X. Hu & P. L. Yue. 2003. Kinetic Study on Catalytic Wet Air Oxidationof Phenol. Chemical Engineering Science 58: 923-928.
Yang, X. 2008. Sol-Gel Synthesized Nanomaterials for EnvironmentalApplications. Dissertation. Manhattan: Kansas State University.
Zhu, H., L. Dong & Y. Chen. 2011. Effect of Titania structure on the Properties ofIts Supported Copper Oxide Catalysts. Journal of Colloid and
Interface Science 357: 497-503.
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
59/87
46
LAMPIRAN
Lampiran 1 Skema Cara Kerja
A. Preparasi Nanokatalis CuO/TiO2
5 gram PEG dalam 50 ml H2O
ditambah
Campuran CuO/TiO2
dan PEG
diaduk 1,5 jam
Nanokatalis CuO/TiO2
Furnace pada suhu
400C, 500C dan
600C
0,76 gram Cu(NO3)2.3H2O + 2,2 ml H2O
18,4 ml TiPP + 4,5 ml H2O
diaduk 30 menit3,6 ml etanol 1,2 ml HCl
ditambah
dicam ur sambil diadukCampuran TiO2
diaduk 1 jam
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
60/87
47
B. Karakterisasi Nanokatalis CuO/TiO2
CuO/TiO2
CuO/TiO2400C CuO/TiO2500C CuO/TiO2600C
XRD dan BET
SEM-EDX
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
61/87
48
C. Proses Degradasi Senyawa Fenol
Sampel
Diencerkan
dengan H2O
FiltratResidu
Diuji dengan
IR dan GC-MS
Diuji dengan
spektro UV-Vis
Dibiarkan sampai
dingin kemudian
disaring
Dialiri oksigen
200 ml/menit
Campuran Fenol
teroksidasi
Dipanaskan hinggasuhu 70C
Campuran fenol
dan katalis
0,5 gram katalisCuO/TiO2
Diaduk hingga
homogen dalam labu
alas bulat leher tiga
Pemanasan hingga suhu 90C
dan dilanjutkan bereaksi selama
(8, 15, 30, 50, 110, 155) menit
CO2(g)Fenol teroksidasi
100 ppm Fenol 250 ml
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
62/87
49
D. Uji Fenol Sisa Degradasi Menggunakan Metode Adisi Standar
masing-masing
diencerkan 20 kali
diencerkan
masing-masing 25ml ditempatkan
diambil 25 ml sebanyak
6 kali dan masing-masing ditempatkan
ditambah ditambahErlenmeyer A Erlenmeyer B+ H2O 25 ml
Fenol terdegradasi 8 menit, 15menit, 30 menit, 50 menit,
110 menit, 155 menit
Sampel fenol terdegradasi 8 menit,
15 menit, 30 menit, 50 menit, 110
menit, 155 menit
Fenol 100 ppm
Fenol 5 ppm = Larutan standar
1,25 ml NH4OH dan pH
diatur menjadi 7,90,1
dengan larutan penyangga
fosfat
1,25 ml NH4OH dan pH
diatur menjadi 7,90,1
dengan larutan penyangga
fosfat
Dikomplekskan dengan 0,5
ml larutan 4-aminoantipirin
2%, dan ditambah larutan
kalium ferisianida 8% 0,5 ml
Dikomplekskan dengan 0,5
ml larutan 4-aminoantipirin
2%, dan ditambah larutan
kalium ferisianida 8% 0,5 ml
Diaduk dandidiamkan 15 menit
Diaduk dandidiamkan 15 menit
Dianalisis dengan Spektrofotometer UV-Vis
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
63/87
50
Lampiran 2 Hasil Karakterisasi Menggunakan XRD
A.
Hasil XRD K-400
B. Hasil XRD K-500
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
64/87
51
C. Hasil XRD K-600
D. Difraktogram standar TiO2anatase sebagai pembanding hasil analisis
XRD
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
65/87
52
E. Difraktogram standar TiO2 rutile sebagai pembanding hasil analisis
XRD
F. Difraktogram standar CuO sebagai pembanding hasil analisis XRD
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
66/87
53
Lampiran 3 Perhitungan Ukuran Kristal
a.
K-400
2 = 25,57; 23,1733; 48,4716
2 = 25,57
=
=0,9 . 0,154
0,02065 . cos 12,785
= 7,1895
2 = 23,1733
=
=0,9 . 0,154
0,0190 . cos 11,5867
= 7,7679
2 = 48,4716
=
=0,9 . 0,154
0,0278 . cos 24,2358
= 5,7141
Ukuran kristal rata-rata =7,1895+7,7679+5,7141
3= 6.8905 nm
Keterangan :D = ukuran (diameter) kristalin (nm) = panjang gelombang sinar-x yang digunakan. Dalam data XRD
tercantum 1,54 atau sama dengan 0,154 nm = sudut Bragg (2/2)
B = FWHM satu puncak yang dipilih
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
67/87
54
K = konstanta material yang nilainya kurang dari satu. Nilai yangumumnya dipakai untukK0,9
Dilanjutkan pengukuran untuk K-500 dan K-600 dengan cara yang sama.
Keterangan :
1 rad = 57,324 deg1 deg = 0,0174 rad
KodeSampel
FWHM(rad)
FWHM(deg) (B)
K
(nm) Cos
UkuranKristal (nm)
Rata-rata(nm)
K-400 1.1866 0.02064684 0.94 0.154 12.785 0.9752 7.189543066 6.890498721.0933 0.01902342 0.94 0.154 11.58665 0.97962 7.7678769061.5967 0.02778258 0.94 0.154 24.2358 0.9118638 5.714076177
K-5000.3653 0.00635622 0.94 0.154 13.78265 0.9712 23.4498992
17.71592810.8934 0.01554516 0.94 0.154 12.78 0.97523 9.5487456560.4644 0.00808056 0.94 0.154 27.23945 0.8891 20.14913955
K-6000.23 0.004002 0.94 0.154 13.8467 0.97094 37.25453071
41.87748250.1992 0.00346608 0.94 0.154 27.29425 0.888663 46.99729840.2116 0.00368184 0.94 0.154 18.16955 0.950138 41.38061826
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
68/87
55
Lampiran 4 Perhitungan Komposisi Fase Kristal TiO2 pada
CuO/TiO2
Perhitungan komposisi fase kristal TiO2 pada CuO/TiO2 dilakukan dengan
menimbang berat kurva hasil analisis XRD.
1. K-400
Berat kertas kurva = 0,236 gram
Berat kurva anatase = 0,0384 gram
% =
. 100%
% =0,0384
0,236. 100%
= 16,27%
2. K-500
Berat kertas kurva = 0,4063 gram
Berat kurva anatase = 0,046 gram
Berat kurva rutil = 0,0248 gram
% =
. 100%
% =0,046
0,4063 . 100%
= 11,3217%
% =
. 100%
% =0,0248
0,4063. 100%
= 6,104%
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
69/87
56
3. K-600
Berat kertas kurva = 0,2008 gram
Berat kurva anatase = 0,018 gram
Berat kurva rutil = 0,0164 gram
% =
. 100%
% =0,018
0,2008. 100%
= 8,964%
% =
. 100%
% =0,0164
0,2008. 100%
= 8,167%
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
70/87
57
Lampiran 5 Hasil Karakterisasi Menggunakan BET
A.
K-400
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
71/87
58
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
72/87
59
B. K-500
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
73/87
60
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
74/87
61
C. K-600
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
75/87
62
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
76/87
63
Lampiran 6Alur Perolehan Data BET
Keterangan :meliputialur kerjainstrumen yang digunakan
n = jumlah atom gas yang diadsorpsi (mol/gram)nm = jumlah atom gas yang menempel pada permukaan
sampel untuk membentuk satu lapisan penuh(mol/gram)
c = konstanta BET dalam adsorbs monolayer
Data tekanan relatif (P/P0)
dan jumlah gas yangdiadsorbsi (n)
Ukuran Pori Volume Pori
BET
Luas Permukaan
Spesifik
Nanokatalis CuO/TiO2
( 0)=
1
+
1
.
0
= +
Kurva
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
77/87
64
Lampiran 7 Alur Perhitungan Data BET
Keterangan :NA = bilangan Avogadro (6,625x10
23) = luas satu atom gas N2(16,2x10
-20m2) = massa jenis sampel (gram/m3)S1 = luas permukaan satu partikel (m
2/gram)Sp = luas permukaan pori (m
2/gram)Sp1 = luas permukaan satu pori (m
2/gram)Dp = rata-rata jari pori (m
3)Vp1 = volume satu pori (m
3)m1 = massa satu partikel sampel (gram)
jumlah total
atom gas yangmenempel
Didapat nilai cdan nm
( 0)=
1
+
1
.
0
= +
Kurva
konstanta
=
=1
massa pori total
1 =
3
6
1 =1
=
= =
=6
1 =3
6
1 =2
luas
permukaan
spesifik
diameter rata-rata partikel
=1
= +
=11 =
2
-
7/24/2019 Sintesis Dan Karakterisasi Nanokatalis
78/87
65
Lampiran 8 Hasil Karakterisasi Menggunakan