s1 ilmu dasar sains kalkulus...mk minor struktur & sb daya air ilmu dasar sains kalkulus statika &...

43
MK MINOR STRUKTUR & SB DAYA AIR Ilmu Dasar Sains Kalkulus Statika & Mek Bhn Analisis Struktur Peranc.Str. Beton Peranc.Str. Baja Din.Str.&Rek.Gempa S1 S2 S3 S4 S5 S7 S6 You are here Peranc.Str. Bangunan Sipil

Upload: others

Post on 07-Feb-2021

18 views

Category:

Documents


0 download

TRANSCRIPT

  • MK MINOR STRUKTUR & SB

    DAYA AIR

    Ilmu Dasar Sains Kalkulus

    Statika & Mek Bhn

    Analisis Struktur

    Peranc.Str. Beton Peranc.Str. Baja

    Din.Str.&Rek.Gempa

    S1

    S2

    S3

    S4 S5

    S7

    S6

    You are here

    Peranc.Str. Bangunan Sipil

  • Analisis Struktur (4SKS)

    Menghitung defleksi/perpind

    ahan titik

    Analisis Struktur Statis Tak Tentu

    Beam & Frame

    Castigliano Method

    Virtual Load Method

    Double Integration

    Conjugate Beam

    Moment Area Method

    Truss/Rangka Batang

    Castigliano Method

    Virtual Load Method

    Beam & Frame

    Force Method

    Slope-Deflection Eq. Method

    Moment Distribution Method

    Truss/Rangka Batang

    Force Method

    W1

    W2

    W3

    W4

    W5

    W6

    W7-9

    W10

    W11,12

    W13-15

  • Integrity, Professionalism, & Entrepreneurship

    Pertemuan – 1, 2

    Prinsip Perpindahan Maya

    Mata Kuliah : Analisis Struktur

    Kode : CIV - 209

    SKS : 4 SKS

  • Integrity, Professionalism, & Entrepreneurship

    • Kemampuan Akhir yang Diharapkan

    • Mahasiswa dapat menjelaskan prinsip kerja dan Energi dalam perhitungan deformasi struktur

    • Sub Pokok Bahasan :

    • Prinsip Dasar Metode Energi

    • Kerja dan Energi

    • Prinsip Konservasi Energi

    • Virtual work

    • Aplikasi kerja maya

  • Integrity, Professionalism, & Entrepreneurship

    • Text Book :

    • Hibbeler, R.C. (2010). Structural Analysis. 8th edition. Prentice Hall. ISBN : 978-0-13-257053-4

    • West, H.H., (2002). Fundamentals of Structural Analysis. John Wiley & Sons, Inc. ISBN : 978-0471355564

  • Integrity, Professionalism, & Entrepreneurship

    Deflections

    • Deflections of structures can occur from various sources, such as loads, temperature, fabrication errors, or settlement.

    • In design, deflections must be limited in order to provide integrity and stability of roofs, and prevent cracking of attached brittle materials such as concrete, plaster or glass.

  • Integrity, Professionalism, & Entrepreneurship

    • Before the slope or displacement of a point on a beam or frame is determined, it is often helpful to sketch the deflected shape of the structure when it is loaded in order to partially check the results.

    • This deflection diagram represents the elastic curve of points which defines the displaced position of the centroid of the cross section along the members.

  • Integrity, Professionalism, & Entrepreneurship

  • Integrity, Professionalism, & Entrepreneurship

  • Integrity, Professionalism, & Entrepreneurship

    • Kerja Prinsip Konservasi Energi (conservation of energy principle) :

    Kerja akibat seluruh gaya luar yang bekerja pada sebuah struktur (external forces) Ue, menyebabkan terjadinya gaya-gaya dalam pada struktur (internal work or strain energy) Ui seiring dengan deformasi yang terjadi pada struktur.

    Apabila tegangan yang terjadi tidak melebihi batas elastis material struktur tersebut, elastic strain energy akan mengembalikan bentuk struktur ke tahap awal sebelum terjadinya pembebanan, jika gaya-gaya luar yang bekerja dihilangkan.

    (1)

  • Integrity, Professionalism, & Entrepreneurship

    External work-Axial force

    L, E, A

    F

    dx

    P

    F

    x D

    xP

    F D

    DD

    DD

    PdxxP

    dxFU e2

    1

    00

    Kerja yang dilakukan oleh gaya luar P

    (2)

  • Integrity, Professionalism, & Entrepreneurship

    External work-Bending moment

    M

    m

    f q

    fq

    M

    m

    qffq

    fqq

    MdM

    dmU e2

    1

    00

    Kerja yang dilakukan oleh momen lentur M

    m

    df

    (3)

  • Integrity, Professionalism, & Entrepreneurship

    Strain Energy – Axial force

    Gaya P yang bekerja pada sebuah Bar seperti yang terlihat pada Gambar, dikonversikan menjadi strain energy yang menyebabkan pertambahan panjang pada batang sebesar ∆ dan timbulnya tegangan 𝜎. Mengingat Hukum Hooke : 𝜎 = 𝐸𝜖.

    Maka persamaan defleksi dapat dituliskan menjadi:

    Subsitusikan persamaan 4 ke dalam persamaan 2, maka didapat energi regangan yang tersimpan dalam batang :

    AE

    PLD (4)

    AE

    LPU i

    2

    2

    (5)

  • Integrity, Professionalism, & Entrepreneurship

    Strain Energy – Bending Moment

    Energi regangan yang tersimpan pada balok :

    (6)

    dxEI

    Md q Lihat Mekanika Bahan pt.11.

    dxEI

    MdMdU i

    22

    1 2 q

    EI

    LMdx

    EI

    MU

    L

    i22

    2

    0

    2

    Dari pers.(3)

  • Integrity, Professionalism, & Entrepreneurship

    External Work, Ue Internal Work, Ui

    Axial Force 1

    2𝑃∆

    𝑃2𝐿

    2𝐴𝐸

    Bending Moment 1

    2𝑀𝜃

    𝑀2𝐿

    2𝐸𝐼

    • Resume

  • Integrity, Professionalism, & Entrepreneurship

    Castigliano Theorem • Italian engineer Alberto Castigliano (1847 – 1884) developed

    a method of determining deflection of structures by strain energy method.

    • His Theorem of the Derivatives of Internal Work of Deformation extended its application to the calculation of relative rotations and displacements between points in the structure and to the study of beams in flexure.

  • Integrity, Professionalism, & Entrepreneurship

    Castigliano’s Theorem for Beam Deflection • For linearly elastic structures, the partial derivative of the

    strain energy with respect to an applied force (or couple) is equal to the displacement (or rotation) of the force (or couple) along its line of action.

    i

    ii

    i

    ii

    M

    U

    P

    U

    D qor (7)

  • Integrity, Professionalism, & Entrepreneurship

    • Subtitusi persamaan 6 ke persamaan 7 :

    • Jika sudut rotasi q, yang hendak dicari :

    D

    LL

    EI

    dx

    P

    MM

    EI

    dxM

    P00

    2

    2(8)

    L

    EI

    dx

    M

    MM

    0

    q (9)

  • Integrity, Professionalism, & Entrepreneurship

    Example 1

    • Determine the displacement of point B of the beam shown in the Figure.

    • Take E = 200 GPa, I = 500(106) mm4.

  • Integrity, Professionalism, & Entrepreneurship

    Example 1 • A vertical force P is placed on the beam at B

    • Internal moments : (taken from the right side of the beam)

    • From Castigliano’s theorem :

    PxxM

    xPx

    xM

    M

    26

    02

    12

    0

    26 0 since xMP

    xP

    M

    m,

    EI

    mkN

    EI

    dxxx

    EI

    dx

    P

    MM

    L

    B 150010156 33

    10

    0

    2

    0

    D

  • Integrity, Professionalism, & Entrepreneurship

    Example 2 • Determine the slope at point B of the beam shown in Figure.

    • Take E = 200 GPa, I = 60(106) mm4.

    • Since the the slope at B is to be determined, an external couple M’ is placed on the beam at B.

  • Integrity, Professionalism, & Entrepreneurship

    1

    53 053 0

    For

    0

    3 03 0

    For

    2

    2222

    2

    1

    1111

    1

    M

    M

    xMMxMMM

    x

    M

    M

    xMxMM

    x

  • Integrity, Professionalism, & Entrepreneurship

    rad10375960200

    5112

    mkN 511215303

    3

    25

    0

    22

    5

    0

    11

    0

    ,,

    EI

    ,

    EI

    dxx

    EI

    dxx

    EI

    dx

    M

    MM

    B

    L

    B

    q

    q

    Setting M’ = 0, its actual value, and using Castigliano Theorem, we have : The negative sign indicates that qB is opposite to the direction of the couple moment M’.

  • Integrity, Professionalism, & Entrepreneurship

    Example 3 • Determine the vertical displacement of point C of the beam.

    • Take E = 200 GPa, I = 150(106) mm4.

    External Force P. A vertical force P is applied at point C. Later this force will be set equal to a fixed value of 20 kN. Internal Moments M. In this case two x coordinates are needed for the integration, since the load is discontinuous at C.

  • Integrity, Professionalism, & Entrepreneurship

    22

    22

    22

    2

    11

    2111

    11

    11

    1

    50

    508

    0508 0

    For

    50

    45024

    02

    85024 0

    For

    x,P

    M

    xP,M

    xP,MM

    x

    x,P

    M

    xxP,M

    Mx

    xxP,M

    x

  • Integrity, Professionalism, & Entrepreneurship

    • Applying Castigliano’s Theorem. Setting P = 20 kN :

    mm 14,2 m 01420150200

    7426

    mkN7426mkN192mkN7234

    501850434

    333

    4

    0

    222

    4

    0

    112

    11

    0

    D

    ,,

    EI

    ,

    EIEI

    ,

    EI

    dxx,x

    EI

    dxx,xx

    EI

    dx

    P

    MM

    L

    Cv

  • Integrity, Professionalism, & Entrepreneurship

    • 9.47

    • 9.49

    • 9.53

    • 9.56

    • 9.61

    • 9.63

    • 9.66

    • 9.69

    • 9.72

    • 9.74

    • 9.80

    • 9.83

    • 9.85

    • 9.87

    • 9.89

    • 9.92

    • 9.94

    • 9.96

    • 9.98

    Soal Latihan (Chapter IX, Hibbeler)

  • Integrity, Professionalism, & Entrepreneurship

    • Prinsip perpindahan maya (virtual work) Prinsip ini dikembangkan oleh John Bernoulli pada tahun

    1717 dan lebih dikenal dengan nama Unit Load Method. General Statement : • If we take a deformable structure of any shape

    or size and apply a series of external loads P to it, it will cause internal loads u at points throughout the structure.

    • It is necessary that the external and internal loads be related by the equations of equilibrium.

    • As a consequence of these loadings, external displacements D will occur at the P loads and internal displacements d will occur at each point of internal load u.

    Gambar 2.1

  • Integrity, Professionalism, & Entrepreneurship

    Gambar 2.2

  • Integrity, Professionalism, & Entrepreneurship

    1. ∆ = 𝑢 . 𝑑𝐿

    Dimana :

    𝑃′ = 1 = beban maya luar yang bekerja searah dengan ∆

    ∆ = perpindahan yang disebabkan oleh beban nyata

    u = beban dalam maya yang bekerja dalam arah dL

    dL = deformasi dalam benda yang disebabkan oleh beban nyata.

    (1)

    Virtual loading Real displacement

  • Integrity, Professionalism, & Entrepreneurship

    Dengan cara yang sama, apabila kita ingin menentukan besar sudut rotasi pada lokasi tertentu dari sebuah benda, kita dapat mengaplikasikan beban momen maya M’ sebesar 1 satuan, lalu mengintegrasikannya dengan persamaan rotasi akibat beban momen nyata, sehingga :

    1. 𝜃 = 𝑢𝜃 . 𝑑𝐿

    Dimana :

    𝑀′ = 1 = beban maya luar yang bekerja searah dengan ∆

    𝜃 = perpindahan rotasi yang disebabkan oleh beban nyata

    𝑢𝜃 = kerja dalam maya yang bekerja dalam arah dL

    dL = deformasi dalam benda yang disebabkan oleh beban nyata.

    (2)

    Virtual loading Real displacement

  • Integrity, Professionalism, & Entrepreneurship

    • Kerja Maya Pada Balok/Frame

    DL

    dxEI

    mM

    0

    1 (3)

    dxEI

    MddL q

    D udL1Virtual Loads

    Real Displ.

    mu

  • Integrity, Professionalism, & Entrepreneurship

    • Kerja Maya Pada Balok/Frame

    L

    dxEI

    Mm

    0

    1 qq (4)

    dxEI

    MddL q

    dLuqq1Virtual Loads

    Real Displ.

    qmu

  • Integrity, Professionalism, & Entrepreneurship

    Example 4

    • Determine the displacement of point B of the beam shown in the Figure.

    • Take E = 200 GPa, I = 500(106) mm4.

  • Integrity, Professionalism, & Entrepreneurship

    • The vertical displacement of point B is obtained by placing a virtual unit load of 1 kN at B.

    Real Moment, M Virtual Moment, mq

  • Integrity, Professionalism, & Entrepreneurship

    mm 150 m 1500500200

    00015

    mkN 0001561kN 1

    3210

    0

    2

    0

    D

    D

    ,.

    EI

    .

    EI

    dxxxdx

    EI

    mM

    B

    L

    B

  • Integrity, Professionalism, & Entrepreneurship

    Example 5 • Determine the slope at point B of the beam shown in Figure.

    • Take E = 200 GPa, I = 60(106) mm4.

    • The slope at B is determined by placing a virtual unit couple of 1 kN.m at B.

    • Calculate virtual momen mq and real moment M

  • Integrity, Professionalism, & Entrepreneurship

    Real Moment, M Virtual Moment, mq

  • Integrity, Professionalism, & Entrepreneurship

    • The slope at B, is thus given by :

    rad103759rad 009375060200

    5112

    5112531301

    3

    2

    5

    0

    22

    5

    0

    11

    0

    ,,,

    mkNEI

    ,dx

    EI

    xdx

    EI

    xdx

    EI

    Mm

    B

    L

    B

    q

    q q

  • Integrity, Professionalism, & Entrepreneurship

    Example 7 • Determine the tangential

    rotation at point C of the frame shown in figure.

    • Take E = 200 GPa,

    I = 15(106) mm4

  • Integrity, Professionalism, & Entrepreneurship

  • Integrity, Professionalism, & Entrepreneurship

    rad 00875015200

    2526mkN 2526152511

    5715211

    2

    2

    0

    2

    3

    0

    11

    0

    ,,

    EI

    ,

    EIEI

    ,

    EI

    dx,

    EI

    dxx,dx

    EI

    Mm

    C

    L

    C

    q

    q q

  • Integrity, Professionalism, & Entrepreneurship

    • 9.46

    • 9.48

    • 9.50

    • 9.51

    • 9.52

    • 9.54

    • 9.55

    • 9.57

    • 9.58

    • 9.59

    • 9.60

    • 9.62

    • 9.64

    • 9.65

    • 9.67

    • 9.68

    • 9.70

    • 9.71

    • 9.73

    • 9.75

    • 9.78

    • 9.79

    • 9.81

    • 9.82

    • 9.84

    • 9.86

    • 9.88

    • 9.90

    • 9.91

    • 9.93

    • 9.95

    • 9.97

    Soal Latihan (Chapter IX, Hibbeler)