pmr 2010.ppt

Download PMR 2010.ppt

Post on 10-Apr-2016

11 views

Category:

Documents

6 download

Embed Size (px)

TRANSCRIPT

  • TAJUK-TAJUK TINGKATAN 1, 2 DAN 3

  • TAJUK UTAMA

  • JADUAL ANALISISSOALAN MATEMATIK2004 - 2008

  • NILAIAN MARKAH

  • MATEMATIK PMR

  • MATEMATIK PMR

  • MATEMATIK KERTAS 1 PENILAIAN MENENGAH RENDAH

  • MATEMATIK KERTAS 1 ANALISIS MASA

    40 SOALAN: 75 MINIT

  • MATEMATIK KERTAS 1 ANALISIS MASA

    40 SOALAN: 75 MINITBUKAN1 SOALAN: 1.875 MINIT

  • MATEMATIK KERTAS 1 ANALISIS MASA

    40 SOALAN: 75 MINITBUKAN1 SOALAN: 1.875 MINITSEBENARBACA+FAHAM+KIRA: 1.5 MINIT MENGHITAM: 0.375 MINIT

  • MATEMATIK KERTAS 2 PENILAIAN MENENGAH RENDAH

  • MATEMATIK KERTAS 2 ANALISIS MASA

    20 SOALAN: 105 MINIT

  • MATEMATIK KERTAS 2 ANALISIS MASA

    20 SOALAN: 105 MINITBUKAN1 SOALAN: 5.25 MINIT

  • MATEMATIK KERTAS 2 ANALISIS MASA

    20 SOALAN: 105 MINITBUKAN1 SOALAN: 5.25 MINITSEBENAR60 MARKAH: 105 MINIT 1 MARKAH: 1.75 MINIT

  • MATEMATIK KERTAS 2 PERINGATAN1.Jawapan Sebenar 6 : (-2)(-3) Tidak dikira

    2.Jawapan Sebenar : Tidak dikira

    3.Jawapan Sebenar 0 : Tidak dikira

    4.Jawapan Sebenar 15.2 : 10+5.2 Tidak dikira

    5.Jawapan Sebenar : Tidak dikira

    32-3 -2021236

  • MATEMATIK KERTAS 2 PERINGATAN6. Jawapan Sebenar Tidak dikira

    7. Jawapan Sebenar Tidak dikira

  • MATEMATIK KERTAS 2 PERINGATANNombor Perpuluhan Berulang:

    Misalan 1.222222222 TERIMA 1.22 Ditulis: 2 Tempat perpuluhan/2 Kali Nombor Berulang

    Pecahan Tidak Wajar

    Misalan TERIMA Untuk 37212

  • Format soalan kertas 2Dalam Bahasa Inggeris dan Bahasa Melayu /Dwibahasa

  • Format soalan kertas 2Dalam Bahasa Inggeris dan Bahasa Melayu /Dwibahasa

    Markah maksima ialah 60 markah dan markahnya dalam pelbagai iaitu 1 markah, 2 markah hingga 6 markah bagi sesuatu soalan.

  • Format soalan kertas 2Dalam Bahasa Inggeris dan Bahasa Melayu /Dwibahasa

    Markah maksima ialah 60 markah dan markahnya dalam pelbagai iaitu 1 markah, 2 markah hingga 6 markah bagi sesuatu soalan.Setiap jawapan perlu ditunjukkan jalan mengira yang jelas dalam ruang jawapan yang disediakan sahaja.

  • Memberikan tumpuan 100% dalam proses P&P

    KAEDAH BELAJAR

  • Memberikan tumpuan 100% dalam proses P&PMembuat salinan contoh-contoh yang diberi

    KAEDAH BELAJAR

  • Memberikan tumpuan 100% dalam proses P&PMembuat salinan contoh-contoh yang diberiMenguji soalan berdasarkan contohKAEDAH BELAJAR

  • Memberikan tumpuan 100% dalam proses P&PMembuat salinan contoh-contoh yang diberiMenguji soalan berdasarkan contohMembuat latihan yang diberi oleh guru

    KAEDAH BELAJAR

  • Memberikan tumpuan 100% dalam proses P&PMembuat salinan contoh-contoh yang diberiMenguji soalan berdasarkan contohMembuat latihan yang diberi oleh guruMembuat latihan soalan-soalan lain

    KAEDAH BELAJAR

  • Memberikan tumpuan 100% dalam proses P&PMembuat salinan contoh-contoh yang diberiMenguji soalan berdasarkan contohMembuat latihan yang diberi oleh guruMembuat latihan soalan-soalan lainMencari soalan bagi format yang sama dari soalan PMR yang lalu

    KAEDAH BELAJAR

  • Memberikan tumpuan 100% dalam proses P&PMembuat salinan contoh-contoh yang diberiMenguji soalan berdasarkan contohMembuat latihan yang diberi oleh guruMembuat latihan soalan-soalan lainMencari soalan bagi format yang sama dari soalan PMR yang laluBerbincang dan bertanya rakan sebaya

    KAEDAH BELAJAR

  • Memberikan tumpuan 100% dalam proses P&PMembuat salinan contoh-contoh yang diberiMenguji soalan berdasarkan contohMembuat latihan yang diberi oleh guruMembuat latihan soalan-soalan lainMencari soalan bagi format yang sama dari soalan PMR yang laluBerbincang dan bertanya rakan sebayaMerujuk kepada guru bagi soalan sukar diselesaikanKAEDAH BELAJAR

  • CIRCLES II

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferenceARC

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferenceARC.CENTRE

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferenceARC.CENTRECHORD

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferenceARC.CENTRECHORDMINOR ARC

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferenceARC.CENTRECHORDMINOR ARCMINOR SEGMENT

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferenceARC.CENTRECHORDMINOR ARCMINOR SEGMENTMAJOR SEGMENT

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferenceARC.CENTRECHORDMINOR ARCMINOR SEGMENTMAJOR SEGMENTMAJOR ARC

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumference

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferencea)The radius that is perpendicular to a chord bisects the chord and vice versa

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumference

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumference

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferenceb)The perpindicular bisectors of two chords intersect at the centre of the circle

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumference0

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumference0c)Two chords that are equal in length are equidistant from the centre and vice versa

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumference

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumference

  • 3.1b PROPERTIES

    CHORD-is a straight line drawn across a circle with both ends on the circumferenced)Chpords of the same length cut arcs of the same length

  • PYTHAGORAS THEOREMABC8cm6cm

  • PYTHAGORAS THEOREMABC8cm10cm

  • PYTHAGORAS THEOREMABC6cm10cm

  • PROPERTIES OF ANGLES IN CIRCLESa)Angles subtended at the circumference by the same arc are equal

  • PROPERTIES OF ANGLES IN CIRCLESa)Angles subtended at the circumference by the same arc are equal

  • PROPERTIES OF ANGLES IN CIRCLESa)Angles subtended at the circumference by the same arc are equal

  • PROPERTIES OF ANGLES IN CIRCLESa)Angles subtended at the circumference by the same arc are equalSame angles

  • PROPERTIES OF ANGLES IN CIRCLESb)Arcs of equal length subtend equal angles-at the circumference-at the centre

  • PROPERTIES OF ANGLES IN CIRCLESb)Arcs of equal length subtend equal angles-at the circumference-at the centre

  • PROPERTIES OF ANGLES IN CIRCLESb)Arcs of equal length subtend equal angles-at the circumference-at the centreSame angles

  • PROPERTIES OF ANGLES IN CIRCLESb)Arcs of equal length subtend equal angles-at the circumference-at the centreSame angles

  • PROPERTIES OF ANGLES IN CIRCLESc) The angle subtended by an arc at the centre is twice the angle at the circumference

  • PROPERTIES OF ANGLES IN CIRCLESc) The angle subtended by an arc at the centre is twice the angle at the circumference0 centreab

  • PROPERTIES OF ANGLES IN CIRCLESc) The angle subtended by an arc at the centre is twice the angle at the circumference0 centrex2x

  • PROPERTIES OF ANGLES IN CIRCLESd)The angle subtended at the circumference in semicircle is

  • PROPERTIES OF ANGLES IN CIRCLESd)The angle subtended at the circumference in semicircle is

  • PROPERTIES OF ANGLES IN CIRCLESd)The angle subtended at the circumference in semicircle is

  • PROPERTIES OF ANGLES IN CIRCLESd)The angle subtended at the circumference in semicircle is

  • 3.3b)IDENTIFIYING INTERIOR OPPOSITE ANGLESCyclic Quadrilateral-a quadrilateral whose 4 vertices lie on the circumference

  • 3.3b)IDENTIFIYING INTERIOR OPPOSITE ANGLESCyclic Quadrilateral-a quadrilateral whose 4 vertices lie on the circumference -the sum of the interior opposite angles is 180

  • 3.3b)IDENTIFIYING INTERIOR OPPOSITE ANGLESCyclic Quadrilateral-a quadrilateral whose 4 vertices lie on the circumference -the sum of the interior opposite angles is 180-the exterior angle is equal to its corresponding interior opposite angle

  • 3.3b)IDENTIFIYING INTERIOR OPPOSITE ANGLESCyclic Quadrilateral-a quadrilateral whose 4 vertices lie on the circumference -the sum of the interior opposite angles is 180-the exterior angle is equal to its corresponding interior opposite angle (a=b)ab

  • ex:In the figure, ABCD is a cyclic quadrilateral. BAE is a straight line. Finda)Angle BCDb)Angle ABCABCDF50135

  • ex:In the figure, ABCD is a cyclic quadrilateral. BAE is a straight line. Finda)Angle ABCDb)Angle ABCABCDF50135

  • ex:In the figure, ABCD is a cyclic quadrilateral. BAE is a straight line. Finda)Angle ABCDb)Angle ABCABCDF50135

  • Ex:In the diagram, 0 is the centre of the circle.Find the value yY701050PQRS

  • Ex:In the diagram, 0 is the centre