pengujian kepegasan pantulxx

120
Pengujian Kepegasan Pantul ( REBOUND RESLIENCE TESTER) I. Tujuan Percobaan Mahasiswa dapat mengoperasikan alat rebound resilience tester Mahasiswa mengamati perubahan yang terjadi terhadap sampel sebelu, dan sesudah mengalami uji kepegasan pantul II. Alat dan Bahan Bahan yang digunakan : Karet lateks Alat yang digunakan : Rebound Reslience Tester Gunting Tang Obeng Cetakan kompon Palu Oven terbuka Agging III. Dasar Teori Karet merupakan polimer yang bersifat elastis, sehingga dinamakan pula sebagai elastomer. Saat ini karet tergolong atas karet sintetik dan karet alam. Karet sintetik dibuat secara polimerisasi fraksi-fraksi minyak bumi. Contoh karet sintetik yang kini banyak beredar adalah SBR (Strirene Butadiene Rubber), NBR (Nitrile Butadiene Rubber), karet silikon, Urethane, dan karet EPDM.

Upload: lusiana-apridayani-darkyansi

Post on 26-Dec-2015

40 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pengujian Kepegasan Pantulxx

Pengujian Kepegasan Pantul

( REBOUND RESLIENCE TESTER)

I.                    Tujuan Percobaan

      Mahasiswa dapat mengoperasikan alat rebound resilience tester

      Mahasiswa mengamati perubahan yang terjadi terhadap sampel sebelu, dan sesudah mengalami uji kepegasan pantul

  II.               Alat dan Bahan

Bahan yang digunakan :

Karet lateks

Alat yang digunakan :

Rebound Reslience Tester Gunting Tang Obeng Cetakan kompon Palu Oven terbuka Agging

III.       Dasar Teori

            Karet merupakan polimer yang bersifat elastis, sehingga dinamakan pula sebagai elastomer. Saat ini karet tergolong atas karet sintetik dan karet alam. Karet sintetik dibuat secara polimerisasi fraksi-fraksi minyak bumi. Contoh karet sintetik yang kini banyak beredar adalah SBR (Strirene Butadiene Rubber), NBR (Nitrile Butadiene Rubber), karet silikon, Urethane, dan karet EPDM.

Karet alam adalah suatu komoditi homogen yang cukup baik, kualitas dan hasil produksi karet alam sangat terkenal. Karet alam mempunyai daya lentur yang tinggi, kekuatan tensil dan dapat dibentuk dengan panas yang rendah. Daya tahan karet terhadap benturan, goresan, dan koyakan sangat baik. Namun karet alam tidak begitu tahan terhadap faktor – faktor lingkungan, seperti oksidasi dan ozon. Karet alam juga mempunyai daya tahan yang rendah terhadap bahan – bahan kimia seperti bensin, minyak tanah, bensol, pelarut lemak (degreaser), pelarut, pelumas sintetis dan cairan hidrolik. Karena sifat fisik dan daya tahannya, karet alam dipakai untuk produksi – produksi pabrik yang membutuhkan kekuatan yang tinggi dan panas yang rendah (misalnya ban pesawat terbang, ban truk raksasa, dan ban

Page 2: Pengujian Kepegasan Pantulxx

– ban kendaraan) dan produksi - produksi teknik lain yang memerlukan daya tahan sangat tinggi

Kompon Karet.

Dalam bentuk kompon, karet alam sangat mudah dilengketkan satu sama lain sehingga sangat disukai. Kompon karet dapat dibuat sesuai dengan formulasi yang dibutuhkan ,seperti kompon untuk karet vulkanisir ,kompon karet silikon dengan berbagai pilihan warna,ataupun kompon yang dikerjakan sesuai dengan kriteria akhir yang dibutuhkan.

 Sifat mekanik suatu bahan kompon adalah khas dengan kelakuan viskoelastiknya yang dominan, sebagai contoh, pemelaran (creep) dan relaksasi mudah terjadi, dan pada pengujian tarik sifat-sifatnya sangat dipengaruhi oleh laju tarikan. Sifat-sifatnya juga berubah karena temperatur, oleh karena itu perlu diperhatikan beberapa hal sebelum bahan kompon digunakan .

Pengujian sampel bertujuan untuk mengetahui sifat-sifat kompon yang dibuat, baik sifat fisis, sifat mekanik maupun sifat termal. Sampel yang diuji akan diketahui kelebihan dan kekurangannya, dan untuk mengetahui kadar kelayakan pemakaian serta kualitasnya. Adapun pengujian yang dilakukan dalam penelitian ini adalah pengujian kepegasan pantul dengan standar CNS 3560, kepegasan pantul/LUPKE (rebound resilience ) ISO 4662 : 1983; ASTM D 1054 – 1991

Syarat utama yang harus dimiliki oleh kompon adalah ketahanan, kelenturan, kekerasan, daya tarik, kondisi penyimpanan

Berikut ini daftar standar uji kelayakan kompon yang ada pada Laboratorium Analisis dan Pengujian Karet (LAP Karet), Balai Penelitian Teknologi Karet Bogor

No Jenis uji Satuan Syarat

1. Tegangan tarik N/mm2 Min 5

2. Perpanjangan putus

% Min 100%

3. Kekerasan Shore A 55-75

4. Kekuatan sobek N/mm2 Min 2,5

5. Perpanjangan tetap100%

% Maks 10%

6. Bobot jenis gr/cm2 Maks 1,5

7. Ketahanan kikis mm3 /Kg Maks 2,5

Page 3: Pengujian Kepegasan Pantulxx

Graseli

8. Ketahanan retak lentur 150 Kes

- Baik tidak retak

9. Pengembangan dalam benzoil

- Maks 225% volume

10. Kepegasan Pantul

% ± 30%

(Sumber : SNI 12-0172-1987)

Vulkanisasi Karet

Vulkanisasi merupakan proses kimiawi yang bersifat tidak dapat balik dengan menggunakan bahan pemvulkanisasi seperti sulfur, bahan yang mengandung sulfur dan peroksida organik. Tujuan vulkanisasi adalah membentuk ikatan silang pada molekul karet yang fleksibel sehingga menghasilkan jaringan tiga dimensi dan mengubah sifat karet mentah yang rapuh dan plastis menjadi produk yang lebih kuat. Vulkanisasi karet biasanya melibatkan pemanasan karet pada suhu 100 – 180o Morton (1959), menyatakan bahwa vulkanisasi karet alam dilakukan untuk mengurangi sifat karet alam yang rapuh pada suhu dingin dan lunak pada suhu panas. Dengan vulkanisasi, produk karet menjadi lebih fleksibel, stabil terhadap perubahan suhu, daya tahan meningkat dan penggunaan karet alam semakin luas. Pada dasarnya sistem vulkanisasi digolongkan menjadi dua macam, yaitu vulkanisasi dengan sulfur dan bukan sulfur. C dengan bahan pemvulkanisasi serta bahan pencepat dan bahan penggiat (Craig, 1969). Coran (1978) mendefinisikan vulkanisasi sebagai proses yang melibatkan pembentukan jaringan molekuler melalui ikatan kimia dari rantai-rantai molekul bebas. Proses ini meningkatkan kemampuan karet

untuk kembali ke bentuk semula setelah dikenai gaya mekanik. Vulkanisasi, dengan demikian, merupakan reaksi intermolekuler yang meningkatkan elastisitas karet serta mengurangi sifat plastisitasnya. Sulfur merupakan bahan pemvulkanisasi yang umum digunakan. Atom sulfur terikat dengan atom karbon yang memiliki ikatan rangkap membentuk ikatan silang da lam struktur karet. Ikatan silang inilah yang memberikan sifat elastis pada karakteristik karetviskositas dan elastisitas yang bekerja secara serentak. Viskositas diperlukan untuk mengukur ketahanan terhadap aliran (deformasi). Terjadinya aliran pada karet yang disebabkan oleh adanya tekanan/ gaya disebabkan oleh dua hal, yaitu:

1.        Terlepasnya ikatan di dalam atau antara rantai poli isoprena seperti terlepasnya  benang-benang yang telah dirajut. Hal ini terjadi pada tekanan yang rendah

2.        Terlepasnya seluruh ikatan rantai poli isoprena dan satu monomer dengan

monomer yang lain saling tindih akan membentuk kristal.

Page 4: Pengujian Kepegasan Pantulxx

Dengan demikian komponen viskositas adalah irreversible dan dihitung sebagai aliran dingin (cold flow) dari karet mentah, sedangkan elastisitas energi yang diukur segera dikembalikan oleh karet setelah diberikan input energi kepadanya.

IV.       Langkah Kerja

1.      Menarik bandul pada posisi skala 100

2.      Melepaskan bandul dan memperhatikan pada skala berapa bandul memantul setelah menabrak speciemen

3.      Mengulangi pengujian dan mencatat skala pengujian pada tiga sampel ( kompon 1, kompon 2, dan kompon 3 ) dan mengulangi percobaan pantulan sebanyak 3 kali. Nilai rata-rata yang didapat  adalah nilai kepegasan pantul

4.      Nilai pengujian ini adalah persen ( % )

5.      Sampel yang akan diuji menggunakan alat ini adalah CNS 3560 . Jika ketebalan speciemen <  yang disyaratkan pada standar pengujian  maka menggunakan dua lapisan sampel untuk memenuhi ketebalan

V.        Data Pengamatan

1)      Kompon yang telah divulkanisasi

Diameter                     :           ± 5,8 cm

Tebal                           :           1,4 cm

Berat                           :           37,625 gr

Luas permukaan          :             =  (5,8)2 = 26,4074 cm2

Sifat kompon kondisi awal :

         Kenyal

         Permukaan tidak rata

2)      Kompon ke-1

Page 5: Pengujian Kepegasan Pantulxx

Diameter                     :           ± 2,5 cm

Tebal                           :           1,4 cm

Berat                           :           6,3 gr

Sifat kompon kondisi awal :

         Kenyal dan agak halus

         Permukaan tidak rata

         Berongga

3)      Kompon ke-2

Diameter                     :           ± 2,5 cm

Tebal                           :           1,4 cm

Berat                           :           6,4 gr

Sifat kompon kondisi awal :

         Kenyal

         Permukaan tidak rata

4)      Kompon ke-3 ( pembanding )

Sifat kompon kondisi awal :

         Kenyal, halus, padat

         Permukaan rata

Tabel Uji Kepegasan Pantul

Sampel Jarak kepegasan pantul ( cm )

1 2 3 4 5 6

Kompon 1 20 5 1 0,5 0,1 -

25 7 2 0,5 0,1 -

Kompon 2 25 6 1 0,5 0,1 -

25 7 2 0,5 0,1 -

Kompon 3 45 20 10 5 2 0,5

Page 6: Pengujian Kepegasan Pantulxx

VI.       Perhitungan

     1.    Sampel Kompon 1

              =   =   = 22,5 cm

 =   =   = 6,0 cm

 =   =   = 1,5 cm

 =   =   = 0,5 cm

 =   =   = 0,1 cm

 ) + (  ) + (  ) + (  ) +(  )

                                ) + (6 - 1,5) + ( ) + (0,5  ) +(0,1  )

                                        =   22,5 cm

      2.   Sampel Kompon 2

              =   =   = 25 cm

 =   =   = 6,5 cm

 =   =   = 1,5 cm

 =   =   = 0,5 cm

 =   =   = 0,1 cm

 ) + (  ) + (  ) + (  ) +(  )

                                ,5) + (6,5 - 1,5) + ( ) + (0,5  ) +(0,1  )

                                        =   25 cm

Page 7: Pengujian Kepegasan Pantulxx

            Nilai Kepegasan Pantul =   =   = 23,75

            % Rebound Resilience =   x 100 = 23,75 %

     3.    Sampel Kompon 3

 ) + (  ) + (  ) + (  ) +(  )

                               ) + (20 - 10) + ( ) + (5  ) +(2  ) +(0,5  )

                                        =   45 cm

            % Rebound Resilience =   x 100 = 45 %

VII.     Analisa Data

            Setelah melakukan percobaan dengan memasukkan kompon ke dalam oven dengan cetakan, sehingga dihasilkan karet vulkanisasi dengan diameter sekitar 5,8 cm dan tebal 1,4 cm menghasilkan 37,625 gr dengan luas permukaan 26,407 cm2. Sifat kompon yang dihasilkan agak kenyal dan tidak merata. Hal ini dikarenakan struktur penyusun kompon yang longgar ( tidak rapat) dan ikatan antar molekul atom C pada kompon tidak kuat/ sangat lemah, sehingga permukaan kompon berongga dan tidak rata. Selain itu, tingkat elastisitas dan kekenyalan suatu kompon akan semakin tinggi bila permukaan kompon tersebut rata, halus , dikarenakan ikatan antar molekul atom C-nya sangat kuat dan penyusun strukturnya tertata rapi pada molekulnya. Karet kompon dibentuk silinder menjadi 2 bagian yang terdiri atas kompon 1 dengan berat 6,3 gr, tebal 1,4 cm dan diameter 2,5 cm dan kompon 2 diameternya 2,5 cm , tebal 1,4 cm dan berat 6,4 gr. Kepegasan pantul pada kompon 1 dan 2 dihasilkan % rebound resilience adalah 23,75 % . Adapun persyaratan yang distandarkan pada daftar standar uji kelayakan kompon yang ada di Laboratorium Analisis dan Pengujian Karet (LAP Karet), Balai Penelitian Teknologi Karet Bogor adalah sekitar 30%, ternyata

Page 8: Pengujian Kepegasan Pantulxx

hasil yang diperoleh cukup memenuhi standar uji kelayaan kompon pada pengujian kepegasan pantul ini.

VIII.    Kesimpulan

         Pengujian kepegasan pantul merupakan pengujian sifat-sifat apakah suatu kompon layak dipakai atau tidak secara fisis

         Kekenyalan/elastisitas akan semakin tinggi bila suatu kompon permukaannya halus, rata , begitu juga sebaliknya pada kompon yang permukaaannya tidak rata, maka tingkat elastisitasya tidak tinggi

         % Rebound resilience pada pengujian kali ini sekitar 23,75%. Hasil ini cukup memenuhi uji kelayakan pakai kompon berdasarkan pengujian persyaratan yang distandarkan pada daftar standar uji kelayakan kompon yang ada diLaboratorium Analisis dan Pengujian Karet (LAP Karet), Balai Penelitian Teknologi Karet Bogor adalah sekitar 30%.

Definisi karet alam

Karet alam adalah polimer isoprene (C5H8) yang mempunyai bobot molekul yang besar. Susunannya adalah  –CH–C(CH3)=CH–CH2– . Karet Hevea yang diperoleh dari pohon Hevea brasiliensis adalah bentuk alamiah dari 1,4–polyisoprene. Karet jenis ini memiliki ikatan ganda lebih dari 98% dalam konfigurasi cisnya yang penting bagi kelenturan atau elastisitas polyisoprene. Lebih dari 90% cis –1,4 polyisoprene digunakan dalam industri karet Hevea (Tarachiwin dkk., 2005).

Proses polimerisasi susunan isoprene akan menghasilkan polimer dengan struktur ikatan kimia yang berbeda.

Karet alam adalah salah satu bahan penting yang digunakan secara luas dalam aplikasi teknik. Penggunaannya terutama disebabkan oleh kelembutan alaminya dan kemudahan pembentukannya. Karet alam diperoleh dari getah resin karet (lateks karet alam) yang disebut Hevea Brasiliensis yang berasal dari daerah Amazon dengan cara penggumpalan dan pengeringan. Tergantung dari cara memprosesnya. Daerah penghasil karet alam terbesar yang

Page 9: Pengujian Kepegasan Pantulxx

memproduksi 70% dari jumlah seluruh produksi karet dunia adalah Thailand, Indonesia, dan Malaysia. Karet alam bisa mengkristal pada suhu rendah (misalkan -26°C) dan bila ini terjadi, diperlukan pemanasan karet sebelum diolah pabrik barang jadi karet. 

Kandungan Alami Karet Mentah 

Karet alam mengandung beberapa bahan antara lain: karet hidrokarbon, protein, lipid netral, lipid polar, karbohidrat, garam anorganik, dll. Protein dalam karet alam dapat mempercepat vulkanisasi atau menarik air dalam vulkanisat. Beberapa lipid ada yang merupakan bahan pencepat atau antioksidan. Protein juga dapat meningkatkan heat build up tetapi dapat juga meningkatkan ketahanan sobek.Karet alam lama kelamaan dapat meningkat viskositasnya atau menjadi keras. Ada jenis karet alam yang sudah ditambah bahan garam hidroksilamin sehingga tidak bisa mengeras dan disebut karet CV (contant viscosity).

Struktur dasar karet alam

Struktur dasar karet alam adalah rantai linear unit isoprene (C5H8) yang berat molekul rata-ratanya tersebar antara 10.000-400.000. Pada suhu kamar, karet tidak berbentuk kristal padat dan juga tidak berbentuk cairan.

Banyak sifat-sifat karet alam ini yang dapat memberikan keuntungan atau kemudahan dalam proses pengerjaan dan pemakaiannya, baik dalam bentuk karet atau kompon maupun dalam bentuk vulkanisat. Untuk mengubah sifat fisik dari karet dilakukan proses vulkanisasi. Vulkanisasi adalah proses pembentukan ikatan silang kimia dari rantai molekul yang berdiri sendiri, meningkatkan elastisitas dan menurunkan plastisitas.  Definisi dari vulkanisasi dalam kaitannya dengan sifat fisik karet adalah setiap perlakuan yang menurunkan laju alir elastomer, meningkatkan tensile strength dan modulus serta preserve its extensibility.

Vulkanisasi karet alam sangat baik dalam hal-hal berikut:• Kepegasan pantulHal ini menyebabkan timbulnya kalor (heat build up) rendah, yang sangat diperlukan oleh barang jadi karet yang akan mengalami hentakan berulang-ulang.Sifat inilah yang menyebabkan karet alam selalu dipakai dalam pembuatan ban truk dan kapal terbang yang sulit disaingi oleh karet sintetik.• Tegangan putus• Ketahanan sobek dan kikis• Fleksibilitas pada suhu rendah• Daya lengket ke fabric atau logam

Partikel Lateks  

Setiap bagian pohon karet jika dilukai akan mengeluarkan getah susu yang disebut “lateks”. Banyak tanaman jika dilukai atau disadap mengeluarkan caiaran putih yang menyerupai susu, tetapi hanya beberapa jenis pohon saja yang menghasilkan karet. Diantara tanaman tropis hanya Havea bracileansis yang telah dikembangkan dan mencapai tingkat perekonomian

Page 10: Pengujian Kepegasan Pantulxx

yang penting. Komposisi lateks Havea bracileansis dapat dilihat jika lateks disentrifugasi dengan kecepatan 18.000 rpm, yang hasilnya adalah sebagai berikut:

Fraksi lateks (37%) : karet (isoprene), protein, lipida dan ion logam.

Fraksi Frey Wyssling (1-3%) : karotenoid, lipida, air, karbohidrat, protein dan turunannya.

Fraksi serum (48%) : senyawaan nitrogen, asam nukleat, senyawa organik, ion organik dan logam.

Fraksi dasar (14%) : air, protein dan senyawa nitroen, karet dan karotenoid, lipida dan ion logam

Partikel karet didalam lateks tidak dapat saling berdekatan, karena masing-masing partikel mempunyai muatan listrik. Gaya tolak menolak muatan listrik ini menimbulkan gerak brown. Didalam lateks isoprene diselaputi oleh lapisan protein sehingga partikel karet bermuatan listrik. Protein merupakan gabungan dari asam- asam amino yang bersifat dipolar (dalam keadaan netral mempunyai dua muatan listrik) dan amphoter (dapat bereaksi dengan asam atau basa).

Prakoagulasi

Pada saat mulai keluar dari pohon hingga beberapa jam lateks masih berupa cairan, tetapi setelah kira-kira 8 jam lateks mulai mengental dan selanjutnya membentuk gumpalan karet. Penggumpalan (prakoagulasi) dapat dibagi 2 yaitu :

Penggumpalan spontan

Penggumpalan spontan biasanya disebabkan oleh pengaruh enzim dan bakteri, aromanya sangat berbeda dari yang segar dan pada hari yang berikutnya akan tercium bau yang busuk.

Penggumpalan buatan

Penggumpalan buatan biasanya dilakukan dengan penambahan asam.

Prakoagulasi terjadi karena kemantapan bagian koloidal yang terkandung dalam lateks berkurang. Bagian-bagian koloidal ini kemudian menggumpal menjadi satu dan membentuk komponen yang berukuran lebih besar. Komponen koloidal yang lebih ini akan membeku. Inilah yang menyebabkan terjadinya prakoagulasi.

Beberapa tindakan yang dapat dilakukan untuk mencegah terjadinya prakoagulasi antara lain:

- Menjaga kebersihan alat-alat yang digunakan dalam penyadapan, penampungan, maupun pengangkutan. Selama pengangkutan dari kebun ke pabrik pengolahan lateks dijaga agar tidak mengalami banyak guncangan.

- Mencegah pengenceran lateks dari kebun dengan air kotor, misalnya air sungai.- Memulai penyadapan pada pagi hari sebelum matahari terbit untuk membantu agar

lateks dapat sampai ke pabrik atau tempat pengolahan sebelum udara menjadi panas.

Page 11: Pengujian Kepegasan Pantulxx

Proses Pengolahan Karet (sheet)

Sheet adalah salah satu produk karet alam yang telah sejak lama dikenal di pasaran. Pada masa sebelum perang dunia kedua, dalam perdagangan sheet dikenal “Java Standard Sheet”, yaitu berupa lembaran-lembaran. Sheet yang telah diasap, bersih dan liat, bebas dari buluk (jamur), tidak saling melekat, warna jernih, tidak bergelembung udara dan bebas dari akibat pengolahan yang kurang sempurna. Standard tesebut sampai sekarang masih dipertahankan sehingga perdagangan sheet masih mampu bertahan sampai saat ini. Adapun cara pengolahan sheet secara garis besar terdiri dari proses berikut :

1) Penerimaan lateks

2) Pengenceran

3) Pembekuan

4) Penggilingan

5) Pengasapan dan pengeringan

6) Sortasi

7) Pengepakan

Jenis – jenis Karet Alam :

a. Bahan olah karet

Bahan olah karet adalah lateks kebun serta gumpalan lateks kebun yang diperoleh dari pohan karet Hevea brasiliensis.

Menurut pengolahannya bahan olah karet dibagi menjadi 4 macam :

1. Lateks kebun adalah cairan getah yang didapat dari bidang sadap pohon karet. Cairan getah ini belum mengalami penggumpalan.

2. Sheet angin adalah bahan olah karet yang dibuat dari lateks yang sudah disaring dan digumpalkan dengan asam semut, berupa karet sheet yang sudah digiling tetapi belum jadi.

3. Slab tipis ada lah bahan olah karet yang terbuat dari lateks yang sudah digumpalkan dengan asam semut.

4. Lumb segar adalah bahan olah karet yang bukan berasal dari gumpalan lateks kebun yang terjadi secara alamiah dalam mangkuk  penampung.

b. Karet alam konvensional1. Ribbed smoked sheet (RSS) adaah jenis karet berupa lembaran sheet yang mendapat

proses pengasapan dengan baik.2. White crepe dan pale crepe adalah jenis crepe yang berwarna putih atau muda dan ada

yang tebal dan tipis.

Page 12: Pengujian Kepegasan Pantulxx

3. Estate brown crepe adalah jenis crepe yang berwarna cokelat dan banyak d  ihasilkan oleh perkebunan-perkebunan besar.

4. Compo crepe adalah jenis crepe yang dibuat dari bahan lump, scrap pohon, potongan-potongan sisa dari RSS.

5. Thin brown crepe remilis adalah crepe coklat yang tipis karena digiling ulang.6. Thick blanket crepes ambers  adalah crepe blanket yang tebal dan berwarna coklat.7. Flat bark crepe adalah karet tanah.8. Pure soked blanket crepe adalah crepe yang diperoleh dari penggilingan karet asap

yang khusus berasal dari RSS.9. Off crepe adalah crepe yang tidak tergolong bentuk beku atau standar, dibuat dari

contoh-  contoh sisa penentuan kadar karet kering.

c. Lateks pekat

Lateks pekat adalah jenis karet yang berbentuk cairan peka, tidak berbentuk lembaran atau padatan lainnya. Lateks pekat ini banyak digunakan untuk pembuatan bahan-bahan karet yang tipis dan bermutu tinggi.

d. Karet bongkah (block rubber)

Karet bongkah adalah karet remah yang telah dikeringkan dan dikilang menjadi bandela-bandela dengan ukuran yang telah ditentukan.

e. Karet spesifikasi teknis (crumb rubber)

Karet spesifikasi teknis adalah karet alam yang dibuat khusus sehingga terjamin mutu teknisnya.

f. Tyre rubber

Tyre rubber adalah bentuk lain dari karet alam yang dihasilkan sebagai barang setengah jadi sehingga bisa langsung dipakai oleh konsumen, baik untuk pembuatan ban atau barang yang menggunakan bahan baku karet alam lainnya.

g. Karet reklim (reclaimed rubber)

Karet reklim adalah karet yang diolah kembali dari barang-barang karet bekas, terutama ban-ban mobil bekas dan bekas ban-ban berjalan. Biasanya karet reklim banyak dipakai sebagai bahan campuran sebab bersifat mudah mengambil bentuk dalam acuan serta daya lekat yang dimilikinya juga baik. Produk yang dihasilkan lebih kukuh dan tahan lama dipakai, lebih tahan terhadap bensin atau minyak pelumas, tetapi karet reklim kurang kenyal dan kurang tahan gesekan sesuai dengan sifatnya sebagai karet bekas pakai.

Perbedaan Karet Alam dengan Karet Sintetis

Kelebihan karet alam dibanding karet sintetis adalah :

- Memiliki daya elastis atau daya lenting sempurna

Page 13: Pengujian Kepegasan Pantulxx

- Memiliki plastisitas yang baik sehingga pengolahannya mudah- Tidak mudah panas (low heat built up) dan- Memiliki daya tahan yang tinggi terhadap keretakan (groove cracking resistance)- Karet sintetis juga mamiliki kelebihan antara lain :- Tahan terhadap zat kimia, dan- Harganya yang cenderung dapat dipertahankan

Perbedaan karet dengan benda-benda lain, tampak nyata pada sifat karet yang lembut, fleksibel dan elastis. Sifat-sifat ini memberi kesan bahwa karet alam adalah suatu bahan semi cairan alamiah atau suatu cairan dengan kekentalan yang sangat tinggi.

INDUSTRI BARANG KARET DAN PENGUJIANNYA

LATAR BELAKANG

Pada dasarnya karet bisa berasal dari alam yaitu dari getah pohon karet (atau dikenal dengan istilah latex), maupun produksi manusia (sintetis). Saat pohon karet dilukai, maka getah yang dihasilkan akan jauh lebih banyak. Sumber utama getah karet adalah pohon karet Para Hevea Brasiliensis (Euphorbiaceae). Saat ini Asia menjadi sumber karet alami. Awal mulanya karet hanya hidup di Amerika Selatan, namun sekarang sudah berhasil dikembangkan di Asia Tenggara. Kehadiran karet di Asia Tenggara berkat jasa dari Henry Wickham. saat ini, negara-negara Asia menghasilkan 93% produksi karet alam, yang terbesar adalah Thailand, diikuti oleh Indonesia, dan Malaysia.

Karet telah digunakan sejak lama untuk berbagai macam keperluan antara lain bola karet, penghapus pensil, baju tahan air, dll. Saat Christopher Columbus dan rombongannya

Page 14: Pengujian Kepegasan Pantulxx

menemukan benua Amerika pada tahun 1476,mereka terheran-heran melihat bola yang dimainkan orang-orang Indian yang dapat melantun bila dijatuhkan ke tanah. Di sinilah sejarah karet dimulai, tetapi baru pada tahun 1530 ada laporan tertulis mengenai gummi optimum, sebutan Pietro Martire d’Anghiera untuk karet. Pada tahn 1535, Ahli sejarah mengenai bangsa Indian, Captain Gonzale Fernandez de Oveida menulis bahwa dia melihat 2 tim orang Indian yang bermain bola. Bola itu terbuat dari campuran akar, kayu, dan rumput, yang dicampur dengan suatu bahan (latex) kemudian dipanaskan di atas unggun dan dibulatkan seperti bola. Bola oran Indian ini bisa melambung lebih tinggi daripada bola yang umum dibuat orang-orang Eropa waktu itu. Oviedo mengatakan bahwa bila bola buatan Indian itu dijatuhkan, bola itu bisa melambung lebih tinggi dan kemudian jatuh, lalu melambung lagi walaupun agak rendah daripada lambungan yang pertama.

Pada tahun 1615 seorang penulis, F.J. Torquemada melaporkan bahwa orang Indian Mexico membuat sepatu tahan air dari bahan latex atau karet. Tentara Spanyol juga dilaporkan mengoleskan latex ke mantel mereka, saat hujan menjadi tahan air, tetapi di musim panas menjadi lengket.

Karet sintetik berkembang pesat sejak berakhirnya perang dunia kedua tahun 1945. Saat ini lebih dari 20 jenis karet sintetik terdapat di pasaran dunia. Sifat-sifat, spesial karakteristik dan harga karet sangat bervariasi. Pengetahuan tentang keuntungan dan kekurangan karet sangat membantu dalam pemilihan karet termurah dan cocok dengan spesifikasi penggunaannya.

Sebelum perang dunia kedua, hanya karet alam tersedia dalam jumlah besar di pasaran dunia. Dengan berkembangnya kebutuhan manusia seiiring dengan berkembangnya pengetahuan, sangat dirasakan keterbatasan dari karet alam, antara lain tidak tahan pada suhu tinggi.Pengembangan karet sintetik sesudah perang dunia kedua lebih banyak ditujukan untuk memperoleh karet yang sifat-sifatnya tidak dimiliki oleh karet alam, antara lain karet tahan minyak, karet tahan panas, dll

Karet alam adalah jenis karet pertama yang dibuat sepatu. Sesudah penemuan proses vulkanisasi yang membuat karet menjadi tahan terhadap cuaca dan tidak larut dalam minyak, maka karet mulai digemarisebagai bahan dasar dalam pembuatan berbagai macam alat untuk keperluan dalam rumah ataupun pemakaian di luar rumah seperti sol sepatudan bahkan sepatu yang semuanya terbuat dari bahan karet.

Sebelum itu usaha-usaha menggunakan karet untuk sepatu selalu gagal karena karet manjadi kaku di musim hujan dan lengket serta berbau di musim panas seperti yang pernah dilakukan oleh Roxbury Indian Rubber Company pada tahun 1833 dengan cara melarutkan karet alam terpentin dan mencampurnya dengan hitam karbon untuk menghasilkan karet keras yang tahan air.

Struktur dasar karet alam adalah rantai linear unit isoprene (C5H8) yang berat molekul rata-ratanya tersebar antara 10.000 - 400.000. Sifat-sifat mekanik yang baik dari karet alam menyebabkannya dapat digunakan untuk berbagai keperluan umum seperti sol sepatu dan telapak ban kendaraan. Pada suhu kamar, karet tidak berbentuk kristal padat dan juga tidak berbentuk cairan.

Page 15: Pengujian Kepegasan Pantulxx

Perbedaan karet dengan benda-benda lain, tampak nyata pada sifat karet yang lembut, fleksibel dan elastis. Sifat-sifat ini memberi kesan bahwa karet alam adalah suatu bahan semi cairan alamiah atau suatu cairandengan kekentalan yang sangat tinggi.Namun begitu, sifat-sifat mekaniknya menyerupai kulit binatang sehingga harus dimastikasi untuk memutus rantai molekulnya agar menjadi lebih pendek. Proses mastikasi ini mengurangi keliatan atau viskositas karet alam sehingga akan memudahkan proses selanjutnya saat bahan-bahan lain ditambahkan. Banyak sifat-sifat karet alam ini yang dapat memberikan keuntungan atau kemudahan dalam proses pengerjaan dan pemakaiannya, baik dalam bentuk karet atau kompon maupun dalam bentuk vulkanisat. Dalam bentuk bahan mentah, karet alam sangat disukai karena mudah menggulung pada roll sewaktu diproses dengan open mill/penggiling terbuka dan dapat mudah bercampur dengan berbagai bahan-bahan yang diperlukan di dalam pembuatan kompon. Dalam bentuk kompon, karet alam sangat mudah dilengketkan satu sama lain sehingga sangat disukai dalam pembuatan barang-barang yang perlu dilapis-lapiskan sebelum vulkanisasi dilakukan. Keunggulan daya lengket inilah yang menyebabkan karet alam sulit disaingi oleh karet sintetik dalam pembuatan karkas untuk ban radial ataupun dalam pembuatan sol karet yang sepatunya diproduksi dengancara vulkanisasi langsung.

Pemanfaatan karet alam di luar industri ban kendaraan masih relative kecil, yakni kurang dari 30 persen. Selain itu industri karet di luar ban umumnya dalam skala kecil atau menengah. Sementara itu industry berbasis lateks pada saat ini nampaknya belum berkembang karena banyak menghadapi kendala. Kendala utama adalah rendahnya daya saing produkproduk industri lateks Indonesia bila dibandingkan dengan produsen lain terutama Malaysia.

Industri kecil menengah barang jadi karet secara umum masih memerlukan pembinaan dalam pengembangan usahanya. Industri barang jadi karet dibangun atas sekumpulan usaha/perusahaan yang bergerak dalam penyediaan bahan baku utama karet alam/sintetik, bahan bantu dan pembuat cetakan (molding) serta ditunjang beberapa institusi pendukung yang bergerak dalam bidang jasa penelitian dan pengembangan, regulasi, perdagangan, angkutan, keuangan dan jasa lainnya.

Dalam operasionalnya, pengrajin industri kecil barang jadi karet menjalin hubungan secara interpersonal dengan usaha lainnya baik dalam pengadaan bahan baku maupun dalam sistem pemasarannya. Dalam pengadaan bahan baku, pengrajin industri kecil barang jadi karet terutama menjalin hubungan secara informal dengan pabrik kompon sebagai bahan baku utama. Hal ini dilakukan karena industri kecil belum memiliki kemampuan membuat kompon. Demikian juga dalam pemasaran produk. pengrajin industri kecil barang jadi karet biasanya menjadi vendor dari suatu perusahaan besar seperti pabrik otomotif atau pabrik elektronik, menjual ke toko secara langsung atau menggunakan pedagang perantara.

Seringkali industri kecil ini beropersi dengan mengadalkan pesanan (captive market). Industri kecil barang jadi karet pada umumnya dikelola dalam bentuk industri rumah tangga secara informal. Pengrajin barang jadi karet, dalam operasional usahanya berjalan secara soliter,

Page 16: Pengujian Kepegasan Pantulxx

dalam arti hampir tidak terjadi interaksi antar pengrajin. Pengrajin pada umumnya tidak berminat dan menganggap tidak ada manfaatnya tergabung dalam asosiasi atau koperasi.

Dengan bentuk usaha rumah tangga para pengrajin pada umumnya belum memiliki akses terhadap sumber modal secara formal. Selain itu karena segmen produk yang mereka hasilkan relatif terbatas, pada umumnya para pengrajin tidak menganggap perlu pengembangan usaha ke arah yang lebih besar. Hal yang dianggap lebih penting oleh mereka adalah kontinuitas produksi walaupun volumenya relatif kecil. Jenis produk yang dihasilkan oleh industri kecil barang jadi karet terutama diarahkan pada barang-barang karet untuk otomotif berupa karet untuk spare part dan barang-barang karet untuk teknik dan industri. Jenisjenis barang ini relatif mudah dalam proses pemasarannya dan tidak terlalu memerlukan spesifikasi yang rumit. Selain itu jenis karet tersebut pada umumnya hanya diproduksi oleh industri kecil sehingga tidak mendapat saingan dari produsen perusahaan besar. Walaupun demikian akhir-akhir ini terdapat produk-produk impor dari China dan Korea yang dikhawatirkan menjadi saingan berat bagi barang-barang karet produksi pengrajin barang jadi karet domestik.

Pengrajin barang jadi karet menggunakan teknologi yang sangat sederhana, yakni tertumpu pada proses pencetakan dan vulkanisasi (pemasakan) pada kompon yang dibeli dari perusahaan pembuat kompon. Dengan demikian seluruh pengrajin barang jadi karet sama sekali tidak berhubungan dengan teknologi kompon (compounding). Vulkanisasi menggunakan panas yang bersumber dari kompor tradisional. Suhu untuk pemasakan dan lama waktu pemasakan benar-benar didasarkan atas pengalaman yang dilakukan secara berulang-ulang sehingga didapatkan parameter suhu dan waktu pemasakan yang dianggapnya paling tepat.

Mutu produk barang jadi karet yang dihasilkan yang diamati secara visual. Produk barang jadi karet yang dihasilkan oleh para pengrajin dapat sampai ketangan konsumen melalui tiga saluran utama yakni melalui mitra, broker (sering juga disebut sebagai pengorder) atau melalui kedua saluran tersebut di atas. Mitra pengrajin dalam sistem pemasaran produk barang

jadi karet pada umumnya adalah perusahaan pengadaan suku cadang untuk industri elektronik dan otomotif dari merek-merek terkenal. Kerjasama dengan mitra dilakukan secara informal atas dasar saling percaya tanpa adanya suatu ikatan kontrak formal. Harga barang karet untuk suatu komponen tertentu dijual ke konsumen akhir oleh mitra. setelah dikemas merek terkenal, dengan harga berlipat dari harga jual di tingkat pengrajin.

INDUSTRI BARANG KARET

Karet alam maupun karet sintetik tidak dipergunakan dalam keadaan mentah, antara lain karena tidak kuat dan sebagian mudah teroksidasi. Selanjutnya karet mentah mengalami perubahan bentuk yang tetap bila ditarik atau ditekan, yaitu tidak bisa kembali kebentuk semula. Dengan kata lain karet mentah tidak elastis.

Page 17: Pengujian Kepegasan Pantulxx

Karet yang tidak elastis cenderung sulit untuk dimanfaatkan lebih jauh, oleh karena itu karet mentah harus terlebih dahulu diproses dengan perlakuan-perlakuan tertentu serta penambahan bahan-bahan kimia tertentu untuk memperoleh suatu kompon.

Kompon merupakan campuran karet dengan bahan-bahan kimia yang mempunyai komposisi tertentu dengan cara pencampuran digiling pada suhu tertentu, kompon karet dapat dibuat pada mesin giling 2 rol atau pada mesin pencampur tertutup (Banbury mixer, Internal mixer). Akan tetapi dalam pembahasan makalah ini hanya dibahas tentang kompon sol luar sepatu.

Pembuatan kompon karet adalah ilmu dan seni untuk menyeleksi dan mencampur jenis karet mantah dan jenis-jenis bahan kimia karet, sehingga diperoleh kompon karet yang setelah dimasak, dapat dihasilkan barang jadi karet dengan sifat-sifat fisik yang dibutuhkan.

Pada pembuatan kompon karet ada 3 faktor yang perlu diperhatikan, yaitu sifat kompon, karakteristk pengolahan dan harga

Kompon karet selain karet mentah pada umumnya mengandung 8 atau lebih jenis bahan kimia karet. Setiap jenis bahan tersebut memiliki fungsi spesifik dan mempunyai pengaruh terhadap sifat, karakteristik pengolahan dan harga dari kompon karetnya, bahan kimia tersebut adalah:

Bahan pemvulkanisasi

Bahan pencepat

Bahan penggiat

Bahan anti degradasi

Bahan pengisi

Bahan pelunak

Bahan pewarna

Bahan-bahan khusus

Bahan Pemvulkanisasi

Adalah bahan kimia yang dapat bereaksi dengan gugus aktif pada molekul karet membentuk ikatan silang tiga dimensi. Bahan pemvulkanisasi yang pertama dan paling umum digunakan adalah belerang(sulfur), khusus digunakan untuk memvulkanisasi karet alam atau karet sintetis jenis SBR, NBR, BR, IR, dan EPDM.

Bahan Pencepat

Adalah bahan kimia yang digunakan dalam jumlah sedikit bersama-sama dengan belerang untuk mempercepat reaksi vulkanisasi. Bahan pencepat yang digunakan dapat berupa satu atau kombinasi dari dua atau lebih jenis pencepat. Pencepat dikelompokkan berdasarkan fungsinya sebagai berikut;

Page 18: Pengujian Kepegasan Pantulxx

a. Pencepat primer : - Thiazol (semi cepat), contoh: MBT, MBTS

- Sulfenamida (cepat-ditunda), contoh: CBS

b. Pencepat sekunder : - Guanidine (sedang), contoh : DPG, DOTG

- Thiuram (sangat cepat), contoh : TMT, TMTD

- Dithiokarbonat (sangat cepat), contoh : ZDC, ZMDC

- Dithiofosfat (cepat), contoh : ZBPP

Bahan Penggiat

Adalah bahan kimia yang ditambahkan kedalam sistim vulkanisasi dengan pencepat untuk menggiatkan kerja pencepat. Penggiat yang paling umum digunakan adalah kombinasi antara ZnO dengan asam stearat.

Bahan Antidegradant

Adalah bahan kimia yang berungsi sebagai anti ozonan dan anti oksidan, yang melindungi barang jadi karet dari pengusangan dan meningkatkan usia penggunaanya. Contoh : wax (anti ozonan), senyawa amina dan senyawa turuna fenol (ionol).

Bahan Pengisi

Bahan pengisi ditambahkan kedalam kompon karet dalam jumlah yang cukup besar dengan tujuan untuk meningkatkan sifat fisik, memperbaiki karakteristik pengolahan tertentu dan menekan biaya. Bahan pengisi dibagi dalam dua golongan besar yaitu bahan pengisi yang bersifat penguat, contoh carbon black, silica, dan silikat serta bahan pengisi yang bukan penguat, contoh CaCO3, kaolin, BaSO4 dan sebagainya.

Bahan Pelunak (Softener)

Adalah bahan yang berfungsi untuk melunakkan karet mentah agar mudah diolah menjadi kompon karet. Jenis bahan pelunak antara lain jenis aromatic, naftenik, parafinik, ester dan sebagainya.

Bahan Kimia Tambahan

Bahan ini ditambahkan kedalam kompon karet dengan tujuan tertentu dan sesuai dengan kebutuhan, misalkan :

Bahan pewarna

Bahan Penghambat (inhibitor)

Bahan pewangi

Bahan peniup (blowing agent)

Page 19: Pengujian Kepegasan Pantulxx

Bahan bantu olah (homogenizer, peptizer, senyawa pendispersi, tackifier dan sebagainya)

Pada penyusunan formulasi kompon yang paling penting adalah menetukan jenis atau campuran karet mentah. Kemudian ditentukan jenis bahan pengisi. Setelah itu ditentukan sistim vukanisasinya kombinasi bahan pemvulkanisasi, bahan pencepat dan penggiat. Terkahir ditentukan bahan-bahan kimia tambahan yang diperlukan sesuai dengan kebutuhan tergantung jenis proses selanjutnya dan barang yang akan dibuat.

Pada proses pencampuran kompon karet biasanya menggunakan alat pencampur (mixer) dapat berupa internal mixer (mesin giling tertutup) atau mesin giling terbuka (open mill). Alat yang paling sederhana adalah mesin giling terbuka yang terdiri dari dua rol keras dan permukaanya licin. Kecepatan berputar kedua rol berbeda (penggilangan dengan friksi). Lebar celah diatara dua rol dapat diatur dan disesuaikan dengan banyaknya kompon dan keadaan kompon, sebelum proses pencampuran, karet mentah terlebih dahulu dilunakkan yang disebut dengan proses mastikasi yang bertujuan untuk mengubah karet padat dan keras menjadi lunak (viskositas berkurang) agar proses pencampuran dengan bahan kimia mneghasilkan dispersion yang merata (homogen). Pencampuran dimulai setelah karet menjadi plastis dan suhu rol hangat. Celah dua rol (nip) diatur sedemikian rupa sampai diperoleh tumpukan material diatas rol yang disebut bank, kemudian bahan kimia bentuk serbuk segera ditambahkan kecuali belerang. Penggulungan dan pemotongan juga dilakukan. Penambahan bahan pengisi dilakukan sedikit demi sedikit. Langkah terkahir adalah pemasukan belerang. Setelah semua bahan kimia tercampur, kompon karet yang dihasilkan dipotong dan dikeluarkan dari gilingan, kemudian dimasukkan gilingan lagi untuk dibentuk menjadi bentuk lembaran dengan ketebalan sesuai dengan kebutuhan.

Setalah tahap pembuatan kompon selesai tahap selanjutnya untuk membuat barang karet adalah tahap pemberian bentuk dan proses vulkanisasi (pematangan).

Proses pemberian bentuk adalah salah satu cara pemberian bentuk terhadap kompon karet adalah dengan cara cetak tekan (pres moulding) dimana kompon karet dibentuk dalam acuan (cetakan) dan sekaligus dimasak dalam mesin kempa vulkanisasi (pres vulaknisasi). Pada mesin kempa vulaknisasi tunggal terapat satu pasang plat tebal datar yaitu plat atas dan bawah. Kedua plat datar tersebut pada bagian dalamnya terdapat alur yang dapat dialirkan uap jenuh atau dipasang elemen listrik sebagai sumber panas. Plat atas tidak dapat bergerak, sedang plat bawah dipasang pada kempa hirolik sehingga sehingga dapat digerakkan keatas kebawah. Dengan memompa minyak dari tangki minyak kedalam silinder hidrolik, maka plat bawah akan ditekan keatas. Tekanan minyak dapat mencapai 100-150 kg/cm2. sebaliknya dengan mengeluarkan minyak dari selinder kempa hidrolik, kempa bawah akan kembali turun.

Pada mesin kempa vulkanisasi, kompon karet diberi bentuk dan divukanisasi pada mesin yang sama. Proses vulkanisasi adalah proses pemasakan karet mentah menjadi vulkanisat. Vulkanisasi merupakan proses irreversible (tidak dapat balik) yang menggabungkan rantai-rantai molekul karet secara kimiawi dengan molekul belerang membentuk ikatan tiga dimensi. Sehingga karet mentah yang semula plastis setelah vulaknisasi berubah menjadi elastis, kuat dan ulet. Salah satu syarat yang harus dimiliki karet agar dapat divulaknisasi

Page 20: Pengujian Kepegasan Pantulxx

dengan belerang adalah memiliki ikatan rangkap pada rantai utamanya. Sistim vulkanisasi belerang yang dipercepat dapat diterapkan untuk jenis-jenis karet yang memiliki ikatan rangkap yaitu:

Untuk keperluan umum: karet alam (NR), Isoprene Rubber (IR), Polibutadiene Rubber (BR) dan karet stiren/butadiene Rubber (SBR)

Untuk keperluan khusus : Karet Nitril (NBR), Karet Butil (IIR), Karet Bromo Butyl (BIIR), Chlorobutil (CIIR) dan Karet Ethylene Propylene Diene Monomer (EPDM).

Vulkanisasi karet alam biasanya dilakukan pada suhu sekitar 1500C dan suhu lebih tinggi (1550C-1600C) untuk karet sintetis (SBR dan IIR). Untuk memperoleh vulkanisat yang dapat matang sempurna yaitu yang memiliki sifat fisika optimum, maka kompon karet dalam cetakan harus dikempa (ditekan) pada tekanan, suhu dan waktu vulkanisasi tertentu.

Karet alam adalah jenis karet pertama yang dibuat sepatu. Sesudah penemuan proses vulkanisasi yang membuat karet menjadi tahan terhadap cuaca dan tidak larut dalam minyak, maka karet mulai digemari sebagai bahan dasar dalam pembuatan berbagai macam alat untuk keperluan dalam rumah ataupun pemakaian di luar rumah seperti sol sepatu dan bahkan sepatu yang semuanya terbuat dari bahan karet. Sebelum itu usaha-usaha menggunakan karet untuk sepatu selalu gagal karena karet manjadi kaku di musim hujan dan lengket serta berbau di musim panas seperti yang pernah dilakukan oleh Roxbury Indian Rubber Company pada tahun 1833 dengan cara melarutkan karet alam terpentin dan mencampurnya dengan hitam karbon untuk menghasilkan karet keras yang tahan air. Struktur dasar karet alam adalah rantai linear unit isoprene (C5H8) yang berat molekul rata-ratanya tersebar antara 10.000 - 400.000.

Sifat-sifat mekanik yang baik dari karet alam menyebabkannya dapat digunakan untuk berbagai keperluan umum seperti sol sepatu dan telapak ban kendaraan. Pada suhu kamar, karet tidak berbentuk Kristal padat dan juga tidak berbentuk cairan. Perbedaan karet dengan benda-benda lain, tampak nyata pada sifat karet yang lembut, fleksibel dan elastis. Sifat-sifat ini memberi kesan bahwa karet alam adalah suatu bahan semi cairan alamiah atau suatu cairan dengan kekentalan yang sangat tinggi. Namun begitu, sifat-sifat mekaniknya menyerupai kulit binatang sehingga harus dimastikasi untuk memutus rantai molekulnya agar menjadi lebih pendek. Proses mastikasi ini mengurangi keliatan atau viskositas karet alam sehingga akan memudahkan proses selanjutnya saat bahan-bahan lain ditambahkan. Banyak sifat-sifat karet alam ini yang dapat memberikan keuntungan atau kemudahan dalam proses pengerjaan dan pemakaiannya, baik dalam bentuk karet atau kompon maupun dalam bentuk vulkanisat.

Dalam bentuk bahan mentah, karet alam sangat disukai karena mudah menggulung pada roll sewaktu diproses dengan open mill/penggiling terbuka dan dapat mudah bercampur dengan berbagai bahan-bahan yang diperlukan di dalam pembuatan kompon. Dalam bentuk kompon, karet alam sangat mudah dilengketkan satu sama lain sehingga sangat disukai dalam pembuatan barang-barang yang perlu dilapis-lapiskan sebelum vulkanisasi dilakukan. Keunggulan daya lengket inilah yang menyebabkan karet alam sulit disaingi oleh karet

Page 21: Pengujian Kepegasan Pantulxx

sintetik dalam pembuatan karkas untuk ban radial ataupun dalam pembuatan sol karet yang sepatunya diproduksi dengan cara vulkanisasi langsung.

Vulkanisasi karet alam sangat baik dalam hal-hal berikut:

• Kepegasan pantul

Hal ini menyebabkan timbulnya kalor (heat build up) rendah, yang sangat diperlukan oleh barang jadi karet yang akan mengalami hentakan berulang-ulang. Sifat inilah yang menyebabkan karet alam selalu dipakai dalam pembuatan ban truk dan kapal terbang yang sulit disaingi oleh karet sintetik.

• Tegangan putus

• Ketahanan sobek dan kikis

• Fleksibilitas pada suhu rendah

• Daya lengket ke fabric atau logam

Sol sepatu sangat memerlukan sifat-sifat tersebut di atas, karena itu karet alam adalah pilihan sangat tepat. Secara umum sol sepatu membutuhkan kekuatan, ketahanan kikis, dan ketahanan sobek yang tinggi. Vulkanisat karet alam kuat dan tahan lama bahkan dapat digunakan pada suhu -60°F. Karet alam bisa dibuat menjadi karet yang agak kaku tetapi masih mempunyai fleksibilitas dan ketahanan kikis, ketahanan retak lentur serta kekuatan tinggi. Hal ini menguntungkan dalam pembuatan sol sepatu karena sol sepatu bisa dibuat tipis (seperti sol luar sepatu olahraga), sambil tetap menjaga agar tidak merasakan batu sewaktu berjalan.

PENGUJIAN BARANG KARET

Untuk mendapatkan barang karet dengan mutu yang baik, perlu dilakukan analisis karet beserta bahan kimia yang digunakan sebagai addiftiv dalam pembuatan kompon karet, baik terhadap barang karet yang belum divulkanisasi maupun yang sudah divulkanisasi.

Analisis barang karet dapat dilakukan berupa pengujian sifat fisika dan analisis kimia, analisis kimia yang dilkukan meliputi analisis jenis bahan dan analisis jumlah setiap bahan yang terdapat dalam barang karet. Sedangkan analisis fisika meliputi uji ketebalan, kuat tarik, kekerasan, perpanjangan putus, ketahanan sobek, bobot jenis, ketahanan kikis, ketahanan retak lentur dan organoleptis.

Analisis jenis bahan yang digunakan bertujuan untuk memberikan informasi mengenai jenis karet, bahan pelunak, bahan pengisi, bahan pencepat, antioksidan dan bahan kimia karet lainnya.

Page 22: Pengujian Kepegasan Pantulxx

Analisis jumlah memberikan informasi tentang komposisi bahan utama penyusun barang karet yaitu karet, serta bahan pelunak, karbon black, abu dan ekstrak acetone. Hasil analisis dapat digunakan sebagai dasar perkiraan dalam pembuatan barang karet atau yang lebih baik.

Standar Nasional Indonesia Mutu Sol Karet Cetak No. SNI 0788-1989-A

No Uraian Satuan

Persyaratan

Kelas A Kelas B Kelas C

Fisika

1 Tegangan putus Kg/cm2 Min 150 Min 120 Min 50

2 Perpanjangan putus % Min 250 Min 150 Min 100

3 Kekerasan Shore A 55-80 55-80 55-80

4 Ketahanan sobek Kg/cm2 Min 60 Min 40 Min 25

5Perpanjangan tetap 50%

% Mak 4 Mak 7 Mak 10

6 Bobot jenis g/cm3 Mak 1,0 Mak 1,5 Mak 2,5

7Ketahanan retak lentur 150 kes

Tidak retak Tidak retak Tidak retak

8Organoleptis (keadaan dan atau kenampakan sol

Tidak cacat dan atau rusak yang serupa sobek, lubang, retak, goresan.

Pengujian Fisis

Sifat-sifat fisis yang diuji dalam praktikum ini meliputi; uji tarik, uji kemuluran, dan uji ketahanan sobek.

Page 23: Pengujian Kepegasan Pantulxx

Pengujian kuat tarik; pada vulkanisat sol luar sepatu adalah langkah pertama menyiapkan vulkanisat sol luar sepatu dengan menipiskannya terlebih dahulu dengan mesin grading setelah itu sol dipotong menurut mal uji kuat tarik yaitu seperti gambar dibawah ini;

30 mm

50 mm

30 mm

Gambar.1 Contoh uji kuat tarik pada pengujian sol karet cetak

Setelah contoh uji siap dilakukan pengukuran ketebalan contoh uji pada 3 titik yang berbeda dan dirata-ratakan hasilnya sebagai tebal contoh uji kemudian diukur luasnya dan kemudian contoh uji dijepit pada mesin tes tensil streght setelah semua terjepit atur satuan pada mesin tes tensil streght dalam satuan kg, kemudian dilakukan penarikan dengan kecepatan 500 mm/menit sampai contoh uji terputus. Untuk menentukan jarak antara dua tanda dapat diketahui dengan cara mengukur jarak tersebut dengan penggaris. Kemudian dilakukan perhitungan dengan persamaan ;

Uji ketahanan sobek; langkah pertama yaitu memotong karet vulkanisat sol luar sepatu sesuai dengan mal contoh uji ketahanan sobek seperti gambar dibawah ini;

Gambar. 2 Contoh uji ketahanan sobek

Keterangan;

Panjang : 6 cm

Lebar : 1 cm

Tebal : 2 mm

Setelah siap contoh uji dibelah sampai garis tengah dan kemudian kedua belahan dijepitkan pada pada mesin tes tensil streght dan dilakukan penarikan dengan kecepatan 500 mm/menit sampai contoh uji terputus. Kemudian dilakukan perhitungan dengan persamaan;

Pengujian dengan TG/DTA

Deferensial thermonalyse ialah suatu metoda analisa yang menggunakan perubahan suhu (panas) dari pada zat yang akan dianalisakan.

Kromatografi gas biasanya dipakai untuk analisa sampel yang berbentuk gas atau cairan dan padatan yang mudah menguap, sampel atau campuran yang hendak diperiksa disuntikan

Page 24: Pengujian Kepegasan Pantulxx

sedikit kedalam arus gas inert seperti N2, H2, He, Ar atau CO2 yang mengalir melalui kolom yang berisi suatu medium. Sampel ini terbawa oleh gas inert mengalir melalui medium tadi, yang mempunyai sifat dapat berinteraksi dengan kompone-komponen dalam campuran, dan akan menghambat aliran masing-masing komponen. Besarnya hambatan ini bagi masing-masing komponen berbeda-beda, sehingga komponen-komponen keluar dari kolom tidak bersama-sama akan tetapi satu persatu. Selanjutnya gas yang keluar dari kolom ini dilewetkan melalui suatu detektor, hambatan tadi disebabkan karena adanya absorpsi atau partisi oleh medium terhadap masing-masing komponen. Besarnya gaya adsorpsi atau partisi tersebut, khas bagi masing-masing komponen. Perbedaan absorpsi atau partisi inilah yang memungkinkan pemisahan dalam kolom tadi.

TG/DTA adalah alat analisis yang digunakan untuk menganlisis bahan yang berbentuk padatan dengan menggunakan perubahan suhu untuk mengetahui jenis dan sifat-sifat bahan yang dianalisa.

Pengujian Kimia

Salah satu analisis dari barang karet adalah analisis jenis dan analisis jumlah. Sebelum melakukan analisis jenis dan analisis jumlah terhadap contoh barang karet dilakukan persiapan (sampling). Contoh dibersihkan dan jika mengandung bahan serat atu logam, bagian karetnya dipisahkan dari bahan – bahan tersebut. Jika terdiri dari beberapa lapisan karet yang jelas, karet tersebut dipisahkan dan bagian bertemunya lapisan dibuang. Bagian yang akan diuji digunting menjadi potongan – potongan kecil dengan ukuran sisi ± 2 mm.

Sistematika analisis jenis dan analisis jumlah di Balai Penelitian Teknologi Karet Bogor, dimulai dengan melakukan uji pendahuluan terhadap contoh barang karet, yaitu uji bakar dan uji Lassaigne. Dari uji tersebut akan diketahui jenis atau golongan polimernya, sehingga dapat ditentukan pelarut yang sesuai untuk mengekstraksi contoh. Aseton biasanya digunakan sebagai pelarut untuk mengeksraksi hampir semua polimer kecuali beberapa polimer tertentu seperti karet kloropren, karet nitril dan poliuretan manggunakan metanol sebagai pelarut.

Dari ekstraksi didapatkan 2 bagian, yaitu bagian ekstrak yang biasanya disebut ekstrak aseton dan bagian karet. Ekstrak aseton dipisahkan dengan kolom kromatografi menjadi dua bagian, yaitu fraksi heksan yang mengandung bahan pelunak, serta fraksi aseton yang mengandung bahan pencepat dan antioksidan. Jenis bahan pelunak ditentukan dengan alat TLC. Biasanya cukup diketahui golongan bahan pencepat dan antioksidan yang dapat diketahui dengan melakukan spot test.

Bagian karet setelah dipirolisis dipakai sebagai contoh uji analisis jenis polimer. Bagian karet juga digunakan sebagai contoh uji analisis barang karet guna mengetahui komposisi beberapa bahan dalam barang karet, yaitu polimer, carbon black, abu dan bahan pelunak. Jenis polimer ditentukan dengan alat IR, sedangkan analisis jumlah dilakukan dengan menggunakan alat TGA. Bagian karet yang dipirolisis akan meninggalkan sisa berupa residu pirolisat. Residu ini diabukan dengan memanaskannya lebih lanjut. Abu yang didapat ditentukan dengan alat IR. IR untuk menentukan jenis bahan pengisinya.

Page 25: Pengujian Kepegasan Pantulxx

Analisis kemurnian dilakukan untuk mengetahui apakah suatu bahan kimia karet masih dalam bentuk aslinya, serta masih memenuhi syarat untuk digunakan sebagai bahan pencampur pengolahan karet. Yang dimaksud dengan bahan kimia karet adalah bahan pencepat, bahan pelunak, antioksidan, penyetabil dan bahan – bahan lain yang diperlukan dalam jumlah sedikit sebagai bahan penbantu dalam pengolahan karet. Analisis dilakukan dengan menggunakan TLC atau IR.

Identifikasi blooming dilakukan untuk mengetahui apakah noda yang timbul pada permukaan barang karet berasal dari bahan kimia dari barang karet tersebut yang muncul ke permukaan dan mengetahui jenis bahan penyebab blooming tersebut. Identifikasi staining dilakukan untuk mengetahui apakah timbul perubahan warna pada permukaan karet apabila bersentuhan dengan bahan – bahan tertentu, misalnya logam besi dan tembaga, serta untuk mengetahui jenis bahan kimia penyebab stainingtersebut. Analisis jenis bahan – bahan tersebut dilakukan dengan alat TLC atau spot test.

Jenis Karet

Seperti yag telah dijabarkan dalam artikel sejarah karet, pada dasarnya karet digolongkan menjadi dua, yaitu karet alam dan karet sintetik.

Karet AlamKaret alam ialah jenis karet pertama yang ditemukan oleh manusia. setelah penemuan proses vulkanisasi yang membuat sifat karet menjadi tidak terpengaruh suhu, maka karet mulai degemari untuk digunakan, seperti sol sepatu, telapak ban, dll.salah satu sifat karet alam yang sampai saat ini sulit disaingi oleh sintetik ialah kepegasan pantul yang baik sekali, sehingga heat build up yang dihasilkan juga rendah, dan sifat ini sangat diperlukan untuk barang jadi karet (vulkanisat) yang kerjanya mengalami hentakan berulang-ulang, contok aplikasinya ialah ban truk dan ban pesawat terbang.Tetapi karet alam mempunyai kelemahan yang mengakibatkan mulai digemarinnya penggunaan keret sintetik, yaitu kurang tahan terhadap panas dan minyak.

 Karet SintetikDimulai dari berakhirnya perang dunia kedua, karet sintetis berkembang lebih pesat

Page 26: Pengujian Kepegasan Pantulxx

dengan lebih banyak jenis-jenisnya. saat ini telah ada belasan jenis karet sintetik dengan berbagai karakteristiknya, dan terus bertambah.Sebelum perang dunia kedua, hanya karet alam yang tersedia. sehingga boleh dikata bahwa untuk keperluan teknik (engineering) tidak ada pilihan lain selain menggunakan karet alam. Sejalan dengan digunakannya karet alam untuk berbagai keperluan, maka mulai ditemukan kelemahan2 karet alam yang menyebabkan para ilmuwan berusaha keras untuk menciptakan jenis-jenis karet sintetik tertentu untuk menggantikan karet alam, antara lain1. SBR dengan berbagai variasinya2. IR dengan berbagai variasinya3. NBR dengan berbagai variasinya4. EPDM dengan berbagai variasinya5. Neoprene dengan berbagai variasinya6. Butyl dengan berbagai variasinya7. Hypalon dengan berbagai variasinya8. Silicone dengan berbagai variasinya9. Urethane dengan berbagai variasinya10.Fluorocarbon (viton) dengan berbagai variasinya, dan masih banyak jenis karet lainnya yang terus bermunculan.

Page 27: Pengujian Kepegasan Pantulxx

Dengan berkembangnya kebutuhan disebabkan berkembangannya ilmu pegetahuan dan teknologi, terasa bahwa penggunaan karet-karet yang ada saat ini mempunyai keterbatasan tertentu, sehingga dapat diramalkan bahwa akan banyak jenis karet baru yang akan tersedia dimasa mendatang dengan berbagai keunggulannya masing-masing.

Setiap jenis karet mempunyai sifat yang kadang tidak ditemukan pada jenis karet yang lain, sehingga dapat dikatakan bahwa tidak ada jenis karet yang paling baik, semua tergantung penggunaannya.

 

karet alam

PENDAHULUAN

KARET ALAM

Pada dasarnya karet bisa berasal dari alam yaitu dari getah pohon karet(atau dikenal dengan istilah latex), maupun produksi manusia (sintetis). Saat pohon karet dilukai, maka getah yang dihasilkan akan jauh lebih banyak. Sumber utama getah karet adalah pohon karet Para Hevea Brasiliensis (Euphorbiaceae). Saat ini Asia menjadi sumber karet alami. Awal mulanya karet hanya hidup di Amerika Selatan, namun sekarang sudah berhasil dikembangkan di Asia Tenggara. Kehadiran karetdi Asia Tenggara berkat jasa dari Henry Wickham. saat ini, negara-negara Asia menghasilkan 93% produksi karet alam, yang terbesar adalah Thailand, diikuti oleh Indonesia, dan Malaysia.           Karet telah digunakan sejak lama untuk berbagai macam keperluan antara lain bola karet, penghapus pensil, baju tahan air, dll.Saat Christopher Columbus dan rombongannya menemukan benua Amerika pada tahun 1476,mereka terheran-heran melihat bola yang dimainkan orang-orang Indian yang dapat melantun bila dijatuhkan ke tanah. Di sinilah sejarah karet dimulai, tetapi baru pada tahun 1530 ada laporan tertulis mengenai gummi optimum, sebutan Pietro Martire d’Anghiera untuk karet. Pada tahn 1535, Ahli sejarah mengenai bangsa Indian, Captain Gonzale

Page 28: Pengujian Kepegasan Pantulxx

Fernandez de Oveida menulis bahwa dia melihat 2 tim orang Indian yang bermain bola. Bola itu terbuat dari campuran akar, kayu, dan rumput, yang dicampur dengan suatu bahan (latex) kemudian dipanaskan di atas unggun dan dibulatkan seperti bola. Bola oran Indian ini bisa melambung lebih tinggi daripada bola yang umum dibuat orang-orang Eropa waktu itu. Oviedo mengatakan bahwa bila bola buatan Indian itu dijatuhkan, bola itu bisa melambung lebih tinggi dan kemudian jatuh, lalu melambung lagi walaupun agak rendah daripada lambungan yang pertama, dst.          Pada tahun 1615 seorang penulis, F.J. Torquemada melaporkan bahwa orang Indian Mexico membuat sepatu tahan air dari bahan latex atau karet. Tentara Spanyol juga dilaporkan mengoleskan latex ke mantel mereka, saat hujan menjadi tahan air, tetapi di musim panas menjadi lengket.Walaupun banyak cerita menarik tentang bahan tersebut, penyelidikan oleh para ilmuwan baru dimulai tahun 1731.  Saat itu French Academy mengirim C.M. de la Condamine ke Amerika Selatan. Fresnau seorang ahli Perancis melaporkan bahwa banyak tanaman yang dapat menghasilkan latex atau karet, di antaranya dari jenis Hevea brasiliensis yang tumbuh di hutan Amazon di Brazil yang sekarang menjadi tanaman penghasil karet utama dan sudah dibudidayakan di Asia Tenggara yang menjadi penghasil karet utama di dunia saat ini.         Pada tahun 1770, seorang ahli kimia bangsa Inggris, Joseph Priestly, melaporkan bahwa karet dapat menhapus tulisan pensil. Pada tahun 1775 karet mulai digunakan sebagai bahan penghapus tulisan pensil dan jadilah karet itu di Inggris disebut dengan nama rubber (dari to rub). Sebelum itu, remah roti biasa digunakan orang untuk menghapus tulisan pensil.Barang-barang karet yang diproduksi waktu itu selalu menjadi kaku di musim dingin dan lengket di musim panas. Banyak percobaan yang telah dilakukan untuk mendapatkan sifat karet yang tidak terpengaruh oleh cuaca. Percobaan mula-mula dilakukan oleh E.C.F. Leuchs pada tahun 1831.        Setahun sesudah itu, N. Hayward mendapatkan bahwa jika belerang yang ditambahkan ke dalam larutan karet atau biji belerang dioleskan pada karet,akan menyebabkan karet lebih cepat menjadi kering.Thomas Hancock menulis dalam bukunya yang terbit pada tahun 1985 bahwa pada tahun 1842, Brockedon memperlihatkan kepadanya sepotong contoh karet berasal dari Amerika yang tidak terpengaruh oleh cuaca ataupun oleh minyak. Thomas Hancock melihat bahwa potongan itu sedikitkekuningan pada bagian dalamnya dan berbau belerang.

 Dalam percobaan selanjutnya, Hancock akhirnya berhasil menemukan bahwa bila karet dicampur dengan belerang dan dipanaskan maka akan berubah sifatnya menjadi elastis dan tidak terpengaruh lagi oleh perubahan cuaca.Proses perubahan ini lalu dipatenkan pada tahun 1843 dan sesuai usul temannya, Mr. Brockedon, proses ini dinamai vulkanisasi, yang kemudian nama ini diterima di Inggris, Amerika, dan dunia pada umumnya sampai sekarang.            Sebelum itu pada tahun 1838, Charles Goodyear di Amerika sudah terlibat dalam penelitian kompon karet   dengan menggunakan belerang dan panas untuk mendapatkan kompon karet yang tidak terpengaruh oleh cuaca,yang dibuktikan dengan surat-surat yang diterimanya dari beberapa orang yang melihat atau mendapat contoh karet hasil

Page 29: Pengujian Kepegasan Pantulxx

percobaannya pada tahun 1839. Baru pada tahun 1844 dia mendapatkan paten untuk penemuannya. Dari beberapa tulisan yang membahas penemuan vulkanisasi ini, dan berdasarkan tulisan Hancock sendiri yang menyatakan bahwa Brokedon meperlihatkan contoh karet yang berasal dari Amerika yang tidak terpengaruh oleh cuaca, maka kebanyakan penulis sepakat kalau penemu pertama proses vulkanisai hendaknya diberikan kepada Charles Goodyear. Penemuan besar proses vulkanisasi ini akhirnya dapat disebut sebagai awal dari perkembangan industri karet.          Pada waktu pendudukan Jepang di Asia Tenggara dalam perang dunia kedua, persediaan karet alam di negara sekutu menjadi kritis dan diperkirakan akan habis dalam beberapa bulan. Pemerintah Amerika mendorong penelitian dan produksi untuk menghasilkan karet sintetik untuk memenuhi kebutuhan yang mendesak. Usaha besar ini membuahkan hasil dalam waktu singkat dan terus berkembangsesudah berakhirnya perang dunia kedua, 1/3 karet yang dikonsumsi dunia adalah karet sintetik.         Karet sintetik cukup mendominasi industri karet, tetapi pemakaian karet alam pun masih sangat penting saat ini antara lain industri militer dan otomotif. Pada tahun 1983, hampir 4 juta ton karet alam dikonsumsi oleh dunia, tetapi karet sintetik yang digunakan sudah melebihi 8 juta ton.

Page 30: Pengujian Kepegasan Pantulxx

ISI

Sejarah

Sejarah karet bermula ketika Christopher Columbus menemukan benua Amerika pada 1476. saat itu, Columbus tercengang melihat orang-orang Indian bermain bola dengan menggunakan suatu bahan yang dapat melantun bila dijatuhkan ketanah. Bola tersebut terbuat dari campuran akar, kayu, dan rumput yang dicampur dengan suatu bahan (lateks) kemudian dipanaskan diatas unggun dan dibulatkan seperti bola.             Pada 1731, para ilmuwan mulai tertarik untuk menyelidiki bahan tersebut. seorang ahli dari Perancis bernama Fresnau melaporkan bahwa banyak tanaman yang dapat menghasilkan lateks atau karet, diantaranya dari jenis Havea brasilienss yang tumbuh di hutan Amazon di Brazil. Saat ini tanaman tersebut menjadi tanaman penghasil karet utama, dan sudah dibudidayakan di Asia Tenggara yang menjadi penghasil karet utama di dunia saat ini.             Seorang ahli kimia dari Iggris pada tahun 1770 melaporkan bahwa, karet digunakan untuk menghapus tulisan dari pensil. sejak 1775 karet mulai digunakan sebagai bahan penghapus tulisan pensil, dan jadilah karet itu di Inggris disebut dengan nama Rubber (dari kata to rub, yg artinya menghapus), sebelumnya remah roti biasa digunakan orang untuk menghapus tulisan pensil. Pada dasarnya, nama ilmiah yang diberikan untuk benda yang elastis (menyerupai karet) ialah elastomer, tetapi sebutan rubber-lah lebih populer di kalangan masyarakat awam.            Barang-barang karet yang diproduksi waktu itu selalu menjadi kaku di musim dingin dan lengket dimusim panas, sampai seorang yang bernama Charles Goodyear yang melakukan penelitian pada 1838 menemukan bahwa, dengan dicampurkannya belerang dan

Page 31: Pengujian Kepegasan Pantulxx

dipanaskan maka keret tersebut menjadi elastis dan tidak terpengaruh lagi oleh cuaca. Sebagian besar ilmuwan sepakat untuk menetapkan Charles Goodyear sebagai penemu proses vulkanisasi. Penemuan besar proses vulkanisasi ini akhirnya dapat disebut sebagai awal dari perkembangan industri karet.           Pada waktu pendudukan jepang di Asia Tenggara dalam WWII, persediaan karet alam di negara sekutu menjadi kritis dan diperkirakan akan habis dalam waktu beberapa bulan. Pemerintah Amerika mendorong penelitian dan produksi untuk menghasilkan karet sintetik untuk memenuhi kebutuhan yang mendesak. Usaha besar ini membuahkan hasil dalam waktu singkat dan terus berkembang sesudah WWII berakhir pada 1945. Dalam jangka waktu 3 tahun sesudah berakhirnya WWII, sepertiga karet yag dikonsumsioleh dunia adalah karet sintetik. Pada 1983, hampir 4 juta ton karet alam dikonsumsi oleh dunia, sebaliknya, karet sintetik yang digunakan sudah melebihi 8 juta ton dan terus bertambah hingga sekarang.

Keunggulan dan Kelemahan

           Karet merupakan bahan utama penyusun seal O-ring dan salah satu komponen yang banyak digunakan dalam permesinan yang berlungsi sebagai penyekat untuk mencegah terjadinya kontaminasi dari ruang yang bertekanan dan berfluida. Sebagai penyekat seal harus cukup elastis dan dapat leluasa digerakkan, sehingga untuk itu diperlukan formula seal yang baik.

           Karet alam (NR) mempunyai keunggulan dalam hal keelastisan, fleksibelitas dan ketahanan terhadap abrasi, jika ditambahkan kedalam formula karet sintetis (NBR) yang tahan terhadap minyak akan menghasilkan sifat mekanik yang masih memenuhi syarat pemakaian seal dan disesuaikan dengan penggunaan dan kondisi kerja. Untuk mengetahui hasil yang diinginkan dari kompon karet, perlu diadakan penelitian dengan membuat kompon karet untuk seal O-ring dengan perpaduan menggunakan formula NBR sebesar 100 phr + NR sebesar 0 phr pada kompon A, NBR sebesar 90 phr + NR sebesar 10 phr pada kompon B dan NBR sebesar 80 ph' + NR sebesar 20 ph' pada kompon C. Setalah itu dilakukan pengujian sifat fisis pada vulkanisat untuk penggunaan seal o-ring dan pengujian rheometer untuk mendapatkan waktu curing yang digunakan untuk pencetakan seal o-ring. Masing-masing kompon dicetak dalam bentuk seal O-ring dan diuji pada alat uji ketahanan bocar dengan putaran 1500 rpm, temperatur 1()(fC dan tekanan 6 kgflcm2 .

           Kemudian masing-masing seal O-ring sebelum dan sesudah pengujian pada alat uji ketahanan bocor tersebut dilakukan uji kekerasan. Pengujian seal O-ring untuk ketiga kompon tersebut tidak mengalami kebocoran pada alat uji ketahanan bocor sehingga ketiga seal O-ring ini direkomendasikan pada putaran 1500 rpm, temperatur 10ifC dan tekanan 6 kgflcm2 . HasH anava dari Ketiga kompon untuk seal O-ring sebelum dan sesudah pengujian pada alat uji ketahanan bocor tersebut menunjukkan bahwa terdapat pengaruh penambahan karet alam kedalam formula karet NBR untuk seal o-ring terhadap peru bah an kekerasan sehingga dengan pertimbangan ekonomis dipilih kompon C dengan komposisi NBR sebesar 80 phr + NR sebesar 20 ph' untuk pembuatan seal O-ring, karena memiliki keunggulan antara

Page 32: Pengujian Kepegasan Pantulxx

lain proses produksi yang lebih murah karena harga karet alam lebih murah dari karet sintetis dan waktu curing yang lebih singkat.

PEMBAHASAN

            Karet alam dibuat dari sari getah pohon karet. Sari yang berupa susu yang dipanaskan sampai kering untuk dibuat karet mantah. Kemudian dimastikasi, diplastiskan agar dapat diproses dengan lebih mudah dan dicampur pengisi seperti karbon hitam, zat pewarna, belerang, dibuat campuran, dibentuk dengan tekanan, dan vulkanisai oleh reaksi penyilangan sampai dipanaskan untuk mendapatkan benda cetakan.

            Sifat – sifat karet alam diantaranya memiliki warna yang agak kecoklatan, tembus cahaya, dengan berat jenis 0,91-0,93. sifat mekaniknya tergantung pada derajat vulkanisasi, sehingga dapat dihasilkan banyak jenis sampai jenis yang kaku seperti ebonite. Temperatur penggunaan adalah sekitar 990C paling tinggi, melunak pada 1300C dan mengurai pada kira-kira 2000C. Sifat isolasi listriknya berbeda karena perbandingan pencampuran dengan aditif, tetapi pada umumnya menguntungkan. Sifat kimianya jelek terhadap ketahanan minyak dan ketahanan pelarut. Zat tersebut hamper-hampir tak tyahan pelarut hidrokarbon, ester asam asetat, dsb. Karet yang kenyal agak mudah didegradasi oleh sinar UV dan ozon. Sejak penggunannya selama ini, tak ada masalah dalam kemampuan cetaknya. Bahan ini digunakan secara luas untuk ban mobil, pengemas karet, penutup isolasi listrik, sol sepatu, dan lainnya.

            Ebonite adalah karet kaku yang dibuat dari karet alam yang ditambah dengan belerang (30-40%), kemudian dipanaskan agar terjadi ikatan silang antara molekul dengan belerang. Terbentuklah bahan seperti resin yang kaku dan hitam. Bahan ini digunakan secara luas sebagai komponen dari alat listrik atau untuk industri kimia, tetapi sekarang kebanyakan dari bahan tersebut dapat digantikan oleh resin sintetik yang baru.

            Untuk membuat karet hidroklorida, karet mentah diperlukan dengan asam hidroklorida. Karena tahanannya besar terhadap asam, alkali dan minyak, maka bahan ini digunakan untuk film pembungkus dengan sifat tahan air, ketahanan minyak dan ketahanan kelembaban.

            Karet butadien adalah bahan kenyal yang dibuat secara kopolimerisasi butadiene dan stiren. Sifatnya, bervariasi, bergantung pada perbandingan mol kedua bahan itu. Biasanya yang dicampur adalah 5-6 mol butadiene dan 1 mol stiren. Bila stiren melebihi 50% kekenyalan hilang dan bahan menjadi kayu. Belerang digunakan sebagai zat vulkanisasi untuk membuat jaringan tiga dimensi.

            Karet butadiene memiliki sifat yang tidak berwarna dan tembus cahaya. Berat jenisnya 0,92. Mengenai sifat mekaniknya dapat dikatakan bahan unggul dalam ketahanan abrasi dan karakteristik pada temperature tinggi dan rendah dibandingkan dengan karet alam. Biasanya bahan digunakan untuk daerah -300C sampai 1500C. ketahanan minyaknya lebih baik dari pada karet alam, tetapi bahan larut dalam hidrokarbon aromatic dan pelarut terklorinasi. Bahan ini digunakan lebih banyak dari pada karet alam pengemas yang tahan

Page 33: Pengujian Kepegasan Pantulxx

panas, ban mobil, ban mesin, kabel frekuensi, kabel yang tahan panas dan dingin, sol sepatu,dsb.

Page 34: Pengujian Kepegasan Pantulxx

KESIMPULAN

            Karet alam adalah jenis karet pertama yang dibuat sepatu. Sesudah penemuan proses vulkanisasi yang membuat karet menjadi tahan terhadap cuaca dan tidak larut dalam minyak, maka karet mulai digemari sebagai bahan dasar dalam pembuatan berbagai macam alat untuk keperluan dalam rumah ataupun pemakaian di luar rumah seperti sol sepatu dan bahkan sepatu yang semuanya terbuat dari bahan karet. Sebelum itu usaha-usaha menggunakan karet untuk sepatu selalu gagal karena karet manjadi kaku di musim hujan dan lengket serta berbau di musim panas seperti yang pernah dilakukan oleh Roxbury Indian Rubber Company pada tahun 1833 dengan cara melarutkan karet alam terpentin dan mencampurnya dengan hitam karbon untuk menghasilkan karet keras yang tahan air.Struktur dasar karet alam adalah rantai linear unit isoprene (C5H8) yang berat molekul rata-ratanya tersebar antara 10.000 - 400.000.           Sifat-sifat mekanik yang baik dari karet alam menyebabkannya dapat digunakan untuk berbagai keperluan umum seperti sol sepatu dan telapak ban kendaraan. Pada suhu kamar, karet tidak berbentuk Kristal padat dan juga tidak berbentuk cairan.           Perbedaan karet dengan benda-benda lain, tampak nyata pada sifat karet yang lembut, fleksibel dan elastis. Sifat-sifat ini memberi kesan bahwa karet alam adalah suatu bahan semi cairan alamiah atau suatu cairan dengan kekentalan yang sangat tinggi.Namun begitu, sifat-sifat mekaniknya menyerupai kulit binatang sehingga harus dimastikasi untuk memutus rantai molekulnya agar menjadi lebih pendek.            Proses mastikasi ini mengurangi keliatan atau viskositas karet alam sehingga akan memudahkan proses selanjutnya saat bahan-bahan lain ditambahkan.Banyak sifat-sifat karet alam ini yang dapat memberikan keuntungan atau kemudahan dalam proses pengerjaan dan pemakaiannya, baik dalam bentuk karet atau kompon maupun dalam bentuk vulkanisat.           Dalam bentuk bahan mentah, karet alam sangat disukai karena mudah menggulung pada roll sewaktu diproses dengan open mill/penggiling terbuka dan dapat mudah bercampur dengan berbagai bahan-bahan yang diperlukan di dalam pembuatan kompon. Dalam bentuk kompon, karet alam sangat mudah dilengketkan satu sama lain sehingga sangat disukai dalam pembuatan barang-barang yang perlu dilapis-lapiskan sebelum vulkanisasi dilakukan.           Keunggulan daya lengket inilah yang menyebabkan karet alam sulit disaingi oleh karet sintetik dalam pembuatan karkas untuk ban radial ataupun dalam pembuatan sol karet yang sepatunya diproduksi dengan cara vulkanisasi langsung.Vulkanisasi karet alam sangat baik dalam hal-hal berikut:

• Kepegasan pantulHal ini menyebabkan timbulnya kalor (heat build up) rendah, yang sangat diperlukan oleh barang jadi karet yang akan mengalami hentakan berulang-ulang.

Page 35: Pengujian Kepegasan Pantulxx

Sifat inilah yang menyebabkan karet alam selalu dipakai dalam pembuatan ban truk dan kapal terbang yang sulit disaingi oleh karet sintetik.• Tegangan putus• Ketahanan sobek dan kikis• Fleksibilitas pada suhu rendah• Daya lengket ke fabric atau logam            Sol sepatu sangat memerlukan sifat-sifat tersebut di atas, karena itu karet alam adalah pilihan sangat tepat. Secara umum sol sepatu membutuhkan kekuatan, ketahanan kikis, dan ketahanan sobek yang tinggi. Vulkanisat karet alam kuat dan tahan lama bahkan dapat digunakan pada suhu -60°F. Karet alam bisa dibuat menjadi karet yang agak kaku tetapi masih mempunyai fleksibilitas dan ketahanan kikis, ketahanan retak lentur serta kekuatan tinggi. Hal ini menguntungkan dalam pembuatan sol sepatu karena sol sepatu bisa dibuat tipis (seperti sol luar sepatu olahraga), sambil tetap menjaga agar tidak merasakan batu sewaktu berjalan.           Untuk menurunkan ongkos produksi, selain karet alam, kompon sol berwarna hitam bisa ditambah dengan karet reclaim dan bekas vulkanisat yang tidak terpakai yang banyak terdapat di pabrik. Untuk kompon putih, yang dipakai haruslah karet reclaim putih dan bekas vulkanisat putih juga.           Kekakuan vulkanisat dapat ditingkatkan dengan penambahan resin dengan kadar styrene yang tinggi dan diperhitungkan sebagai jumlah karet. Perlu diingat utnuk keperluan eksport hendaklah kompon yang baik, yaitu yang mengandung bahan-bahan yang baik pula yang dipakai.           Walapupun kalor yang timbul dari karet alam lebih rendah dari karet sintetik seperti SBR, tetapi karet alam agak kurang tahan terhadap panas dibanding SBR. Karet alam tidak tahan ozon dan cahaya matahari. Ketahanan terhadap minyak dan pelarut hydrocarbon sangat buruk.Karet alam mengandung beberapa bahan antara lain: karet hidrokarbon, protein, lipid netral, lipid polar, karbohidrat, garam anorganik, dll.           Protein dalam karet alam dapat mempercepat vulkanisasi atau menarik air dalam vulkanisat. Beberapa lipid ada yang merupakan bahan pencepat atau antioksidan. Protein juga dapat meningkatkan heat build up tetapi dapat juga meningkatkan ketahanan sobek.

           Karet alam lama kelamaan dapat meningkat viskositasnya atau menjadi keras. Ada jenis karet alam yang sudah ditambah bahan garam hidroksilamin sehingga tidak bisa mengeras dan disebut karet CV (contant viscosity). Karet alam bisa mengkristal pada suhu rendah (misalkan -26°C) dan bila ini terjadi, diperlukan pemanasan karet sebelum diolah pabrik barang jadi karet.

Page 36: Pengujian Kepegasan Pantulxx

Rabu, 16 Desember 2009

Rangkaian pegas

Rangkaian PegasUntuk benda elstis

Perbandingan antara tegangan dan regangan dinamakan sebagai modulus elastisitas atau modulus young (E)

“Perubahan panjang suatu pegas berbanding lurus (linier) dengan gaya tarik atau gaya tekan yang diberikan pada pegas tersebut”

dimana F = Gaya yang diberikan;Δx = Pertambahan panjang.

Page 37: Pengujian Kepegasan Pantulxx

Nilai , namun ada faktor pengali. Faktor pengali ini disimbolkan dengan huruf k sehinggarumusan hukum HookeNilai k untuk tiap bahan berbeda-beda dan merupakan ciri khusus dari tiap bahan. Nilai k ini dinamakan sebagai konstanta pegas.Apabila suatu pegas ditarik gaya sebesar F maka pegas tersebut akan bertambah besar sepanjang . Namun pada keadaan tertentu dimana gaya yang diberikan melebihi batas kemampuan dari pegas, maka pegas tidak dapat bertambah panjang lagi. Artinya hukum hooke tidak berlaku lagi. Dalam keadaan seperti ini pegas dikatakan sudah rusak.Apabila gaya yang dikenakan pada pegas dihilangkan, maka pegas akan bergerak secara berosilasi menuju titik keseimbangan ( keadaan awal ).Besarnya gaya yang diperlukan untuk kembali ke titik keseimbangan ini dinamakan sebagai gaya pemulih. Berdasarkan hukum III Newton, maka besarnya gaya pemulih sama dengan gaya yang diberikan untuk menarik pegas, hanya tandanya berlawanan.tanda (-) menunjukan bahwa gaya pemulih berlawanan dengan gaya penyebabnya.Simpangan terjauh dari titik keseimbangannya dinamakan seBagai amplitudo A. Selama geraknya, pegas memenuhi persamaan

Periodenya adalah

sedangkan frekuensinya

Energi potensial yang dimiliki pegas adalah

Rangkaian pegas.Rangkaian seri2 pegas atau lebih yang dirangkai secara seri akan memiliki nilai konstanta pegas total sebesar

Rangkaian paralel

Page 38: Pengujian Kepegasan Pantulxx

2 pegas atau lebih yang dirangkai secara paralel akan memiliki nilai konstanta pegas total

sebesar

Diposkan oleh mariska   di 20.53 Tidak ada komentar:  

HUKUM KEKEKALAN MOMENTUM

Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2.

Jika dua benda A dan B dengan massa masing-masing MA dan MB serta kecepatannya masing-masing VA dan VB saling bertumbukan, maka :

MA VA + MB VB = MA VA + MB VB

VA dan VB = kecepatan benda A dan B pada saat tumbukan

VA dan VB = kecepatan benda A den B setelah tumbukan.

Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif.

Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,

a. ELASTIS SEMPURNA : e = 1

e = (- VA' - VB')/(VA - VB)

e = koefisien restitusi.Disini berlaku hukum kokokalan energi den kokekalan momentum.

b. ELASTIS SEBAGIAN: 0 < e < 1Disini hanya berlaku hukum kekekalan momentum.

Khusus untuk benda yang jatuh ke tanah den memantul ke atas lagi maka koefisien restitusinya adalah:

e = h'/h 

h = tinggi benda mula-mulah' = tinggi pantulan benda

Page 39: Pengujian Kepegasan Pantulxx

C. TIDAK ELASTIS: e = 0Setelah tumbukan, benda melakukan gerak yang sama dengan satu kecepatan v',

MA VA + MB VB = (MA + MB) v' 

Disini hanya berlaku hukum kekekalan momentum

 

Contoh:

1. Sebuah bola dengan massa 0.1 kg dijatuhkan dari ketinggian 1.8 meter dan mengenai lantai, kemudian dipantulkan kembali sampai ketinggian 1.2 meter. Jika g = 10 m/det2.Tentukanlah:a. impuls karena beret bola ketika jatuh.b. koefisien restitusi

Jawab:

a. Selama bola jatuh ke tanah terjadi perubahan energi potensial menjadi energi kinetik.

Ep = Ek

m g h = 1/2 mv2 ® v2 = 2 gh

® v = Ö2 g h

impuls karena berat ketika jatuh:

I = F . Dt = m . Dv= 0.1Ö2gh = 0.1 Ö(2.10.1.8) = 0.1.6 = 0,6 N det.  

b. Koefisien restitusi:

e = Ö(h'/h) = Ö(1.2/1.8) = Ö(2/3) 

2. Sebuah bola massa 0.2 kg dipukul pada waktu sedang bergerak dengan kecepatan 30 m/det. Setelah meninggalkan pemukul, bola bergerak dengan kecepatan 40 m/det berlawanan arah semula. Hitung impuls pada tumbukan tersebut !

Jawab:

Impuls = F . t = m (v2 - v1)

Page 40: Pengujian Kepegasan Pantulxx

  = 0.2 (-40 - 30)

  = -14 N det

Tanda berarti negatif arah datangnya berlawanan dengan arah datangnya bola.

3. Sebuah peluru yang massanya M1 mengenai sebuah ayunan balistik yang massanya M2. Ternyata pusat massa ayunan naik setinggi h, sedangkan peluru tertinggal di dalam ayunan. Jika g = percepatan gravitasi, hitunglah kecepatan peluru pada saat ditembakkan !

Jawab:

Penyelesaian soal ini kita bagi dalam dua tahap, yaitu:

1. Gerak A - B.

Tumbukan peluru dengan ayunan adalah tidak elastis jadi kekekalan momentumnya:

M1VA + M2VB = (M1 + M2) VM1VA + 0 = (M1 + M2) V

VA = [(M1 + M2)/M1] . v 

2. Gerak B - C.Setelah tumbukan, peluru dengan ayunan naik setinggi h, sehingga dapat diterapkan kekekalan energi:

EMB = EMC

EpB + EkB = EpC + EkC

0 + 1/2 (M1 + M2) v2 = (M1 + M2) gh + 0

Jadi kecepatan peluru: VA = [(M1 + M2)/M1] . Ö(2 gh)

d. ELASTISITAS KHUSUS DALAM ZAT PADAT

Zat adalah suatu materi yang sifat-sifatnya sama di seluruh bagian, dengan kata lain, massa terdistribusi secara merata. Jika suatu bahan (materi) berupa zat padat mendapat beban luar, seperti tarikan, lenturan, puntiran, tekanan, maka bahan tersebut akan mengalami perubahan bentuk tergantung pada jenis bahan dan besarnya pembebanan. Benda yang mampu kembali ke bentuk semula, setelah diberikan pembebanan disebut benda bersifat elastis.

Page 41: Pengujian Kepegasan Pantulxx

Suatu benda mempunyai batas elastis. Bila batas elastis ini dilampaui maka benda akan mengalami perubahan bentuk tetap, disebut juga benda bersifat plastis.

Diposkan oleh mariska   di 20.50 Tidak ada komentar:  

Simpangan Getar

I. GETARAN

1. Pengertian Getaran

Getaran adalah gerak bolak-balik atau gerak periodik disekitar titik tertentu secara periodik.

Gerak Periodik adalah suatu getaran atau gerakan yang dilakukan benda secara bolak-balik melalui jalan tertentu yang kembali lagi ke tiap kedudukan dan kecepatan setelah selang waktu tertentu.

Simpangan adalah jarak antara kedudukan benda yang bergetar pada suatu saat sampai kembali pada kedudukan seimbangnya.

Amplitudo adalah simpangan maksimum yang dilakukan pada peristiwa getaran.

Perioda adalah waktu yang diperlukan untuk melakukan satu kali getaran penuh.

Frekuensi adalah banyaknya getaran penuh yang dapat dilakukan dalam waktu satu detik.

2. Ayunan SederhanaAyunan sederhana atau disebut bandul melakukan gerakan bolak balik sepanjang busur AB.Waktu yang diperlukan oleh benda untuk bergerak dari titik A ke titik A lagi disebut Satu Perioda.Sedangkan banyaknya getaran atau gerak bolak-balik yang dapat dilakukan dalam waktu satu detik disebut Frekuensi.Frekuensi yang dihasilkan bandul disebut Frekuensi Alamiah.Frekuensi Alamiah adalah frekuensi yang ditimbulkan dari ayunan tanpa adanya pengaruh luar.

Gb. Gaya pd Ayunan Sederhana

Untuk Mengetahui besarnya gaya yang mempengaruhi gerak ayunan dapat digunakan persamaan berikut ini :

Page 42: Pengujian Kepegasan Pantulxx

Dimana :

F : Gaya (N)m : Massa benda (Kg)g : Percepatan gravitasi (ms-2)θ : Sudut simpangan (…o)l : Panjang tali (m)x : Simpangan getar (m)

Simpangan getar (A) dapat diketahui besarnya melalui persamaan sebagai berikut :Dimana :

A : Simpangan getar (Amplitudo) (m)θ : Sudut deviasi (…o)l : Panjang tali (m)

Sedangkan perioda getaran pada ayunan sederhana dapat diketahui melalui persamaan sebagai berikut :Dimana :

T : Perioda getaran (S)phi : 3,14 ( 22/7)l : Panjang tali (m)g : Percepatan gravitasi (ms-2)

Frekuensi getaran dapat dicari dengan menggunakan persamaan sebagai berikut :

Dimana :

Page 43: Pengujian Kepegasan Pantulxx

f : Frekuensi getaran (Hz)phi : 3,14 (22/7)g : Percepatan gravitasi (ms-2)l : Panjang tali (m)T : Periode getaran (s)

SOAL

Sebuah bandul memiliki massa 100 gr dengan panjang tali 40 cm. Apabila percepatan gravitasi bumi 10 ms-2 dan bandul tersebut diberi sudut simpangan sebesar 10o. Tentukanlah amplitudo getaran dan gaya pada saat simpangan maksimum serta perioda getarannya!

3. Pegas

Getaran pada pegas memiliki frekuensi alamiah sendiri. Waktu yang diperlukan oleh benda untuk bergerak dari titik A kembali lagi ke titik A lagi disebut satu perioda dimana besarnya tergantung pada massa beban dan konstanta gaya pegas.

Besarnya gaya yang menyebabkan getaran dapat di ketahui melalui persamaan sebagai berikut :

Dimana :

F : Gaya (N)

k : Konstanta gaya pegas (N/m)

x : Simpangan (m)

Konstanta gaya pegas dapat diketahui melalui persamaan sebagai berikut :

Dimana :

Page 44: Pengujian Kepegasan Pantulxx

k : Konstanta pegas (N/m)m : Massa benda (Kg)ω : Kecepatan sudut dari gerak pegas

Sedangkan untuk mengetahui besarnya frekuensi getarannya melalui persamaan sebagai berikut :

Dimana :

f : Frekuensi getaran (Hz)phi: 3,14 (22/7)k : Konstanta gaya pegasm : Massa beban

Dan besarnya perioda getar dapat diketahui melalui persamaan sebagai berikut :Dimana :

T : Perioda getarphi : 3,14 (22/7)m : Massa bebank : Konstanta gaya pegas

SOALSebuah pegas dengan tetapan gaya pegas sebesar 50 N/m dengan massa beban sebesar 50 gr. Dari keadaan setimbangannya pegas ditarik dengan gaya 2N. Tentukanlah simpangan maksimu, periode getarannya dan frekuensi getarannya

4. Hukum Kekekalan Energi Mekanik Pada Getaran

Besarnya energi mekanik dari suatu benda yang bergerak secara periodik adalah tetap.

Energi mekanik adalah jumlah dari energi kinetik dan energi potensial.

Di dalam setiap getaran energi potensial dan energi kinetik besarnya selalu berubah-ubah tetapi memiliki jumlah yang tetap.

Page 45: Pengujian Kepegasan Pantulxx

Besarnya energi potensial dari benda yang bergetar secara periodik dapat diketahui melalui persamaan sebagai berikut :

Dimana :

Ep : Energi Potensialk : Konstanta gaya pegasy : Simapangan getaran 

Diposkan oleh mariska   di 20.37 1 komentar:  

Gerak Harmonik

Dalam kehidupan sehari-hari terdapat banyak benda yang bergetar. Senar gitar yang sering anda main atau dimainkan oleh gitaris group band musik terkenal yang kadang membuat anda menjerit histeris bahkan sampai menangis tersedu-sedu, getaran garpu tala, getaran mobil ketika mesinnya dinyalakan atau ketika mobil mencium mobil lainnya hingga penumpangnya babak belur. Ingat juga ketika anda tertawa terpingkal-pingkal tubuh anda juga bergetar, demikian juga rumah anda yang bergetar dasyat hingga ambruk ketika terjadi gempa bumi. Sangat banyak contoh getaran dalam kehidupan kita, sehingga jika disebutkan satu persatu maka tentu sangat melelahkan. Silahkan dipikirkan sendiri contoh lainnya.

Getaran dan gelombang merupakan dua hal yang saling berkaitan. Gelombang, baik itu gelombang air laut, gelombang gempa bumi, gelombang suara yang merambat di udara; semuanya bersumber pada getaran. Dengan kata lain, getaran adalah penyebab adanya gelombang. Mengenai gelombang, selengkapnya akan kita pelajari pada pokok bahasan tersendiri. Sekarang terlebih dahulu kita pelajari pokok bahasan getaran. Semoga setelah mempelajari getaran, dirimu tidak ikut bergetar, apalagi ketika gurumu menyajikan soal-soal hitungan yang membuat dirimu mabuk kepayang.

GERAK HARMONIK

Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerak periodik. Karena gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini, sehingga pada

Page 46: Pengujian Kepegasan Pantulxx

kesempatan ini kita akan membahasnya secara mendetail.

Dalam kehidupan sehari-hari, gerak bolak balik benda yang bergetar terjadi tidak tepat sama karena pengaruh gaya gesekan. Ketika kita memainkan gitar, senar gitar tersebut akan berhenti bergetar apabila kita menghentikan petikan. Demikian juga bandul yang berhenti berayun jika tidak digerakan secara berulang. Hal ini disebabkan karena adanya gaya gesekan. Gaya gesekan menyebabkan benda-benda tersebut berhenti berosilasi. Jenis getaran seperti ini disebut getaran harmonik teredam. Walaupun kita tidak dapat menghindari gesekan, kita dapat meniadakan efek redaman dengan menambahkan energi ke dalam sistem yang berosilasi untuk mengisi kembali energi yang hilang akibat gesekan, salah satu contohnya adalah pegas dalam arloji yang sering kita pakai. Pada kesempatan ini kita hanya membahas gerak harmonik sederhana secara mendetail, karena dalam kehidupan sehari-hari terdapat banyak jenis gerak yang menyerupai sistem ini.

GERAK HARMONIS SEDERHANA

Gerak harmonis sederhana yang dapat dijumpai dalam kehidupan sehari-hari adalah getaran benda pada pegas dan getaran benda pada ayunan sederhana. Kita akan mempelajarinya satu persatu.

Gerak Harmonis Sederhana pada Ayunan

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya maka benda akan diam di titik kesetimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana.

Besaran fisika pada Gerak Harmonik Sederhana pada ayunan sederhana

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode alias waktu yang dibutuhkan benda untuk melakukan satu getaran secara lengkap. Benda melakukan getaran secara lengkap apabila benda mulai bergerak dari titik di mana benda tersebut dilepaskan dan kembali lagi ke titik tersebut.

Pada contoh di atas, benda mulai bergerak dari titik A lalu ke titik B, titik C dan kembali lagi ke B dan A. Urutannya adalah A-B-C-B-A. Seandainya benda dilepaskan dari titik C maka urutan gerakannya adalah C-B-A-B-C.

Jadi periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran (disebut satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut ). Satuan periode adalah sekon atau detik.

Page 47: Pengujian Kepegasan Pantulxx

Frekuensi (f)

Selain periode, terdapat juga frekuensi alias banyaknya getaran yang dilakukan oleh benda selama satu detik. Yang dimaksudkan dengan getaran di sini adalah getaran lengkap. Satuan frekuensi adalah 1/sekon atau s-1. 1/sekon atau s-1 disebut juga hertz, menghargai seorang fisikawan. Hertz adalah nama seorang fisikawan tempo doeloe. Silahkan baca biografinya untuk mengenal almahrum eyang Hertz lebih dekat.

Hubungan antara Periode dan Frekuensi

Frekuensi adalah banyaknya getaran yang terjadi selama satu detik/sekon. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah :

Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut :

Amplitudo (f)

Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan. Pada contoh ayunan sederhana sesuai dengan gambar di atas, amplitudo getaran adalah jarak AB atau BC.

Gerak Harmonis Sederhana pada Pegas

Semua pegas memiliki panjang alami sebagaimana tampak pada gambar a. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang), sebagaimana tampak pada gambar B. Jika beban ditarik ke bawah sejauh y1 dan dilepaskan (gambar c), benda akan akan bergerak ke B, ke D lalu kembali ke B dan C. Gerakannya terjadi secara berulang dan periodik. Sekarang mari kita tinjau hubungan antara gaya dan simpangan yang dialami pegas.

Kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Page 48: Pengujian Kepegasan Pantulxx

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

Persamaan ini sering dikenal sebagai hukum hooke dan dicetuskan oleh paman Robert Hooke. k adalah konstanta dan x adalah simpangan. Hukum Hooke akurat jika pegas tidak ditekan sampai kumparan pegas bersentuhan atau diregangkan sampai batas elastisitas. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan kaku atau lembut sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin lembut sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Pegas dapat bergerak jika terlebih dahulu diberikan gaya luar. Amati bahwa besarnya gaya bergantung juga pada besar x (simpangan).

Sekarang mari kita tinjau lebih jauh apa yang terjadi jika pegas diregangkan sampai jarak x = A, kemudian dilepaskan (lihat gambar di bawah).

Setelah pegas diregangkan, pegas menarik benda kembali ke posisi setimbang (x=0). Ketika melewati posisi setimbang, benda bergerak dengan laju yang tinggi karena telah diberi percepatan oleh gaya pemulih pegas. Ketika bergerak pada posisi setimbang, gaya pegas = 0, tetapi laju benda maksimum.

Karena laju benda maksimum maka benda terus bergerak ke kiri. Gaya pemulih pegas kembali memperlambat gerakan benda sehingga laju benda perlahan-lahan menurun dan benda berhenti sejenak ketika berada pada x = -A. Pada titik ini, laju benda = 0, tetapi gaya pegas bernilai maksimum, di mana arahnya menuju ke kanan (menuju posisi setimbang).

Benda tersebut bergerak kembali ke kanan menuju titik setimbang karena ditarik oleh gaya pemulih pegas tadi. Gerakan benda ke kanan dan ke kiri berulang secara periodik dan simetris antara x = A dan x = -A.

Besaran fisika pada Gerak Harmonik Sederhana pada pegas pada dasarnya sama dengan ayunan sederhana, yakni terdapat periode, frekuensi dan amplitudo. Jarak x dari posisi setimbang disebut simpangan. Simpangan maksimum alias jarak terbesar dari titik setimbang

Page 49: Pengujian Kepegasan Pantulxx

disebut amplitudo (A). Satu getaran Gerak Harmonik Sederhana pada pegas adalah gerak bolak balik lengkap dari titik awal dan kembali ke titik yang sama. Misalnya jika benda diregangkan ke kanan, maka benda bergerak mulai dari titik x = 0, menuju titik x = A, kembali lagi ke titik x = 0, lalu bergerak menuju titik x = -A dan kembali ke titik x = 0 (bingung yach ?). Dipahami perlahan-lahan ya…

Bagaimana osilasi/getaran pada pegas yang digantungkan secara vertikal ?

Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda (gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal). Mari kita tinjau lebih jauh getaran pada pegas yang digantungkan secara vertikal…

Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang.

Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Mari kita analisis secara matematis…

Gurumuda tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak.

Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang (perhatikan gambar c di bawah).

Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. (sambil lihat gambar di bawah ya).

Pada titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks), sehingga benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke

Page 50: Pengujian Kepegasan Pantulxx

bawah dan ke atas secara periodik. Dalam kenyataannya, pada suatu saat tertentu pegas tersebut berhenti bergerak karena adanya gaya gesekan udara.

Semua benda yang bergetar di mana gaya pemulih F berbanding lurus dengan negatif simpangan (F = -kx), maka benda tersebut dikatakan melakukan gerak harmonik sederhana (GHS) alias Osilator Harmonik Sederhana (OHS).

Contoh soal 1 :

Sebuah benda digantungkan pada sebuah tali yang digantung vertikal. Benda tersebut ditarik ke samping dan dilepaskan sehingga benda bergerak bolak balik di antara dua titik terpisah sejauh 20 cm. Setelah 20 detik dilepaskan, benda melakukan getaran sebanyak 40 kali. Hitunglah frekuensi, periode dan amplitudo getaran benda tersebut.

Panduan jawaban :

a) Frekuensi adalah banyaknya getaran yang dilakukan benda selama satu detik. Benda melakukan getaran sebanyak 40 kali selama 20 detik. Dengan demikian, selama 1 detik benda tersebut melakukan getaran sebanyak 2 kali (40 / 20).

b) Periode adalah waktu yang dibutuhkan untuk melakukan satu getaran (T).

T = 1/f = ½ = 0,5 sekon

Jadi benda melakukan satu getaran selama 0,5 detik.

c) Amplitudo adalah simpangan maksimum diukur dari titik keseimbangan. Karena benda bergerak bolak balik alias melakukan getaran di antara dua titik terpisah sejauh 20 cm, maka amplitudo getaran benda adalah setengah dari lintasan yang dilalui benda tersebut. Dengan demikian, amplitudo = ½ (20 cm) = 10 cm

Contoh soal 2 :

Sebuah benda digantungkan pada sebuah pegas dan berada pada titik kesetimbangan. Benda tersebut ditarik ke bawah sejauh 5 cm dan dilepaskan. Jika benda melalui titik terendah sebanyak 10 kali selama 5 detik, tentukanlah frekuensi, periode dan amplitudo getaran benda tersebut.

Panduan jawaban :

a) Frekuensi

Frekuensi adalah banyaknya getaran yang dilakukan benda selama satu detik. Pada soal dikatakan bahwa benda tersebut melewati titik terendah sebanyak 10 kali selama 5 detik.

Page 51: Pengujian Kepegasan Pantulxx

Agar benda bisa melewati titik terendah maka benda tersebut pasti melakukan getaran (gerakan bolak balik dari titik terendah menuju titik tertinggi dan kembali lagi ke titik terendah). Karena benda melewati titik terendah sebanyak 10 kali selama 5 detik maka dapat dikatakan bahwa benda melakukan getaran sebanyak 10 kali selama 5 detik. Dengan demikian, selama 1 detik benda tersebut melakukan getaran sebanyak 2 kali (10 / 5).

b) Periode

Periode adalah waktu yang dibutuhkan untuk melakukan satu getaran (T).

T = 1/f = ½ = 0,5 sekon

Jadi benda melakukan satu getaran selama 0,5 detik.

c) Amplitudo adalah simpangan maksimum diukur dari titik keseimbangan. Pada soal di atas, amplitudo getaran benda adalah 5 cm

Contoh soal 3 :

Sebuah sedan bermassa 1200 kg ditumpangi 3 orang yang memiliki massa total 200 kg. Pegas mobil tersebut tertekan sejauh 5 cm. Anggap saja percepatan gravitasi = 10 m/s2

Hitunglah :

a) konstanta pegas mobil tersebut

b) berapa jauh pegas sedan tersebut tertekan jika sedan dinaiki 4 orang dan bagasinya dipenuhi dengan muatan sehingga total massa adalah 300 kg ?

Panduan jawaban :

Pegas sedan mulai tertekan ketika dimuati beban bermassa 200 kg. Dengan demikian massa sedan tidak disertakan dalam perhitungan, karena ketika sedan tidak dimuati beban, pegas sedan berada pada posisi setimbang. 

Diposkan oleh mariska   di 20.33 Tidak ada komentar:  

Energi Potensial Gravitasi

Contoh yang paling umum dari energi potensial adalah energi potensial gravitasi. Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Demikian juga ketika anda berada pada ketinggian tertentu dari permukaan tanah (misalnya di atap rumah ;) atau di dalam pesawat). Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Setiap benda yang memiliki energi potensial gravitasi dapat melakukan kerja apabila benda tersebut bergerak menuju permukaan bumi

Page 52: Pengujian Kepegasan Pantulxx

(misalnya buah mangga jatuh dari pohon). Untuk memudahkan pemahamanmu, lakukan percobaan sederhana berikut ini. Pancangkan sebuah paku di tanah. Angkatlah sebuah batu yang ukurannya agak besar dan jatuhkan batu tegak lurus pada paku tersebut. Amati bahwa paku tersebut terpancang semakin dalam akibat usaha alias kerja yang dilakukan oleh batu yang anda jatuhkan.

Sekarang mari kita tentukan besar energi potensial gravitasi sebuah benda di dekat permukaan bumi. Misalnya kita mengangkat sebuah batu bermassa m. gaya angkat yang kita berikan pada batu paling tidak sama dengan gaya berat yang bekerja pada batu tersebut, yakni mg (massa kali percepatan gravitasi). Untuk mengangkat batu dari permukaan tanah hingga mencapai ketinggian h, maka kita harus melakukan usaha yang besarnya sama dengan hasil kali gaya berat batu (W = mg) dengan ketinggian h. Ingat ya, arah gaya angkat kita sejajar dengan arah perpindahan batu, yakni ke atas… FA = gaya angkat

W = FA . s = (m)(-g) (s) = - mg(h2-h1) —– persamaan 1

Tanda negatif menunjukkan bahwa arah percepatan gravitasi menuju ke bawah…

Dengan demikian, energi potensial gravitasi sebuah benda merupakan hasil kali gaya berat benda (mg) dan ketinggiannya (h). h = h2 - h1

EP = mgh —— persamaan 2

Berdasarkan persamaan EP di atas, tampak bahwa makin tinggi (h) benda di atas permukaan tanah, makin besar EP yang dimiliki benda tersebut. Ingat ya, EP gravitasi bergantung pada jarak vertikal alias ketinggian benda di atas titik acuan tertentu. Biasanya kita tetapkan tanah sebagai titik acuan jika benda mulai bergerak dari permukaan tanah atau gerakan benda menuju permukaan tanah. Apabila kita memegang sebuah buku pada ketinggian tertentu di atas meja, kita bisa memilih meja sebagai titik acuan atau kita juga bisa menentukan permukaan lantai sebagai titik acuan. Jika kita tetapkan permukaan meja sebagai titik acuan maka h alias ketinggian buku kita ukur dari permukaan meja. Apabila kita tetapkan tanah sebagai titik acuan maka ketinggian buku (h) kita ukur dari permukaan lantai.

Diposkan oleh mariska   di 20.31 Tidak ada komentar:  

potensial gravitasi

Benda bermassa m dipindahkan dari dasar ke suatu ketinggian h. Gaya konservatif pada benda tersebut adalah F = -mg. j dan pergeserannya h j maka dari persamaan tenaga potensial :

h2 F . dr UAB = - h1

Page 53: Pengujian Kepegasan Pantulxx

h2 -mg j . dy j UAB = - h1

h2 mg dy UAB = h1

UAB = mgh2 - mgh1

Bila UA = 0 untuk h1 = 0, tenaga potensial gravitasi di B pada ketinggian h dapat ditentukan :U = mgh 

Diposkan oleh mariska   di 20.30 Tidak ada komentar:  

Hukum Hooke

Hukum Hooke pada Pegas

Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang . Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.

Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).

Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).

Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :

Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh paman Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif,

Page 54: Pengujian Kepegasan Pantulxx

tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.

Hukum Hooke untuk benda non Pegas

Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.

Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)

Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :

Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban.

Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.

Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.

Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda

Page 55: Pengujian Kepegasan Pantulxx

(dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :

Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula (Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu bingung dengan panjang mula-mula atau luas penampang, coba amati gambar di bawah ini terlebih dahulu.

Dah paham panjang mula-mula (Lo) dan luas penampang (A) ?... Lanjut ya …

Besar E bergantung pada benda (E merupakan sifat benda). Secara matematis akan kita turunkan nanti… tuh di bawah

Pada persamaan ini tampak bahwa pertambahan panjang (delta L) sebanding dengan hasil kali panjang benda mula-mula (Lo) dan Gaya per satuan Luas (F/A).

Tegangan

Gaya per satuan Luas disebut juga sebagai tegangan. Secara matematis ditulis :

Satuan tegangan adalah N/m2 (Newton per meter kuadrat)

Regangan

Regangan merupakan perbandingan antara perubahan panjang dengan panjang awal. Secara matematis ditulis :

Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi).

Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jika hubungan antara tegangan dan regangan dirumuskan secara matematis, maka akan diperoleh persamaan berikut :

Page 56: Pengujian Kepegasan Pantulxx

Ini adalah persamaan matematis dari Modulus Elastis (E) alias modulus Young (Y). Jadi modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.

Di bawah ini adalah daftar modulus elastis dari berbagai jenis benda padat

Diposkan oleh mariska   di 20.30 Tidak ada komentar:  

Gerak Parabola

Pada pokok bahasan Gerak Lurus, baik GLB, GLBB dan GJB, kita telah membahas gerak benda dalam satu dimensi, ditinjau dari perpindahan, kecepatan dan percepatan. Kali ini kita mempelajari gerak dua dimensi di dekat permukaan bumi yang sering kita jumpai dalam kehidupan sehari-hari.

Pernakah anda menonton pertandingan sepak bola ? mudah-mudahan pernah walaupun hanya melalui Televisi. Gerakan bola yang ditendang oleh para pemain sepak bola kadang berbentuk melengkung. Mengapa bola bergerak dengan cara demikian ?

Selain gerakan bola sepak, banyak sekali contoh gerakan peluru/parabola yang kita jumpai dalam kehidupan sehari-hari. Diantaranya adalah gerak bola volly, gerakan bola basket, bola tenis, bom yang dijatuhkan, peluru yang dtembakkan, gerakan lompat jauh yang dilakukan atlet dan sebagainya. Anda dapat menambahkan sendiri. Apabila diamati secara saksama, benda-benda yang melakukan gerak peluru selalu memiliki lintasan berupa lengkungan dan seolah-olah dipanggil kembali ke permukaan tanah (bumi) setelah mencapai titik tertinggi. Mengapa demikian ?

Benda-benda yang melakukan gerakan peluru dipengaruhi oleh beberapa faktor. Pertama, benda tersebut bergerak karena ada gaya yang diberikan. Mengenai Gaya, selengkapnya kita pelajari pada pokok bahasan Dinamika (Dinamika adalah ilmu fisika yang menjelaskan gaya sebagai penyebab gerakan benda dan membahas mengapa benda bergerak demikian). Pada kesempatan ini, kita belum menjelaskan bagaimana proses benda-benda tersebut dilemparkan, ditendang dan sebagainya. Kita hanya memandang gerakan benda tersebut setelah dilemparkan dan bergerak bebas di udara hanya dengan pengaruh gravitasi. Kedua, seperti pada Gerak Jatuh Bebas, benda-benda yang melakukan gerak peluru dipengaruhi oleh gravitasi, yang berarah ke bawah (pusat bumi) dengan besar g = 9,8 m/s2. Ketiga, hambatan atau gesekan udara. Setelah benda tersebut ditendang, dilempar, ditembakkan atau dengan kata lain benda tersebut diberikan kecepatan awal hingga bergerak, maka selanjutnya gerakannya bergantung pada gravitasi dan gesekan alias hambatan udara. Karena kita menggunakan model ideal, maka dalam menganalisis gerak peluru, gesekan udara diabaikan.

Pengertian Gerak Peluru

Gerak peluru merupakan suatu jenis gerakan benda yang pada awalnya diberi kecepatan awal lalu menempuh lintasan yang arahnya sepenuhnya dipengaruhi oleh gravitasi.

Page 57: Pengujian Kepegasan Pantulxx

Karena gerak peluru termasuk dalam pokok bahasan kinematika (ilmu fisika yang membahas tentang gerak benda tanpa mempersoalkan penyebabnya), maka pada pembahasan ini, Gaya sebagai penyebab gerakan benda diabaikan, demikian juga gaya gesekan udara yang menghambat gerak benda. Kita hanya meninjau gerakan benda tersebut setelah diberikan kecepatan awal dan bergerak dalam lintasan melengkung di mana hanya terdapat pengaruh gravitasi.

Mengapa dikatakan gerak peluru ? kata peluru yang dimaksudkan di sini hanya istilah, bukan peluru pistol, senapan atau senjata lainnya. Dinamakan gerak peluru karena mungkin jenis gerakan ini mirip gerakan peluru yang ditembakkan.

Jenis-jenis Gerak Parabola

Dalam kehidupan sehari-hari terdapat beberapa jenis gerak parabola.

Pertama, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah. Dalam kehidupan sehari-hari terdapat banyak gerakan benda yang berbentuk demikian. Beberapa di antaranya adalah gerakan bola yang ditendang oleh pemain sepak bola, gerakan bola basket yang dilemparkan ke ke dalam keranjang, gerakan bola tenis, gerakan bola volly, gerakan lompat jauh dan gerakan peluru atau rudal yang ditembakan dari permukaan bumi.

Kedua, gerakan benda berbentuk parabola ketika diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal, sebagaimana tampak pada gambar di bawah. Beberapa contoh gerakan jenis ini yang kita temui dalam kehidupan sehari-hari, meliputi gerakan bom yang dijatuhkan dari pesawat atau benda yang dilemparkan ke bawah dari ketinggian tertentu.

Ketiga, gerakan benda berbentuk parabola ketika diberikan kecepatan awal dari ketinggian tertentu dengan sudut teta terhadap garis horisontal, sebagaimana tampak pada gambar di bawah.

Menganalisis Gerak Parabola

Bagaimana kita menganalisis gerak peluru ? Eyang Galileo telah menunjukan jalan yang baik dan benar. Beliau menjelaskan bahwa gerak tersebut dapat dipahami dengan menganalisa komponen-komponen horisontal dan vertikal secara terpisah. Gerak peluru adalah gerak dua dimensi, di mana melibatkan sumbu horisontal dan vertikal. Jadi gerak parabola merupakan superposisi atau gabungan dari gerak horisontal dan vertikal. Kita sebut bidang gerak peluru sebagai bidang koordinat xy, dengan sumbu x horisontal dan sumbu y vertikal. Percepatan gravitasi hanya bekerja pada arah vertikal, gravitasi tidak mempengaruhi gerak benda pada arah horisontal.

Page 58: Pengujian Kepegasan Pantulxx

Percepatan pada komponen x adalah nol (ingat bahwa gerak peluru hanya dipengaruhi oleh gaya gravitasi. Pada arah horisontal atau komponen x, gravitasi tidak bekerja). Percepatan pada komponen y atau arah vertikal bernilai tetap (g = gravitasi) dan bernilai negatif /-g (percepatan gravitasi pada gerak vertikal bernilai negatif, karena arah gravitasi selalu ke bawah alias ke pusat bumi).

Gerak horisontal (sumbu x) kita analisis dengan Gerak Lurus Beraturan, sedangkan Gerak Vertikal (sumbu y) dianalisis dengan Gerak Jatuh Bebas.

Untuk memudahkan kita dalam menganalisis gerak peluru, mari kita tulis kembali persamaan Gerak Lurus Beraturan (GLB) dan Gerak Jatuh Bebas (GJB).

Sebelum menganalisis gerak parabola secara terpisah, terlebih dahulu kita amati komponen Gerak Peluru secara keseluruhan.

Pertama, gerakan benda setelah diberikan kecepatan awal dengan sudut teta terhadap garis horisontal.

Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan v0y merupakan kecepatan awal pada sumbu y. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x. Pada titik tertinggi lintasan gerak benda, kecepatan pada arah vertikal (vy) sama dengan nol.

Kedua, gerakan benda setelah diberikan kecepatan awal pada ketinggian tertentu dengan arah sejajar horisontal.

Kecepatan awal (vo) gerak benda diwakili oleh v0x dan v0y. v0x merupakan kecepatan awal pada sumbu x, sedangkan Kecepatan awal pada sumbu vertikal (voy) = 0. vy merupakan komponen kecepatan pada sumbu y dan vx merupakan komponen kecepatan pada sumbu x.

Menganalisis Komponen Gerak Parabola secara terpisah

Sekarang, mari kita turunkan persamaan untuk Gerak Peluru. Kita nyatakan seluruh hubungan vektor untuk posisi, kecepatan dan percepatan dengan persamaan terpisah untuk komponen horisontal dan vertikalnya. Gerak peluru merupakan superposisi atau penggabungan dari dua gerak terpisah tersebut

Komponen kecepatan awal

Terlebih dahulu kita nyatakan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y.

Catatan : gerak peluru selalu mempunyai kecepatan awal. Jika tidak ada kecepatan awal maka gerak benda tersebut bukan termasuk gerak peluru. Walaupun demikian, tidak berarti setiap

Page 59: Pengujian Kepegasan Pantulxx

gerakan yang mempunyai kecepatan awal termasuk gerak peluru

Karena terdapat sudut yang dibentuk, maka kita harus memasukan sudut dalam perhitungan kecepatan awal. Mari kita turunkan persamaan kecepatan awal untuk gerak horisontal (v0x) dan vertikal (v0y) dengan bantuan rumus Sinus, Cosinus dan Tangen. Dipahami dulu persamaan sinus, cosinus dan tangen di bawah ini.

Berdasarkan bantuan rumus sinus, cosinus dan tangen di atas, maka kecepatan awal pada bidang horisontal dan vertikal dapat kita rumuskan sebagai berikut :

Keterangan : v0 adalah kecepatan awal, v0x adalah kecepatan awal pada sumbu x, v0y adalah kecepatan awal pada sumbu y, teta adalah sudut yang dibentuk terhadap sumbu x positip.

Kecepatan dan perpindahan benda pada arah horisontal

Kita tinjau gerak pada arah horisontal atau sumbu x. Sebagaimana yang telah dikemukakan di atas, gerak pada sumbu x kita analisis dengan Gerak Lurus Beraturan (GLB). Karena percepatan gravitasi pada arah horisontal = 0, maka komponen percepatan ax = 0. Huruf x kita tulis di belakang a (dan besaran lainnya) untuk menunjukkan bahwa percepatan (atau kecepatan dan jarak) tersebut termasuk komponen gerak horisontal atau sumbu x. Pada gerak peluru terdapat kecepatan awal, sehingga kita gantikan v dengan v0.

Dengan demikian, kita akan mendapatkan persamaan Gerak Peluru untuk sumbu x :

Keterangan : vx adalah kecepatan gerak benda pada sumbu x, v0x adalah kecepatan awal pada sumbu x, x adalah posisi benda, t adalah waktu tempuh, x0 adalah posisi awal. Jika pada contoh suatu gerak peluru tidak diketahui posisi awal, maka silahkan melenyapkan x0.

Perpindahan horisontal dan vertikal

Kita tinjau gerak pada arah vertikal atau sumbu y. Untuk gerak pada sumbu y alias vertikal, kita gantikan x dengan y (atau h = tinggi), v dengan vy, v0 dengan voy dan a dengan -g (gravitasi). Dengan demikian, kita dapatkan persamaan Gerak Peluru untuk sumbu y :

Keterangan : vy adalah kecepatan gerak benda pada sumbu y alias vertikal, v0y adalah kecepatan awal pada sumbu y, g adalah gravitasi, t adalah waktu tempuh, y adalah posisi benda (bisa juga ditulis h), y0 adalah posisi awal.

Berdasarkan persamaan kecepatan awal untuk komponen gerak horisontal v0x dan kecepatan awal untuk komponen gerak vertikal, v0y yang telah kita turunkan di atas, maka kita dapat menulis persamaan Gerak Peluru secara lengkap sebagai berikut :

Setelah menganalisis gerak peluru secara terpisah, baik pada komponen horisontal alias sumbu x dan komponen vertikal alias sumbu y, sekarang kita menggabungkan kedua

Page 60: Pengujian Kepegasan Pantulxx

komponen tersebut menjadi satu kesatuan. Hal ini membantu kita dalam menganalisis Gerak Peluru secara keseluruhan, baik ditinjau dari posisi, kecepatan dan waktu tempuh benda. Pada pokok bahasan Vektor dan Skalar telah dijelaskan teknik dasar metode analitis. Sebaiknya anda mempelajarinya terlebih dahulu apabila belum memahami dengan baik.

Persamaan untuk menghitung posisi dan kecepatan resultan dapat dirumuskan sebagai berikut.

Pertama, vx tidak pernah berubah sepanjang lintasan, karena setelah diberi kecepatan awal, gerakan benda sepenuhnya bergantung pada gravitasi. Nah, gravitasi hanya bekerja pada arah vertikal, tidak horisontal. Dengan demikian vx bernilai tetap.

Kedua, pada titik tertinggi lintasan, kecepatan gerak benda pada bidang vertikal alias vy = 0. pada titik tertinggi, benda tersebut hendak kembali ke permukaan tanah, sehingga yang bekerja hanya kecepatan horisontal alias vx, sedangkan vy bernilai nol. Walaupun kecepatan vertikal (vy) = 0, percepatan gravitasi tetap bekerja alias tidak nol, karena benda tersebut masih bergerak ke permukaan tanah akibat tarikan gravitasi. jika gravitasi nol maka benda tersebut akan tetap melayang di udara, tetapi kenyataannya tidak teradi seperti itu.

Ketiga, kecepatan pada saat sebelum menyentuh lantai biasanya tidak nol.

Pembuktian Matematis Gerak Peluru = Parabola

Sekarang Gurumuda ingin menunjukkan bahwa jalur yang ditempuh gerak peluru merupakan sebuah parabola, jika kita mengabaikan hambatan udara dan menganggap bahwa gravitasi alias g bernilai tetap. Untuk menunjukkan hal ini secara matematis, kita harus mendapatkan y sebagai fungsi x dengan menghilangkan/mengeliminasi t (waktu) di antara dua persamaan untuk gerak horisontal dan vertikal, dan kita tetapkan x0 = y0 = 0.

Kita subtitusikan nilai t pada persamaan 1 ke persamaan 2

Dari persamaan ini, tampak bahwa y merupakan fungsi dari x dan mempunyai bentuk umum

y = ax – bx2

Di mana a dan b adalah konstanta untuk gerak peluru tertentu. Persamaan ini merupakan fungsi parabola dalam matematika.

Petunjuk Penyelesaian Masalah-Soal Untuk Gerak Peluru

Pertama, baca dengan teliti dan gambar sebuah diagram untuk setiap soal yang diberikan. tapi jika otakmu mirip Eyang Einstein, gambarkan saja diagram tersebut dalam otak.

Kedua, buat daftar besaran yang diketahui dan tidak diketahui.

Page 61: Pengujian Kepegasan Pantulxx

Ketiga, analisis gerak horisontal (sumbu x) dan vertikal (sumbu y) secara terpisah. Jika diketahui kecepatan awal, anda dapat menguraikannya menjadi komponen-konpenen x dan y.

Keempat, berpikirlah sejenak sebelum menggunakan persamaan-persamaan. Gunakan persamaan yang sesuai, bila perlu gabungkan beberapa persamaan jika dibutuhkan.

Contoh Soal 1 :

David Bechkam menendang bola dengan sudut 30o terhadap sumbu x positif dengan kecepatan 20 m/s. Anggap saja bola meninggalkan kaki Beckham pada ketinggian permukaan lapangan. Jika percepatan gravitasi = 10 m/s2, hitunglah :

a) Tinggi maksimum

b) waktu tempuh sebelum bola menyentuh tanah

c) jarak terjauh yang ditempuh bola sebelum bola tersebut mencium tanah

d) kecepatan bola pada tinggi maksimum

e) percepatan bola pada ketinggian maksimum

Panduan Jawaban :

Soal ini terkesan sulit karena banyak yang ditanyakan. Sebenarnya gampang, jika kita melihat dan mengerjakannya satu persatu-satu.

Karena diketahui kecepatan awal, maka kita dapat menghitung kecepatan awal untuk komponen horisontal dan vertikal.

a) Tinggi maksimum (y)

Jika ditanyakan ketinggian maksimum, maka yang dimaksudkan adalah posisi benda pada sumbu vertikal (y) ketika benda berada pada ketinggian maksimum alias ketinggian puncak. Karena kita menganggap bola bergerak dari permukaan tanah, maka yo = 0. Kita tulis persamaan posisi benda pada gerak vertikal

Bagaimana kita tahu kapan bola berada pada ketinggian maksimum ? untuk membantu kita, ingat bahwa pada ketinggian maksimum hanya bekerja kecepatan horisontal (vx) , sedangkan kecepatan vertikal (vy) = 0. Karena vy = 0 dan percepatan gravitasi diketahui, maka kita gunakan salah satu gerak vertikal di bawah ini, untuk mengetahui kapan bola berada pada tinggian maksimum.

Page 62: Pengujian Kepegasan Pantulxx

Berdasarkan perhitungan di atas, bola mencapai ketinggian maksimum setelah bergerak 1 sekon. Kita masukan nilai t ini pada persamaan y

Ketinggian maksimum yang dicapai bola adalah 5 meter. Gampang khan ?

b) Waktu tempuh bola sebelum menyentuh permukaan tanah

Ketika menghitung ketinggian maksimum, kita telah mengetahui waktu yang diperlukan bola untuk mencapai ketinggian maksimum. Sekarang, yang ditanyakan adalah waktu tempuh bola sebelum menyentuh permukaan tanah. Yang dimaksudkan di sini adalah waktu tempuh total ketika benda melakukan gerak peluru.

Untuk menyelesaikan soal ini, hal pertama yang perlu kita ingat adalah ketika menyentuh permukaan tanah, ketinggian bola dari permukaan tanah (y) = 0. sekali lagi ingat juga bahwa kita menanggap bola bergerak dari permukaan tanah, sehingga posisi awal bola alias y0 = 0.

Sekarang kita tuliskan persamaan yang sesuai, yaitu

Waktu tempuh total adalah 2 sekon.

Sebenarnya kita juga bisa menggunakan cara cepat. Pada bagian a), kita sudah menghitung waku ketika benda mencapai ketinggian maksimum. Nah, karena lintasan gerak peluru berbentuk parabola, maka kita bisa mengatakan waktu tempuh benda untuk mencapai ketinggian maksimum merupakan setengah waktu tempuh total. Dengan kata lain, ketika benda berada pada ketinggian maksimum, maka benda tersebut telah melakukan setengah dari keseluruhan gerakan. Cermati gambar di bawah ini sehingga anda tidak kebingungan. Dengan demikian, kita bisa langsung mengalikan waktu tempuh bola ketika mencapai ketinggian maksimum dengan 2, untuk memperoleh waktu tempuh total.

c) Jarak terjauh yang ditempuh bola sebelum bola tersebut mencium tanah

Jika ditanya jarak tempuh total, maka yang dimaksudkan di sini adalah posisi akhir benda pada arah horisontal (atau s pada gambar di atas). Soal ini gampang, tinggal dimasukkan saja nilainya pada persamaan posisi benda untuk gerak horisontal atau sumbu x. karena kita menghitung jarak terjauh, maka waktu (t) yang digunakan adalah waktu tempuh total.

d) kecepatan bola pada tinggi maksimum

Pada titik tertinggi, tidak ada komponen vertikal dari kecepatan. Hanya ada komponen horisontal (yang bernilai tetap selama bola melayang di udara). Dengan demikian, kecepatan bola pada pada tinggi maksimum adalah :

e) percepatan bola pada ketinggian maksimum

Page 63: Pengujian Kepegasan Pantulxx

Pada gerak peluru, percepatan yang bekerja adalah percepatan gravitasi yang bernilai tetap, baik ketika bola baru saja ditendang, bola berada di titik tertinggi dan ketika bola hendak menyentuh permukaan tanah. Percepatan gravitasi (g) berapa ? jawab sendiri ya…

Contoh soal 2 :

Seorang pengendara sepeda motor yang sedang mabuk mengendarai sepeda motor melewati tepi sebuah jurang yang landai. Tepat pada tepi jurang kecepatan motornya adalah 10 m/s. Tentukan posisi sepeda motor tersebut, jarak dari tepi jurang dan kecepatannya setelah 1 detik.

Panduan Jawaban :

Kita memilih titik asal koordinat pada tepi jurang, di mana xo = yo = 0. Kecepatan awal murni horisontal (tidak ada sudut), sehingga komponen-komponen kecepatan awal adalah :

soal gerak parabola-1

Di mana letak sepeda motor setelah 1 detik ? setelah 1 detik, posisi sepeda motor dan pengendaranya pada koordinat x dan y adalah sbb (xo dan yo bernilai nol) :

x = xo + vox t = (10 m/s)(1 s) = 10 m

y = yo + (vo sin teta) t – ½ gt2

y = – ½ gt2

y = – ½ (10 m/s2)(1 s)2

y = – 5 m

Nilai negatif menunjukkan bahwa motor tersebut berada di bawah titik awalnya.

soal gerak parabola-2

Berapa jarak motor dari titik awalnya ?

Berapa kecepatan motor pada saat t = 1 s ?

vx = vox = 10 m/s

vy = -gt = -(10 m/s2)(1 s) = -10 m/s

soal gerak parabola-3

Page 64: Pengujian Kepegasan Pantulxx

soal gerak parabola-4

Setelah bergerak 1 sekon, sepeda motor bergerak dengan kecepatan 14,14 m/s dan berada pada 45o terhadap sumbu x positif.

Diposkan oleh mariska   di 20.19 Tidak ada komentar:  

Vektor satuan

Vektor satuan (unit vektor) merupakan suatu vektor yang besarnya = 1. vektor satuan tidak mempunyai satuan. Vektor satuan berfungsi untuk menunjukan suatu arah dalam ruang. Untuk membedakan vektor satuan dari vektor biasa maka vektor satuan dicetak tebal (untuk tulisan cetak) atau di atas vektor satuan disisipkan tanda ^ (untuk tulisan tangan)

Pada sistem koordinat kartesius (xyz) kita menggunakan vektor satuan i untuk menunjukkan arah sumbu x positif, vektor satuan j untuk menunjukkan arah sumbu y positif, vektor satuan k untuk menunjukkan arah sumbu y positif.

Untuk memudahkan pemahaman dirimu, perhatikan contoh berikut ini. Misalnya terdapat sebuah vektor F sebagaimana tampak pada gambar di bawah.

Pada gambar di atas, tampak bahwa vektor satuan i menunjukkan arah sumbu x positif dan vektor satuan j menunjukkan arah sumbu y positif. Kita dapat menyatakan hubungan antara vektor komponen dan komponenya masing-masing, sebagai berikut :

Fx = Fxi

Fy = Fyj

Kita dapat menulis vektor F dalam komponen-komponennya sebagai berikut :

F = Fxi + Fyj

Misalnya terdapat dua vektor, A dan B pada sistem koordinat xy, di mana kedua vektor ini dinyatakan dalam komponen-komponennya, sebagaimana tampak di bawah :

A = Axi + Ayj

B = Bxi + Byj

Bagaimana jika A dan B dijumlahkan ? gampang…

Page 65: Pengujian Kepegasan Pantulxx

R = A + B

R = (Axi + Ayj) + (Bxi + Byj)

R = (Ax + Bx)i + (Ay + By)j

R = Rxi + Ryj

Apabila tidak semua vektor berada pada bidang xy maka kita bisa menambahkan vektor satuan k, yang menunjukkan arah sumbu z positif.

A = Axi + Ayj + Azk

B = Bxi + Byj + Bzk

Jika vektor A dan B dijumlahkan maka akan diperoleh hasil sebagai berikut :

R = A + B

R = (Axi + Ayj + Azk) + (Bxi + Byj + Bzk)

R = (Ax + Bx)i + (Ay + By)j + (Az + Bz)k

R = Rxi + Ryj + Rzk

Dibaca perlahan-lahan. Jika belum dipahami, diulangi lagi…….

Perkalian titik menggunakan komponen vektor satuan

Kita dapat menghitung perkalian skalar secara langsung jika kita mengetahui komponen x, y dan z dari vektor A dan B (vektor yang diketahui).

Untuk melakukan perkalian titik dengan cara ini, terlebih dahulu kita lakukan perkalian titik dari vektor satuan, setelah itu kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

Vektor satuaj i, j dan k saling tegak lurus satu sama lain, sehingga memudahkan kita dalam perhitungan. Menggunakan persamaan perkalian skalar yang telah diturunkan di atas (A.B = AB cos teta) kita peroleh :

i . i = j . j = k . k = (1)(1) cos 0 = 1

Page 66: Pengujian Kepegasan Pantulxx

i . j = i . k = j . k = (1)(1) cos 90o = 0

Sekarang kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

A . B = Axi . Bxi + Axi . Byj + Axi . Bzk +

Ayj . Bxi + Ayj . Byj + Ayj . Bzk +

Azk . Bxi + Azk . Byj + Azk . Bzk

A . B = AxBx (i . i) + AxBy (i . j) + Ax Bz (i . k) +

AyBx (j . i) + AyBy (j . j) + AyBz (j . k) +

AzBx (k . i) + AzBy (k . j) + AzBz (k . k)

Bahasa apa’an neh… dipahami perlahan-lahan ya….

Karena i . i = j . j = k . k = 1 dan i . j = i . k = j . k = 0, maka :

A . B = AxBx (1) + AxBy (0) + Ax Bz (0) +

AyBx (0) + AyBy (1) + AyBz (0) +

AzBx (0) + AzBy (0) + AzBz (1)

A . B = AxBx (1) + 0 + 0 +

0 + AyBy (1) + 0 +

0 + 0 + AzBz (1)

A . B = AxBx + AyBy + AzBz

Berdasarkan hasil perhitungan ini, bisa disimpulkan bahwa perkalian skalar atau perkalian titik dari dua vektor adalah jumlah dari perkalian komponen-komponennya yang sejenis.

Gampang khaen ? dipahami perlahan-lahan… ntar juga ngerti kok… kaya belajar naek sepeda agar dirimu semakin memahami bahasa alien di atas, mari kita kerjakan latihan soal di bawah ini

Page 67: Pengujian Kepegasan Pantulxx

Contoh Soal 1 :

Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Sudut yang terbentuk adalah 90o. Hitunglah perkalian titik kedua vektor tersebut…

Panduan jawaban :

Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.

Ax = (5) cos 0o = (5) (1) = 5

Ay = (5) sin 0o = (5) (0) = 0

Az = 0

Bx = (4) cos 90o = (4) (0) = 0

By = (4) sin 90o = (4) (1) = 1

Bz = 0

Vektor A hanya mempunyai komponen vektor pada sumbu x dan vektor B hanya mempunyai komponen vektor pada sumbu y. Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.

Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :

A . B = Ax Bx + AyBy + AzBz

A . B = (5) (0) + (0) (1) + 0

A . B = 0 + 0 + 0

A . B = 0

Masa sich hasilnya nol ?

Coba kita bandingkan dengan cara pertama

A.B = AB cos teta

Page 68: Pengujian Kepegasan Pantulxx

A.B = (4)(5) cos 90

A.B = (4) (5) (0)

A.B = 0

Hasilnya sama to ? he2… guampang banget…

Contoh Soal 2 :

Besar vektor A dan B berturut-turut adalah 5 dan 4, sebagaimana tampak pada gambar di bawah. Hitunglah perkalian titik kedua vektor tersebut, jika sudut yang terbentuk adalah 30o

Panduan jawaban :

Sebelum kita menghitung perkalian titik vektor A dan B, terlebih dahulu kita ketahui komponen vektor kedua tersebut.

Komponen z bernilai nol karena vektor A dan B berada pada bidang xy.

Sekarang kita hitung perkalian titik antara vektor A dan B menggunakan persamaan perkalian titik dengan vektor komponen :

Coba kita bandingkan dengan cara pertama.

Hasilnya sama to ? guampang….

Perkalian silang menggunakan komponen vektor satuan

Kita dapat menghitung perkalian silang secara langsung jika kita mengetahui komponen vektor yang diketahui. Urutannya sama dengan perkalian titik.

Pertama-tama, kita lakukan perkalian antara vektor-vektor satuan i, j dan k. Hasil perkalian

Page 69: Pengujian Kepegasan Pantulxx

vektor antara vektor satuan yang sama adalah nol.

i x i = j x j = k x k = 0

Dengan berpedoman pada persamaan perkalian vektor yang telah diturunkan sebelumnya (A x B = AB sin teta) dan sifat anti komutatif dari perkalian vektor (A x B = – B x A), maka kita peroleh :

i x j = -j x i = k

j x k = -k x j = i

k x i = -i x k = j

Sekarang kita nyatakan vektor A dan B dalam komponen-komponennya, menguraikan perkaliannya dan menggunakan perkalian dari vektor-vektor satuannya.

A x B = (Axi + Ayj + Azk) x (Bxi + Byj + Bzk)

A x B = Axi x Bxi + Axi x Byj + Axi x Bzk +

Ayj x Bxi + Ayj x Byj + Ayj x Bzk +

Azk x Bxi + Azk x Byj + Azk x Bzk

A x B = AxBx (i x i) + AxBy (i x j) + Ax Bz (i x k) +

AyBx (j x i) + AyBy (j x j) + AyBz (j x k) +

AzBx (k x i) + AzBy (k x j) + AzBz (k x k)

Karena i x i = j x j = k x k = 0 dan i x j = -j x i = k, j x k = -k x j = i, k x i = -i x k = j, maka :

A x B = AxBx (0) + AxBy (k) + Ax Bz (-j) +

AyBx (-k) + AyBy (0) + AyBz (i) +

AzBx (j) + AzBy (-i) + AzBz (0)

A x B = AxBy (k) + Ax Bz (-j) +

AyBx (-k) + AyBz (i) +

AzBx (j) + AzBy (-i)

Page 70: Pengujian Kepegasan Pantulxx

A x B = AxBy (k) + Ax Bz (-j) + AyBx (-k) + AyBz (i) + AzBx (j) + AzBy (-i)

A x B = (AyBz - AzBy)i + (AzBx - Ax Bz)j + (AxBy - AyBx )k

Pahami perlahan-lahan….

Jika C = A x B maka komponen-komponen dari C adalah sebagai berikut :

Cx = AyBz - AzBy

Cy = AzBx - Ax Bz

Cz = AxBy - AyBx

Diposkan oleh mariska   di 20.18 1 komentar:  

koordinat kartesius dan koordinat polar

koordinat polar 

Dalam beberapa hal, lebih mudah mencari lokasi/posisi suatu titik dengan menggunakan koordinat polar. Koordinat Polar menunjukkan posisi relatif terhadap titik kutub O dan sumbupolar (ray) yang diberikan dan berpangkal pada O. 

koordinat kartesius 

Page 71: Pengujian Kepegasan Pantulxx

koordinat kartesius Dalam matematika, Sistem koordinat Kartesius digunakan untuk menentukan tiap titik dalam bidang dengan menggunakan dua bilangan yang biasa disebut koordinat x dan koordinat y dari titik tersebut. 

Untuk mendefinisikan koordinat diperlukan dua garis berarah yang tegak lurus satu sama lain (sumbu x dan sumbu y), dan panjang unit, yang dibuat tanda-tanda pada kedua sumbu tersebut (lihat Gambar 1). 

Sistem koordinat Kartesius dapat pula digunakan pada dimensi-dimensi yang lebih tinggi, seperti 3 dimensi, dengan menggunakan tiga sumbu (sumbu x, y, dan z). Gambar 2 - Sistem koordinat Kartesius disertai lingkaran merah yang berjari-jari 2 yang berpusat pada titik asal (0,0). Persamaan lingkaran merah ini adalah x² + y² = 4. 

Dengan menggunakan sistem koordinat Kartesius, bentuk-bentuk geometri seperti kurva dapat diekspresikan dengan persamaan aljabar. Sebagai contoh, lingkaran yang berjari-jari 2 dapat diekspresikan dengan persamaan x² + y² = 4 (lihat Gambar 2). 

Istilah Kartesius digunakan untuk mengenang ahli matematika sekaligus filsuf dari Perancis

Page 72: Pengujian Kepegasan Pantulxx

Descartes, yang perannya besar dalam menggabungkan aljabar dan geometri (Cartesius adalah latinisasi untuk Descartes). Hasil kerjanya sangat berpengaruh dalam perkembangan geometri analitik, kalkulus, dan kartografi. 

Ide dasar sistem ini dikembangkan pada tahun 1637 dalam dua tulisan karya Descartes. Pada bagian kedua dari tulisannya Discourse on Method, ia memperkenalkan ide baru untuk menggambarkan posisi titik atau obyek pada sebuah permukaan, dengan mengggunakan dua sumbu yang bertegak lurus antar satu dengan yang lain. Dalam tulisannya yang lain, La Géométrie, ia memperdalam konsep-konsep yang telah dikembangkannya. 

SISTEM KOORDINAT KARTESIUS DALAM 2 DIMENSI Sistem koordinat Kartesius dalam dua dimensi umumnya didefinisikan dengan dua sumbu yang saling bertegak lurus antar satu dengan yang lain, yang keduanya terletak pada satu bidang (bidang xy). Sumbu horizontal diberi label x, dan sumbu vertikal diberi label y. Pada sistem koordinat tiga dimensi, ditambahkan sumbu yang lain yang sering diberi label z. Sumbu-sumbu tersebut ortogonal antar satu dengan yang lain. (Satu sumbu dengan sumbu lain bertegak lurus.) 

Titik pertemuan antara kedua sumbu, titik asal, umumnya diberi label 0. Setiap sumbu juga mempunyai besaran panjang unit, dan setiap panjang tersebut diberi tanda dan ini membentuk semacam grid. Untuk mendeskripsikan suatu titik tertentu dalam sistem koordinat dua dimensi, nilai x ditulis (absis), lalu diikuti dengan nilai y (ordinat). Dengan demikian, format yang dipakai selalu (x,y) dan urutannya tidak dibalik-balik. Gambar 3 - Keempat kuadran sistem koordinat Kartesius. Panah yang ada pada sumbu berarti panjang sumbunya tak terhingga pada arah panah tersebut. 

Pilihan huruf-huruf didasari oleh konvensi, dimana huruf-huruf yang dekat akhir (seperti x dan y) digunakan untuk menandakan variabel dengan nilai yang tak diketahui, sedngakan huruf-huruf yang lebih dekat awal digunakan untuk menandakan nilai yang diketahui. 

Sebagai contoh, pada Gambar 3, titik P berada pada koordinat (3,5). 

Karena kedua sumbu bertegak lurus satu sama lain, bidang xy terbagi menjadi empat bagian yang disebut kuadran, yang pada Gambar 3 ditandai dengan angka I, II, III, dan IV. Menurut konvensi yang berlaku, keempat kuadran diurutkan mulai dari yang kanan atas (kuadran I), melingkar melawan arah jarum jam (lihat Gambar 3). Pada kuadran I, kedua koordinat (x dan y) bernilai positif. Pada kuadran II, koordinat x bernilai negatif dan koordinat y bernilai positif. Pada kuadran III, kedua koordinat bernilai negatif, dan pada kuadran IV, koordinat x bernilai positif dan y negatif (lihat tabel dibawah ini). 

Page 73: Pengujian Kepegasan Pantulxx

Kuadran nilai x nilai y I > 0 > 0 II <> 0 III > 0 <>

Diposkan oleh mariska   di 20.11 Tidak ada komentar:  

Kamis, 03 Desember 2009

1. MOMENTUM LINIER (p)

MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.

p = m v

Momentum merupakan besaran vektor, dengan arah p = arah v

2. MOMENTUM ANGULER (L)

MOMENTUM ANGULER adalah hasil kali (cross product) momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.

L = m v R = m w R2L = p R

Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.

Jika pada benda bekerja gaya F tetap selama waktu t, maka IMPULS I dari gaya itu adalah:t1I = ò F dt = F (t2 - t1)t2

I = Perubahan momentumFt = m v akhir - m v awal

Impuls merupakan besaran vektor. Pengertian impuls biasanya dipakai dalam peristiwa besar dimana F >> dan t <<. Jika gaya F tidak tetap (F fungsi dari waktu) maka rumus I = F . t tidak berlaku.

Impuls dapat dihitung juga dengan cara menghitung luas kurva dari grafik gaya F vs waktu t.

Diposkan oleh mariska   di 01.06 Tidak ada komentar:  

Page 74: Pengujian Kepegasan Pantulxx

usaha dan energi

Usaha alias Kerja yang dilambangkan dengan huruf W (Work-bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut.

Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang searah dengan perpindahan.

ENERGI

Segala sesuatu yang kita lakukan dalam kehidupan sehari-hari membutuhkan energi. Untuk bertahan hidup kita membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan membutuhkan energi untuk bergerak dan energi itu diperoleh dari bahan bakar. Hewan juga membutuhkan energi untuk hidup, sebagaimana manusia dan tumbuhan.

Energi merupakan salah satu konsep yang paling penting dalam fisika. Konsep yang sangat erat kaitannya dengan usaha adalah konsep energi. Secara sederhana, energi merupakan kemampuan melakukan usaha. Definisi yang sederhana ini sebenarnya kurang tepat atau kurang valid untuk beberapa jenis energi (misalnya energi panas atau energi cahaya tidak dapat melakukan kerja). Definisi tersebut hanya bersifat umum. Secara umum, tanpa energi kita tidak dapat melakukan kerja. Sebagai contoh, jika kita mendorong sepeda motor yang mogok, usaha alias kerja yang kita lakukan menggerakan sepeda motor tersebut. Pada saat yang sama, energi kimia dalam tubuh kita menjadi berkurang, karena sebagian energi kimia dalam tubuh berubah menjadi energi kinetik sepeda motor. Usaha dilakukan ketika energi dipindahkan dari satu benda ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang, tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi bentuk energi lain. Mengenai Hukum Kekekalan Energi akan kita kupas tuntas dalam pokok bahasan tersendiri.

Dalam kehidupan sehari-hari terdapat banyak jenis energi. Energi kimia pada bahan bakar membantu kita menggerakan kendaraan, demikian juga energi kimia pada makanan membantu makhluk hidup bertahan hidup dan melakukan kerja. Dengan adanya energi listrik, kita bisa menonton TV atau menyalakan komputer sehingga bisa bermain game sepuasnya. Ini hanya beberapa contoh dari sekian banyak jenis energi dalam kehidupan kita. Misalnya ketika kita menyalakan lampu neon, energi listrik berubah menjadi energi cahaya. Energi listrik juga bisa berubah menjadi energi panas (setrika listrik), energi gerak (kipas angin) dan sebagainya. Banyak sekali contoh dalam kehidupan kita, dirimu bisa memikirkan contoh lainnya. Secara umum, energi bermanfaat bagi kita ketika energi mengalami perubahan bentuk, misalnya energi listrik berubah menjadi energi gerak (kipas angin), atau energi kimia berubah menjadi energi gerak (mesin kendaraan).

Page 75: Pengujian Kepegasan Pantulxx

Pada kesempatan ini kita akan mempelajari dua jenis energi yang sebenarnya selalu kita jumpai dalam kehidupan sehari-hari, yakni energi potensial dan energi kinetik translasi. Energi potensial dapat berubah bentuk menjadi energi kinetik ketika benda bergerak lurus dan sebaliknya energi kinetik juga bisa berubah bentuk menjadi energi potensial. Total kedua energi ini disebut energi mekanik, yang besarnya tetap alias kekal.

Diposkan oleh mariska   di 01.00 Tidak ada komentar:  

gerak harmonis sederhana

Gerak Harmonis Sederhana adalah gerak bolak - balik suatu benda melewati titik keseimbangan. Contohnya, bandul jam yang bergerak ke kiri dan ke kanan, penggaris yang salah satu ujungnya dijepit di meja dan ujung lainnya digetarkan.

Dalam Gerak Harmonis Sederhana, benda terbagi menjadi tiga bagian. Dimana tiap benda yang bergerak secara harmonis akan memiliki simpangan, kecepatan ,dan percepatan. Ketiganya nanti akan dibahas secara lebih lanjut di halaman berikutnya. Termasuk pula akan dibahas mengenai sudut fase, fase, dan beda fase

Selanjutnya, akan dibahas pula mengenai gaya pegas yang erat hubungannya dengan gerak haromnis sederhana Dalam hal pegas ini, yang akan dibahas adalah Elastisitas dan Hukum Hooke. Selain itu, modulus elastisitas atau yang sering disebut juga dengan sebutan Modulus Young, yang artinya perbandingan antara tegangan dan regangan

Hal lain yang akan dibahas adalah Gerakan benda di bawah pengaruh gaya pegas. Bila sebuah benda yang digantungkan pada pegas ditarik dan dilepas, pegas akan bergetar.

Diposkan oleh mariska   di 00.39 Tidak ada komentar:  

elastisitas

Ketika dirimu menarik karet mainan sampai batas tertentu, karet tersebut bertambah panjang. silahkan dicoba kalau tidak percaya. Jika tarikanmu dilepaskan, maka karet akan kembali ke panjang semula. Demikian juga ketika dirimu merentangkan pegas, pegas tersebut akan bertambah panjang. tetapi ketika dilepaskan, panjang pegas akan kembali seperti semula. Apabila di laboratorium sekolah anda terdapat pegas, silahkan melakukan pembuktian ini. Regangkan pegas tersebut dan ketika dilepaskan maka panjang pegas akan kembali seperti semula. Mengapa demikian ? hal itu disebabkan karena benda-benda tersebut memiliki sifat

Page 76: Pengujian Kepegasan Pantulxx

elastis. Elastis atau elastsisitas adalah kemampuan sebuah benda untuk kembali ke bentuk awalnya ketika gaya luar yang diberikan pada benda tersebut dihilangkan. Jika sebuah gaya diberikan pada sebuah benda yang elastis, maka bentuk benda tersebut berubah. Untuk pegas dan karet, yang dimaksudkan dengan perubahan bentuk adalah pertambahan panjang.

Perlu anda ketahui bahwa gaya yang diberikan juga memiliki batas-batas tertentu. Sebuah karet bisa putus jika gaya tarik yang diberikan sangat besar, melawati batas elastisitasnya. Demikian juga sebuah pegas tidak akan kembali ke bentuk semula jika diregangkan dengan gaya yang sangat besar. Jadi benda-benda elastis tersebut memiliki batas elastisitas. Batas elastis itu apa ? lalu bagaimana kita bisa mengetahui hubungan antara besarnya gaya yang diberikan dan perubahan panjang minimum sebuah benda elastis agar benda tersebut bisa kembali ke bentuk semula ? untuk menjawab pertanyaan ini, mari kita berkenalan dengan paman Hooke.

HUKUM HOOKE

Hukum Hooke pada Pegas

Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0).

Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh paman Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.

Hukum Hooke untuk benda non Pegas

Page 77: Pengujian Kepegasan Pantulxx

Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu.

Diposkan oleh mariska   di 00.30 Tidak ada komentar:  

gerak benda langit

Bumi kita berputar seperti gasing. Gerak putar Bumi pada sumbu putarnya ini dinamakan gerak rotasi. Untuk menyelesaikan satu putaran (satu periode rotasi), dibutuhkan waktu 23 jam 56 menit 4.1 detik. Gerak rotasi Bumi inilah yang menyebabkan terjadinya siang dan malam dan pergerakan semu benda-benda langit.

Gerak semu langit adalah gerak yang kita amati dari Bumi, dimana benda-benda langit terlihat terbit di timur dan tenggelam di barat. Gerak semu ini teramati karena Bumi kita yang ber-rotasi dengan arah sebaliknya, dari barat ke timur. Lintasan gerak benda-benda langit yang terbit di timur dan terbenam di barat, dinamakan lintasan harian benda langit. Lintasan harian ini terlihat berbeda jika kita mengamatinya dari lintang berbeda. Jika kita berada tepat di khatulistiwa, kita akan mengamati lintasan haria benda-benda langit tersebut, tegak lurus terhadap horizon / ufuk.

Jika kita berada di bumi belahan selatan (sebelah selatan khatulistiwa), kita akan mengamati lintasan harian benda-benda langit tidak lagi tegak lurus terhadap horizon, tapi condong ke arah utara. Besarnya kemiringan lintasan harian ini tergantung sejauh mana kita dari khatulistiwa. Semakin ke arah selatan, maka garis lintasan gerak harian benda-benda langit akan semakin condong ke arah utara. Begitu juga sebaliknya jika kita bergerak ke arah utara. Semakin ke utara dari khatulistiwa, maka semakin besar kecondongan lintasan harian benda-benda langit itu ke arah selatan.

Gerak semu langit tidak sama periodenya dengan gerak Matahari di langit (diamati dari Bumi). Gerak semu langit periodenya 23 jam 56 menit 4.1 detik, sedangkan gerak harian Matahari di langit periodenya 24 jam. Terdapat perbedaan sekitar 4 menit. Perbedaan ini menyebabkan penampakan langit sedikit berbeda dilihat pada jam yang sama tiap harinya. Sebagai contoh: misalnya sebuah bintang hari in terbit pukul 18:00 sore. Maka keesokan harinya ia akan terbit pukul 17:56, lusa pukul 17:52, dst. Bintang itu akan terbit 4 menit lebih cepat dari hari sebelumnya. Karena itu, perlahan-lahan penampakan langit akan bergeser dari hari ke hari. Kira-kira enam bulan dari sekarang, bagian langit yang berada di atas kepala kita pada (misalnya) jam 9 malam, akan berada di bawah kaki kita. Dengan kata lain, jika kita mengamati langit dengan waktu pengamatan yang terpisak 6 bulan,kita akan mengamati dua belahan bola langit yang berbeda.

Objek-objek langit seperti Matahari, Bulan, dan planet-planet, memiliki geraknya sendiri diantara bintang-bintang. Matahari bergerak secara perlahan ke arah timur relatif terhadap bintang-bintang. Karena itu, untuk menyelesaikan satu putaran mulai dari misalnya posisi tepat di atas kepala kita, terbenam, terbit, kembali di atas kepala kita, matahari membutuhkan waktu 24 jam (selang waktu sehari semalam). Bintang-bintang membutuhkan waktu sama

Page 78: Pengujian Kepegasan Pantulxx

denga periode rotasi Bumi, 23j 56m 4.1d. Bulan membutuhkan waktu sedikit bervariasi, kira-kira 50 menit lebih panjang dari 24 jam. Planet-planet bergerak di langit dengan kecepatan yang lebih besar lagi variasinya, tergantung pada seberapa dekat planet tersebut ke Matahari, dan dimana posisinya (dalam orbitnya) relatif terhadap Bumi.

Diposkan oleh mariska   di 00.24 Tidak ada komentar:  

hukum kepler

Karya Kepler sebagian dihasilkan dari data-data hasil pengamatan yang dikumpulkan Ticho Brahe mengenai posisi planet-planet dalam geraknya di luar angkasa. Hukum ini telah dicetuskan Kepler setengah abad sebelum Newton mengajukan ketiga Hukum-nya tentang gerak dan hukum gravitasi universal. Di antara hasil karya Kepler, terdapat tiga penemuan yang sekarang kita kenal sebagai Hukum Kepler mengenai gerak planet.

Hukum I Kepler

Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, di mana matahari terletak pada salah satu fokusnya.

Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, Newton menemukan bahwa ternyata hukum-hukum Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler.

Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor

F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas. Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangkan titik terjauh adalah aphelion.

Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja.

Page 79: Pengujian Kepegasan Pantulxx

Hukum II Kepler

Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama.

Hal yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips.

Hukum III Kepler

Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari.

Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari

Diposkan oleh mariska   di 00.08 Tidak ada komentar:  

potensial gravitasi

Benda bermassa m dipindahkan dari dasar ke suatu ketinggian h. Gaya konservatif pada benda tersebut adalah F = -mg. j dan pergeserannya h j maka dari persamaan tenaga potensial :

h2 F . dr UAB = - h1 

h2 -mg j . dy j UAB = - h1 

h2  mg dy UAB =  h1 

UAB = mgh2 - mgh1

Page 80: Pengujian Kepegasan Pantulxx

Bila UA = 0 untuk h1 = 0, tenaga potensial gravitasi di B pada ketinggian h dapat ditentukan :U = mgh

Diposkan oleh mariska   di 00.03 Tidak ada komentar:  

Rabu, 02 Desember 2009

Energi Potensial Gravitasi

Contoh yang paling umum dari energi potensial adalah energi potensial gravitasi. Buah mangga yang lezat dan ranum memiliki energi potensial gravitasi ketika sedang menggelayut pada tangkainya. Demikian juga ketika anda berada pada ketinggian tertentu dari permukaan tanah (misalnya di atap rumah ;) atau di dalam pesawat). Energi potensial gravitasi dimiliki benda karena posisi relatifnya terhadap bumi. Setiap benda yang memiliki energi potensial gravitasi dapat melakukan kerja apabila benda tersebut bergerak menuju permukaan bumi (misalnya buah mangga jatuh dari pohon). Untuk memudahkan pemahamanmu, lakukan percobaan sederhana berikut ini. Pancangkan sebuah paku di tanah. Angkatlah sebuah batu yang ukurannya agak besar dan jatuhkan batu tegak lurus pada paku tersebut. Amati bahwa paku tersebut terpancang semakin dalam akibat usaha alias kerja yang dilakukan oleh batu yang anda jatuhkan.

Sekarang mari kita tentukan besar energi potensial gravitasi sebuah benda di dekat permukaan bumi. Misalnya kita mengangkat sebuah batu bermassa m. gaya angkat yang kita berikan pada batu paling tidak sama dengan gaya berat yang bekerja pada batu tersebut, yakni mg (massa kali percepatan gravitasi). Untuk mengangkat batu dari permukaan tanah hingga mencapai ketinggian h, maka kita harus melakukan usaha yang besarnya sama dengan hasil kali gaya berat batu (W = mg) dengan ketinggian h. Ingat ya, arah gaya angkat kita sejajar dengan arah perpindahan batu, yakni ke atas… FA = gaya angkat

W = FA . s = (m)(-g) (s) = - mg(h2-h1) —– persamaan 1

Tanda negatif menunjukkan bahwa arah percepatan gravitasi menuju ke bawah…

Dengan demikian, energi potensial gravitasi sebuah benda merupakan hasil kali gaya berat benda (mg) dan ketinggiannya (h). h = h2 - h1

EP = mgh —— persamaan 2

Berdasarkan persamaan EP di atas, tampak bahwa makin tinggi (h) benda di atas permukaan tanah, makin besar EP yang dimiliki benda tersebut. Ingat ya, EP gravitasi bergantung pada jarak vertikal alias ketinggian benda di atas titik acuan tertentu. Biasanya kita tetapkan tanah sebagai titik acuan jika benda mulai bergerak dari permukaan tanah atau gerakan benda menuju permukaan tanah. Apabila kita memegang sebuah buku pada ketinggian tertentu di

Page 81: Pengujian Kepegasan Pantulxx

atas meja, kita bisa memilih meja sebagai titik acuan atau kita juga bisa menentukan permukaan lantai sebagai titik acuan. Jika kita tetapkan permukaan meja sebagai titik acuan maka h alias ketinggian buku kita ukur dari permukaan meja. Apabila kita tetapkan tanah sebagai titik acuan maka ketinggian buku (h) kita ukur dari permukaan lantai.

Diposkan oleh mariska   di 23.45 Tidak ada komentar:  

hukum gravitasi newton

Kita sudah tahu bahwa hukum Newton dibedakan menjadi 3 jenis, yaituhokum Newton I, II, dan III. Untuk Hukum Newton I digunakan untuk kasus bendadiam atau bergerak lurus beraturan (-Fx = 0 atau -Fy = 0), Hukum Newton IIdigunakan untuk kasus benda bergerak dengan percepatan tetap (-Fx = m.ax atau-Fy = m.ay), Hukum III Newton ( Faksi = - Freaksi). Disamping menemukan ketigahokum tentang gerak, Newton juga menyelidiki gerakan benda-benda angkasa, yaituplanet dan bulan. Ia mengetahui dari hokum pertamanya bahwa harus ada gaya yangbekerja pada bulan, sehingga bulan tetap pada orbit lingkarannya mengitari bumi.Jika gaya ini tidak ada, maka tentulah bulan akan bergerak dalam lintasan garislurus.

Pada saat ini juga, Newton berpikir tentang persoalan gaya tarik yangtampaknya tidak berhubungan dengan gaya yang bekerja pada bulan. Dia mengamatibahwa suatu benda yang dilepaskan dari ketinggian tertentu di atas permukaan bumiselalu akan jatuh bebas ke permukaan bumi (tanah). Hal ini tentu saja disebabkanpada benda itu bekerja sebuah gaya tarik, yang disebut gaya gravitasi . Jika padasuatu benda bekerja gaya, maka tentu saja gaya itu disebabkan oleh benda lainnya(Hukum III Newton). Oleh karena setiap benda yang dilepas selalu jatuh bebas kepermukaan bumi, maka Newton menyimpulkan bahwa pusat bumi-lah yangmengerjakan gaya pada benda itu, yang arahnya selalu menuju ke pusat bumi.Menurut cerita ,ketika Newton sedang duduk santai di taman rumahnya danmemperhatikan sebuah apel yang jatuh dari pucuk pohon. Tiba-tiba saja timbulinspirasinya bahwa jika gaya gravitasi bumi bekerja pada pucuk pohon, dan bahkanpada puncak gunung, maka gaya gravitasi bumi tentu saja dapat bekerja pada bulan.Berdasarkan ide gravitasi bumi inilah newton dengan bantuan dan dorongansahabatnya Robert Hooke, menyusun hukum gravitasi umumnya yang sangatterkenal.

Dalam pekerjaannya, Newton membandingkan antara besar gaya gravitasibumi yang menarik bulan dan menarik benda-benda pada permukaan bumi.Percepatan gravitasi yang dialami setiap benda di permukaan bumi adalah 9,8 m/s2.Jarak bulan dari pusat bumi atau jari-jari orbit bulan = 3,84×108 m, danjarak permukaan bumi dari pusat bumi atau jari-jari bunmi = 6,4×106 m. Ini berartijarak bulan dari pusat bumi adalah 60 × jarak permukaan bumi dari pusat bumi.Akhirnya Newton menyimpulkan bahwa besar gaya gravitasi bumi pada suatu bendaF, berkurang dengan kuadrat jaraknya, r, dari pusat bumi.

Page 82: Pengujian Kepegasan Pantulxx

Newton menyadari bahwa gaya gravitasi tidak hanya bergantung pada jarak,tetapi juga bergantung pada massa benda. Hokum III Newton menyatakan bahwaketika bumi mengerjakan gaya gravitasi pada suatu benda (missal bulan), makabenda itu akan mengerjakan gaya pada bumi yang besarnya sama tetapi arahnyaberlawanan.

Newton terus berlanjut dalam menganalisis gravitasi. Dia meneliti data-datayang telah dikumpulkan tentang orbit planet-planet mengitari matahari. Darikumpulan data ini dia mendapatkan bahwa gaya gravitasi yang dikerjakan mataharipada planet yang menjaga planet tetap pada orbitnya mengitari matahari ternyatajuga berkurang secara kuadrat terbalik terhadap jarak planet-planet itu darimatahari. Oleh karena kesebandingan kuadrat terbalik ini, maka Newtonmenyimpulkan bahwa gaya gravitasi matahari pada planetlah yang menjaga planetplanettersebut tetap pada orbitnya mengitari matahari. Selanjutnya Newtonmengajukan hukum gravitasi umum Newton, yan berbunyi :Gaya gravitasi antara dua benda merupakan gaya tarik-menarik yangbesarnya berbanding lurus dengan massa masing-masing benda danberbanding terbalik dengan kuadrat jarak antara keduanya.Besarnya gaya gravitasi dapat ditulis dengan persamaan matematis :F12 = F21 = F = G m1 m2/r2Dengan :F12 = F21 = F = besar gaya tarik-menarik antara kedua benda (N)G = tetapan umum gravitasim1 = massa benda 1 (kg)m2 = massa benda 2 (kg)r = jarak antara kedua benda (m)

Diposkan oleh mariska   di 23.41 Tidak ada komentar:  

gaya gesekan

Gaya gesekan adalah gaya yang timbul akibat persentuhan langsung antara dua permukaan benda, arah gaya gesekan berlawanan dengan kecenderungan arah gerak benda. Besarnya gaya gesekan ditentukan oleh kehalusan atau kekasaran permukaan benda yang bersentuhan.

Gaya gesekan yang terjadi sewaktu benda tidak bergerak disebut gaya gesekan statis.

Gaya gesekan yang terjadi sewaktu benda bergerak disebut gaya gesekan kinetis.

Besar gaya gesekan statis lebih besar dari gaya gesekan kinetis.

Page 83: Pengujian Kepegasan Pantulxx

Contoh gaya gesekan yang menguntungkan

Gaya gesekan pada rem dapat memperlambat laju kendaraan

Gaya gesekan pada alas sepatu dengan jalan, jika jalan licin orang yang berjalan bisa tergelincir

Rem cakram kendaraan bekerja berdasarkan gaya gesekan

Contoh gaya gesekan yang merugikan:

Gaya gesekan antara udara dengan mobil dapat menghambat gerak mobil.

Adanya gaya gesekan pada roda dan porosnya, sehingga dapat mengakibatkan aus

Gesekan udara dengan mobil bisa menghambat gerak mobil

Diposkan oleh mariska   di 23.26 Tidak ada komentar:  

hukum newton

HUKUM NEWTON I

HUKUM NEWTON I disebut juga hukum kelembaman (Inersia).Sifat lembam benda adalah sifat mempertahankan keadaannya, yaitu keadaan tetap diam atau keaduan tetap bergerak beraturan.

DEFINISI HUKUM NEWTON I :Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultangaya (F) yang bekerja pada benda itu, jadi:

S F = 0 a = 0 karena v=0 (diam), atau v= konstan (GLB)

HUKUM NEWTON II

a = F/m

S F = m a

Page 84: Pengujian Kepegasan Pantulxx

S F = jumlah gaya-gaya pada bendam = massa bendaa = percepatan benda

Rumus ini sangat penting karena pada hampir semna persoalan gerak {mendatar/translasi (GLBB) dan melingkar (GMB/GMBB)} yang berhubungan dengan percepatan den massa benda dapat diselesaikan dengan rumus tersebut.

HUKUM NEWTON III

DEFINISI HUKUM NEWTON III:

Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut mengerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada dua benda yang berlainan.