pada pokok bahasan hukum kekekalan energi mekanik

Download Pada Pokok Bahasan Hukum Kekekalan Energi Mekanik

Post on 14-May-2017

229 views

Category:

Documents

4 download

Embed Size (px)

TRANSCRIPT

Pada pokok bahasan Hukum Kekekalan Energi Mekanik, telah dijelaskan apa dan bagaimana hukum kekekalan energi mekanik

Pada pokok bahasan Hukum Kekekalan Energi Mekanik, telah dijelaskan apa dan bagaimana hukum kekekalan energi mekanik. Sekarang, mari kita pelajari aplikasi Hukum Kekekalan Energi Mekanik pada berbagai jenis gerakan benda. Semoga setelah mempelajari materi ini, dirimu dapat memahami secara lebih mendalam konsep dan penerapan Hukum Kekekalan Energi Mekanik. Apabila dirimu belum memahami dengan baik dan benar konsep Hukum Kekekalan Energi Mekanik, sebaiknya segera meluncur ke TKP dan pelajari kembali pembahasannya yang telah GuruMuda publish pada blog ini. Sekarang, tarik napas pendek 1000 kali, karena perang gerilya segera kita mulai.. Hukum Kekekalan Energi Mekanik pada Gerak Jatuh BebasSuatu contoh sederhana dari Hukum Kekekalan Energi Mekanik adalah ketika sebuah benda melakukan Gerak Jatuh Bangun, eh Gerak Jatuh Bebas (GJB).

Misalnya kita tinjau sebuah batu yang dijatuhkan dari ketinggian tertentu. Pada analisis mengenai Gerak Jatuh Bebas, hambatan udara diabaikan, sehingga pada batu hanya bekerja gaya berat (gaya berat merupakan gaya gravitasi yang bekerja pada benda, di mana arahnya selalu tegak lurus menuju permukaan bumi).Ketika batu berada pada ketinggian tertentu dari permukaan tanah dan batu masih dalam keadaan diam, batu tersebut memiliki Energi Potensial sebesar EP = mgh. m adalah massa batu, g adalah percepatan gravitasi dan h adalah kedudukan batu dari permukaan tanah (kita gunakan tanah sebagai titik acuan). ketika berada di atas permukaan tanah sejauh h (h = high = tinggi), Energi Kinetik (EK) batu = 0. mengapa nol ? batu masih dalam keadaan diam, sehingga kecepatannya 0. EK = mv2, karena v = 0 maka EK juga bernilai nol alias tidak ada Energi Kinetik. Total Energi Mekanik = Energi Potensial.

EM = EP + EK

EM = EP + 0

EM = EP

Sambil lihat gambar di bawah ya.Apabila batu kita lepaskan, batu akan jatuh ke bawah akibat gaya tarik gravitasi yang bekerja pada batu tersebut. Semakin ke bawah, EP batu semakin berkurang karena kedudukan batu semakin dekat dengan permukaan tanah (h makin kecil). Ketika batu bergerak ke bawah, Energi Kinetik batu bertambah. Ketika bergerak, batu mempunyai kecepatan. Karena besar percepatan gravitasi tetap (g = 9,8 m/s2), kecepatan batu bertambah secara teratur. Makin lama makin cepat. Akibatnya Energi Kinetik batu juga semakin besar. Nah, Energi Potensial batu malah semakin kecil karena semakin ke bawah ketinggian batu makin berkurang. Jadi sejak batu dijatuhkan, EP batu berkurang dan EK batu bertambah. Jumlah total Energi Mekanik (Energi Kinetik + Energi Potensial = Energi Mekanik) bernilai tetap alias kekal bin tidak berubah. Yang terjadi hanya perubahan Energi Potensial menjadi Energi Kinetik.

Ketika batu mencapai setengah dari jarak tempuh total, besar EP = EK. Jadi pada posisi ini, setengah dari Energi Mekanik = EP dan setengah dari Energi Mekanik = EK. Ketika batu mencium tanah, batu, pasir dan debu dengan kecepatan tertentu, EP batu lenyap tak berbekas karena h = 0, sedangkan EK bernilai maksimum. Pada posisi ini, total Energi Mekanik = Energi Kinetik. Gampang aja. dirimu bisa menjelaskan dengan mudah apabila telah memahami konsep Gerak Jatuh Bebas, Energi Kinetik, Energi potensial dan Hukum Kekekalan Energi Mekanik. Semua materi itu sudah ada di blog ini. jika belum memahami konsep-konsep tersebut dengan baik dan benar, sangat disarankan agar dipelajari kembali hingga benar-benar ngerti.Hukum Kekekalan Energi Mekanik pada Gerak parabolaHukum kekekalan energi mekanik juga berlaku ketika benda melakukan gerakan parabola.

Ketika benda hendak bergerak (benda masih diam), Energi Mekanik yang dimiliki benda sama dengan nol. Ketika diberikan kecepatan awal sehingga benda melakukan gerakan parabola, EK bernilai maksimum (kecepatan benda besar) sedangakn EP bernilai minimum (jarak vertikal alias h kecil). Semakin ke atas, kecepatan benda makin berkurang sehingga EK makin kecil, tetapi EP makin besar karena kedudukan benda makin tinggi dari permukaan tanah. Ketika mencapai titik tertinggi, EP bernilai maksimum (h maksimum), sedangkan EK bernilai minimum (hanya ada komponen kecepatan pada arah vertikal).Ketika kembali ke permukaan tanah, EP makin berkurang sedangkan EK makin besar dan EK bernilai maksimum ketika benda menyentuh tanah. Jumlah energi mekanik selama benda bergerak bernilai tetap, hanya selama gerakan terjadi perubahan energi kinetik menjadi energi potensial (ketika benda bergerak ke atas) dan sebaliknya ketika benda bergerak ke bawah terjadi perubahan energi potensial menjadi energi kinetik.

Hukum Kekekalan Energi Mekanik pada Gerak Harmonik SederhanaTerdapat dua jenis gerakan yang merupakan Gerak Harmonik Sederhana, yakni ayunan sederhana dan getaran pegas. Jika dirimu belum paham apa itu Gerak Harmonik Sederhana, silahkan pelajari materi Gerak Harmonik Sederhana yang telah dimuat pada blog ini. Silahkan meluncur ke TKP..

Sekarang mari kita tinjau Hukum Kekekalan Energi Mekanik pada ayunan sederhana.

< ![endif]-->

Untuk menggerakan benda yang diikatkan pada ujung tali, benda tersebut kita tarik ke kanan hingga mencapai titik A. Ketika benda belum dilepaskan (benda masih diam), Energi Potensial benda bernilai maksimum, sedangkan EK = 0 (EK = 0 karena benda diam ). Pada posisi ini, EM = EP. Ingat bahwa pada benda bekerja gaya berat w = mg. Karena benda diikatkan pada tali, maka ketika benda dilepaskan, gaya gravitasi sebesar w = mg cos teta menggerakan benda menuju posisi setimbang (titik B). Ketika benda bergerak dari titik A, EP menjadi berkurang karena h makin kecil. Sebaliknya EK benda bertambah karena benda telah bergerak. Pada saat benda mencapai posisi B, kecepatan benda bernilai maksimum, sehingga pada titik B Energi Kinetik menjadi bernilai maksimum sedangkan EP bernilai minimum. Karena pada titik B kecepatan benda maksimum, maka benda bergerak terus ke titik C. Semakin mendekati titik C, kecepatan benda makin berkurang sedangkan h makin besar. Kecepatan berkurang akibat adanya gaya berat benda sebesar w = mg cos teta yang menarik benda kembali ke posisi setimbangnya di titik B. Ketika tepat berada di titik C, benda berhenti sesaat sehingga v = 0. karena v = 0 maka EK = 0. pada posisi ini, EP bernilai maksimum karena h bernilai maksimum. EM pada titik C = EP. Akibat tarika gaya berat sebesar w = mg cos teta, maka benda bergerak kembali menuju titik B. Semakin mendekati titik B, kecepatan gerak benda makin besar, karenanya EK semakin bertambah dan bernilai maksimum pada saat benda tepat berada pada titik B. Semikian seterusnya, selalu terjadi perubahan antara EK dan EP. Total Energi Mekanik bernilai tetap (EM =EP + EK).

Hukum Kekekalan Energi Mekanik (HKEM) pada Getaran PegasGetaran pegas terdiri dari dua jenis, yakni getaran pegas yang diletakan secara horisontal dan getaran pegas yang digantungkan secara vertikal. Sebelum kita membahas satu persatu, perlu anda ketahui bahwa Energi Potensial tidak mempunyai suatu persamaan umum yang mewakili semua jenis gerakan, seperti EK. Persamaan EK tersebut bersifat umum untuk semua jenis gerakan, sedangkan Energi potensial tidak. Persamaan EP = mgh merupakan persamaan EP gravitasi, sedangkan EP elastis (untuk pegas dkk), persamaan EP-nya adalah :

Silahkan pelajari materi Energi Potensial dan Energi Kinetik yang telah dimuat di blog ini agar dirimu semakin paham.

Pegas yang diletakan horisontalMisalnya kita letakan sebuah pegas di atas permukaan meja percobaan. Salah satu ujung pegas telah diikat pada dinding, sehingga pegas tidak bergeser ketika digerakan. Anggap saja permukaan meja sangat licin dan pegas yang kita gunakan adalah pegas ideal sehingga memenuhi hukum Hooke. Sekarang kita kaitkan sebuah benda pada salah satu ujung pegas.

< ![endif]-->

Jika benda kita tarik ke kanan sehingga pegas teregang sejauh x, maka pada benda bekerja gaya pemulih pegas, yang arahnya berlawanan dengan arah tarikan kita. Ketika benda berada pada simpangan x, EP benda maksimum sedangkan EK benda nol (benda masih diam).

< ![endif]-->

Ketika benda kita lepaskan, gaya pemulih pegas menggerakan benda ke kiri, kembali ke posisi setimbangnya. EP benda menjadi berkurang dan menjadi nol ketika benda berada pada posisi setimbangnya. Selama bergerak menuju posisi setimbang, EP berubah menjadi EK. Ketika benda kembali ke posisi setimbangnya, gaya pemulih pegas bernilai nol tetapi pada titik ini kecepatan benda maksimum. Karena kecepatannya maksimum, maka ketika berada pada posisi setimbang, EK bernilai maksimum.

Benda masih terus bergerak ke kiri karena ketika berada pada posisi setimbang, kecepatan benda maksimum. Ketika bergerak ke kiri, Gaya pemulih pegas menarik benda kembali ke posisi setimbang, sehingga benda berhenti sesaat pada simpangan sejauh -x dan bergerak kembali menuju posisi setimbang. Ketika benda berada pada simpangan sejauh -x, EK benda = 0 karena kecepatan benda = 0. pada posisi ini EP bernilai maksimum.

Pada penjelasan di atas, tampak bahwa ketika bergerak dari posisi setimbang menuju ke kiri sejauh x = -A (A = amplitudo / simpangan terjauh), kecepatan benda menjadi berkurang dan bernilai nol ketika benda tepat berada pada x = -A. Karena kecepatan benda berkurang, maka EK benda juga berkurang dan bernilai nol ketika benda berada pada x = -A. Karena adanya gaya pemulih pegas yang menarik benda kembali ke kanan (menuju posisi setimbang), benda memperoleh kecepatan dan Energi Kinetiknya lagi. EK benda bernilai maksimum ketika benda tepat berada pada x = 0, karena laju gerak benda pada posisi tersebut bernilai maksimum. Proses perubahan energi antara EK dan EP berlangsung terus menerus selama benda bergerak bolak balik. Total EP dan EK selama benda bergetar besarnya tetap alias kekal bin konstan.

Pegas yang diletakan v