modul mesin arus bolak-balik

Upload: ediwibowo1205

Post on 19-Oct-2015

113 views

Category:

Documents


4 download

DESCRIPTION

Modul untuk kuliah MAC

TRANSCRIPT

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    1/84

    1

    MESIN ARUS BOLAK-BALIK

    TE 1403

    Dr. Dedet C. Riawan, ST., M.Eng

    Electrical Engineering Department

    Institut Teknologi Sepuluh Nopember Surabaya

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    2/84

    2

    Construction of Synchronous Generator

    Stator

    Rotor

    pole

    Shaft

    Armature

    winding

    Field

    winding

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    3/84

    3

    Construction of Synchronous Generator

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    4/84

    4

    Excitation of Field Windings

    1. Static excitation system fed through slip ring and brushes

    2. Rotating excitation system mounted on the shaft brushless

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    5/84

    5

    Excitation System with Slip Ring & Brushes

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    6/84

    6

    Brushless Excitation System

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    7/84

    7

    Interaction of Rotor & Stator Magnetic Fileds

    No-load operation

    Br induces EA at stator

    V = EA

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    8/84

    8

    Interaction of Rotor & Stator Magnetic Fileds

    On-load operation

    Stator is connected to a load

    IA flows in stator producing magnetic field BS BS induces ESTAT at its own stator winding

    EA =V + ESTAT

    Armature reaction voltage

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    9/84

    9

    Interaction of Rotor & Stator Magnetic Fileds

    On-load operation

    Br coincide with EA

    BS coincides with ESTATThus Bnet will coincide with Vf

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    10/84

    10

    Equivalent Circuit with Armature Reaction

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    11/84

    11

    Armature Reaction & Self-Inductance Voltage

    Synchronous Reactance

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    12/84

    12

    Phasor Diagram of Synchronous Generator

    Unity power factor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    13/84

    13

    Phasor Diagram of Synchronous Generator

    Lagging power factor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    14/84

    14

    Phasor Diagram of Synchronous Generator

    Leading power factor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    15/84

    15

    Power & Torque in Synchronous Generator

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    16/84

    16

    Power Angle in Synchronous Generator

    If RA

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    17/84

    17

    Parameters of Synchronous Generator

    1. Relationship between field current and flux (and therefore between the

    field current and EA)

    2. The synchronous reactance

    3. Armature resistance

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    18/84

    18

    Open-Circuit Test

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    19/84

    19

    Open-Circuit Characteristic

    SaturatedUnsaturated

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    20/84

    20

    Short-Circuit Test

    V = 0

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    21/84

    21

    Short-Circuit Characteristic

    Unsaturated

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    22/84

    22

    Determining the Synchronous Reactance

    From OCC

    From SCC

    For a given field current IF

    Given IF

    VOC

    IA

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    23/84

    23

    Limitation on OCC-SCC method

    Note:

    EA is obtained from OCC ranging from unsaturated to saturated region

    IA is obtained from SCC unsaturated region

    Accurate up to unsaturated synchronous reactance

    XS,u

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    24/84

    24

    Example of OCC & SCC test results

    15.915.214.213.212.811.810.58.76.2Voc

    (kV)

    300250200162.51501251007550If (A)

    Synchronous generator of 10-MVA 13-kV, 3-phase, 50-Hz, Y connected

    OCC

    SCC

    Excitation current of If= 100-A is required to obtain rated IA.

    ZPF

    Excitation current of If= 290-A is required to obtain rated IA at zero pf

    and rated voltage.

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    25/84

    25

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    0 100 200 300 400If (A)

    Isc(A)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    If (A)

    Voc(kV)

    Example of OCC & SCC test results

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    26/84

    26

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    27/84

    27

    Armature Reaction & Leakage Reactance

    Test with Zero Power Factor (ZPF) at IA rated.

    Bnet = BR + BS

    Bnet ~ ErBR ~ EaBstat ~ -Ear

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    28/84

    28

    Potiers Method

    1.Find P from ZPF test

    2.Find P from SCC

    3.Draw RP = OP

    4.Draw RS parallel to initial of OCC slope(OS)

    5.Draw SQ perpendicular to RP

    Procedure:

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    29/84

    29

    Potiers Method

    SQ =IA xl

    PQ =BS

    Voltage drop due to leakage reactance

    Magnetic flux due to armature reaction = Ifar ~ Ear

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    30/84

    30

    Flux and Induced Voltage in Synchronous Generator

    Bnet = BR + BS

    Er = Ea Ear

    Vt = Er - IAXl

    where

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    31/84

    31

    Paralleling Synchronous Generators

    Purpose of paralleling generator:

    1. Meet the demand on loads

    2. Increasing reliability

    3. Scheduling and maintenance

    4. Load sharing for efficient operation

    8-MW

    8-MW

    8-MW

    4-MW

    4-MW

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    32/84

    32

    Paralleling Synchronous Generators

    Requirements:

    The rms line voltages of the two generators must be equal.

    The two generators must have the same phase sequence.

    The phase angles of the two a phases must be equal.

    The frequency of the new generator, called the oncoming generator, must beslightly higher than the frequency of the running system.

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    33/84

    33

    Procedure of Paralleling Synchronous Generators

    1. Adjust field current until terminal voltage of two generators are equal in

    magnitude.

    2. Checked phase sequence of two generators. They must be equal.

    3. Adjust the frequency of oncoming generator slightly higher.

    4. Close the tie breaker

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    34/84

    34

    Paralleling Synchronous Generators

    If the rms line voltages of the two generators IS NOT equal

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    35/84

    35

    Paralleling Synchronous Generators

    If the two generators DO NOT have the same phase sequence

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    36/84

    36

    Paralleling Synchronous Generators

    If the phase angles of the two a phases IS NOT equal

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    37/84

    37

    Paralleling Synchronous Generators

    If the frequency of the two generators IS NOT equal

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    38/84

    38

    Paralleling Synchronous Generators

    If the frequency and phase sequence of the two generators ARE NOT equal

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    39/84

    39

    Speed Governor in Stand-Alone Operation

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    40/84

    40

    Speed Droop Principle

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    41/84

    41

    Speed Droop Principle

    Concept of Speed Droop

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    42/84

    42

    Speed Droop in Stand-alone Operation

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    43/84

    43

    Speed Droop in Stand-alone Operation

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    44/84

    44

    Speed Droop in Stand-alone Operation

    Summary:

    Active & reactive power supplied by generator will be the amount demanded byload

    Governor set point of generator will control the operating frequency (fsys).

    Field current regulator will control terminal voltage of the system

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    45/84

    45

    Speed Droop in Parallel Operation with Infinite Grid

    S d D i P ll l O i i h I fi i G id

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    46/84

    46

    Speed Droop in Parallel Operation with Infinite Grid

    fnl

    PG

    Pload

    Set pointincreased

    Pinfbus

    S d D i P ll l O ti ith I fi it G id

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    47/84

    47

    Speed Droop in Parallel Operation with Infinite Grid

    S d D i P ll l O ti ith I fi it G id

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    48/84

    48

    Speed Droop in Parallel Operation with Infinite Grid

    Summary:

    Increasing set point of generator will increase generator output power

    Frequency of the system is set by infinite bus

    Increasing field current will increase reactive power supplied to the grid

    Two Same Size Generator in Parallel Operation

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    49/84

    49

    Two Same Size Generator in Parallel Operation

    Second generator takes small amount of load

    demand during the first moment of

    synchronization (PG2)

    Two Same Size Generator in Parallel Operation

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    50/84

    50

    Two Same Size Generator in Parallel Operation

    Speed of the second generator is increased to

    take more load from other.

    Two Same Size Generator in Parallel Operation

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    51/84

    51

    Two Same Size Generator in Parallel Operation

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    52/84

    52

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    53/84

    53

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    54/84

    54

    Power Sharing in Parallel Operation

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    55/84

    55

    Power Sharing in Parallel Operation

    Power Sharing without shifting system frequency

    Power Sharing in Parallel Operation

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    56/84

    56

    S a g a a Op a

    Power Sharing without shifting terminal voltage

    Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    57/84

    57

    y

    Three phase winding of stator produces rotating

    magnetic field BS

    If field winding on rotor is excited with current,

    magnetic field BR is produced. This magneticfield will chase BS.

    So, rotor will rotate in the same speed as rotating

    magnetic field generated by stator synchronous

    Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    58/84

    58

    y

    Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    59/84

    59

    From Generating to Motoring Operation

    Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    60/84

    60

    From Generating to Motoring Operation

    Torque-Speed in Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    61/84

    61

    Load Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    62/84

    62

    Load Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    63/84

    63

    Load Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    64/84

    64

    Load Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    65/84

    65

    Load Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    66/84

    66

    Load Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    67/84

    67

    Load Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    68/84

    68

    Field Excitation Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    69/84

    69

    Field Excitation Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    70/84

    70

    Under-excited Over-excited

    Field Excitation Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    71/84

    71

    Synchronous VAR

    Compensator

    when P is kept minimum

    Field Excitation Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    72/84

    72

    Field Excitation Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    73/84

    73

    Field Excitation Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    74/84

    74

    Field Excitation Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    75/84

    75

    Field Excitation Changes on Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    76/84

    76

    Starting Synchronous Motor

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    77/84

    77

    Starting Synchronous Motor

    Basic Approach

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    78/84

    78

    Starting Synchronous Motor

    Reducing Electrical Frequency

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    79/84

    79

    Low frequency slow rotating magnetic field rotor is capable to

    accelerate

    Stator frequency is then increased gradually up to nominal value.

    Requires variable frequency variable voltage source

    Starting Synchronous Motor

    External Prime Mover

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    80/84

    80

    Prime mover brings rotor up nominal speedfield excitation is applied

    synchronise with grid detach prime mover from rotor shaft

    Starting Synchronous Motor

    Armotisseur or Damper Winding

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    81/84

    81

    Damper winding

    Starting Synchronous Motor

    Armotisseur or Damper Winding

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    82/84

    82

    Starting Synchronous Motor

    Armotisseur or Damper Winding

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    83/84

    83

    Starting Synchronous Motor

    Starting Procedure Using Armotisseur or Damper Winding

  • 5/28/2018 Modul Mesin Arus Bolak-Balik

    84/84

    84

    1. Disconnect the field windings from their dc power source and short them

    out.

    2. Apply a three-phase voltage to the stator of the motor, and let the rotor

    accelerate up to near-synchronous speed. The motor should have no load

    on its shaft , so that its speed can approach nsync as closely as possible.

    3. Connect the dc field circuit to its power source. After this is done, the

    motor will lock into step at synchronous speed, and loads may then be

    added to its shaft.