merged document 2

5
rAKI}LTI KE.'I'RUTDRAAN MEI{ANII(AL UNTIiIERSITI TENIIOLOGI MALAYSIA PEPERTKSAAN SETWESTER Ir, SESr 2OO7lzo,Ae KOD KT'RSUS !{ATT{A KT'RSUS PROGRAM TIASA TARIre : sMK ,312i3{SZL 3123 : SHIP STRUSHIRE I : 'SMK/SA. 2 ZYrJAN. s APRrI,/IIEL 2OO8 ARAIIAN KEPADA CALON JAITAB SEIIUA SOALA}I alrsurER ArL QrrDsTror{s ITER:rAS SOALIIN I}II TERDIRI DARIPADA 5 MI'I{ASI'RAT SA}IA.'A ..: j; :t-, * ai

Upload: amzar-hafiq-mohd-zin

Post on 21-Dec-2015

24 views

Category:

Documents


0 download

DESCRIPTION

a

TRANSCRIPT

rAKI}LTI KE.'I'RUTDRAAN MEI{ANII(AL

UNTIiIERSITI TENIIOLOGI MALAYSIA

PEPERTKSAAN SETWESTER Ir, SESr 2OO7lzo,Ae

KOD KT'RSUS

!{ATT{A KT'RSUS

PROGRAM

TIASA

TARIre

: sMK ,312i3{SZL 3123

: SHIP STRUSHIRE I

: 'SMK/SA.

2 ZYrJAN.

s APRrI,/IIEL 2OO8

ARAIIAN KEPADA CALON JAITAB SEIIUA SOALA}I

alrsurER ArL QrrDsTror{s

ITER:rAS SOALIIN I}II TERDIRI DARIPADA 5 MI'I{ASI'RAT SA}IA.'A

..:

j;:t-,

*ai

(sMK3123)

Question 1

1. The data given below applies to a new frigate design.

{10 ma*s)

1b. calcutrate &e anaximum stressm in the keel and dwk given that $0 marks)

2d momert of areaof wtioa aboutNA : 5.54 ma

total depth

NA above keel

Length

: 10.52 m

- 3.96 m

:110m

ftrestior 2

For an elemeat in plane stess is zubjected to stresses 6r: -50 MPa' 6y= 10 MPa,

and r," - - 40 lvlPa as shovm in the Fig.4. By using Mobr's eirclg {a}. Delermine

the s6ses actfurg on a$ oriented ele,ment at angle 0 : 45on {b)- Determine the

principle strsses, (c) and shorn all re$$t$ on sketches of a pmperly oriented

elemenfi.t. $5 lraarl*)

vl

t lor,rpu

<+

j

40Mpa

l.--50Mpa

$

Fig.1. Shesses acting on an oriented element at angle 0:0o2

Ordinate 1 2 5 4 5 6 7 8 9 10 11

Buoyancy(tonneflm)

aqfq

ca@\dC.l

f-oqcnfa

r-coc>crl

r-\oci6l

c.t("]Or

orf-)ool

t-.oo+c.l

ot:Olc'.1

cfi9o\c.l

r-q(\I

Weight(tonneflm)

t-\qol

f-\qooF{

carao\

t-\oOrCA

oq\f,aa

oqcfl(fl

r-\q.<rca

oqc.lca

t-\qtr-

oqc{

. {sMK3123)

Ouestion 3

3a. In {nany cases, ships' plating is subjected to combioed in-plane loads. For

in deck plating both lateral loads-and-ia-planecompressive stress are

present. The application of an in-plane compmive stress wiil magnify the

lateral defl*tion of ir plafe. Descdbe qftat is &e phenomenoa of combind in-

plaue compressive stress on aplate? {5 mar*s}

3b. A panel of deck platins is 1 mlong 0,5 m wide and t mrn tbicL and has a yield

sEess df 2S0 MPa" as eholrm in $'ig.2. In a oe*ain sargo loading configuratien it

is subjected to lateral pressure 500 kPa" in order to cope *ith this load a numkr

fansrrerse stiffeners are added to the panel The ma:dmum hutl gird€r sagging

stress. is 150 MPa The lateml pressruc continues to act on &e entirE overall

panel Desigtr &e nudber of traasrrexse *'tiffeners and &ick of pmef aad

calculat€ snrch th* the Von Iesses equi\ralen$ s$Bss is belo$' &e yield stre$

wie the rclativo usrgia about 119o. Assrme E * 210 GPa, aud u* Fig3 and

Fig;4 to obtain buckling coefficient (K) and bending $tress coefficient (k)

resry'tively. (A marks)

Fig.2. The geometrythe panel

. (sMK 3123)

i

. Fie.3. Buckling coefficicnt K in design formula for platc in rniaxial comprcssisn

;

rtlr {o.:(€

F"

oI

dl6

o6

{Io

{

N

oN

e

ol-

oN

o*

I

9

gro

E?ac>

PalaSebolor*LE5s !--5 E e!; I;..E;F:': !'i .t:r.FDl- o u .=l

- r o E il ^F f E E;I?

a ol sr - r rl-' 5 ;;l g

! ! ::li-u, E oll 9

O -!i nl:t, €t r_ = EIS

Fig.4. Stress coefficientkin rectangular plate under uniform trateral pressure

. (sMK 3r23)

Ouestion 4

4a. Describe what are the ultimate stress and buckling stress in a column buckling

4b. An allowable axial load P for a 4 rn long pia-ended colurnn of certain linearly

etrastic material is 20 kN. Three different columns made of same material and

having the same cross secti.on have the supporting conditions shown in Fig.5.

Using the eolumn capacity for the 4 nn as the criterion, what are &e allowable

loads for the columns shown? (-tr 5 marks).

{I {I ffFig.5. Three different columns

{5 *a,rks}