mekanika print

21
MEKANIKA DINAMIKA SISTEM PARTIKEL MAKALAH Disusun untuk memenui tugas mata kuliah Mekanika yang dibina oleh Bapak Nasikhudin Oleh : Adiyat Makrufi (100321400984) Charisma P. W. (10032140 Ferdiana Ika Wati (10032140 Mar’atus Sholihah (100321400895) Regina Petty Yolanda (100321400893) Kelompok IV Kelas C / Offering C UNIVERSITAS NEGERI MALANG FAKULTAS ILMU PENGETAHUAN ALAM JURUSAN FISIKA Oktober, 2011

Upload: muhammad-sofiuddin

Post on 07-Jul-2015

586 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Mekanika print

MEKANIKA DINAMIKA SISTEM PARTIKEL

MAKALAH

Disusun untuk memenui tugas mata kuliah Mekanika

yang dibina oleh Bapak Nasikhudin

Oleh :

Adiyat Makrufi (100321400984)

Charisma P. W. (10032140

Ferdiana Ika Wati (10032140

Mar’atus Sholihah (100321400895)

Regina Petty Yolanda (100321400893)

Kelompok IV

Kelas C / Offering C

UNIVERSITAS NEGERI MALANG

FAKULTAS ILMU PENGETAHUAN ALAM

JURUSAN FISIKA

Oktober, 2011

Page 2: Mekanika print

BAB VI

DINAMIKA SISTEM PARTIKEL

A. SistemPartikel dan Pusat Massa

Pada hakekatnya hukum kekekalan energi mekanikberkaitandengan momentum linear,

momentum angular, dan energi terapan. Beberapa ahli berpendapat dalam sistem terdapat

suatu interaksi antara benda makro dengan mikro.

Jika sebuah sistem berisi sejumlah N partikel, symbol bilangannya 1,2,…n. Massa

partikel adalah , , dan letaknya pada jarak , ,… . Untuk beberapa sistem

partikel, pusat massa terletak di R(X,Y,Z). Sehingga didapat hubungan.

( + , ) R = + + …+ atau

oleh karena itu : R= = (1)

Gambar 1. Sistem partikel dengan beberapa massa pada jarak yang berbeda dari titik asal.

Dalam hal ini M = k merupakan jumlah kesulurahan massa dan penjumlahan

ari k=1 ke k=N. Berdasarkan komponen maka dapat dituliskan :

X= , Y = , Z = (2)

Dari persamaan (1) didapat bahwa pusat massa merupakan pusat rata – rata dari

massa berat. Kecepatan v = pada pusat massa dapat diperoleh dengan differensiasi

persamaan (1) terhadap t, oleh karena itu,

v = = k (3)

Komponen – komponenkecepatanpadapusatmassadapatditulis

= = k, = = k, = = k (4)

Percepatan didapat dengan mendifferensialkan lagi yaitu :

= k (5)

atau, dalam komponen

k, k, k (6)

Selanjutnya akan didiskusikan Pemkaian tiga hukum kekekalan yang menjadi dasar yaitu:

Z

r1 m1

mn rn r2 m2

Y

rk

X

mk

X

mk

Page 3: Mekanika print

(1) Kekekalan momentum linier, (2)Kekekalan momentum sudut, (3) Kekekalan energi. Dan

juga terdapat dua pemecahan pada masalah ini yaitu : (1) Hukum – hukum Newton,

(2)Prinsip kesamaan.

B. Kekekalan Momentum Linier

Sebuah partikel bermassa m dengankecepatan v dan dengan momentum linear p , hukum

II Newton menyatakan : = (7)

Dalam hal ini adalah gaya luar yang bekerja pada , dan = (8)

Jika m konstan

= = ) = = (9)

Selanjutnya, jika = 0, adalah konstan, ini adalah konservasi dari hukum kekekalan

momentum linear untuk partikel tungggal. Pada system N partikel, seperti pada gambar (1),

gerakpartikelkekdarimassa , padajarak darititikasaldandengankecepatan ( = ) dan

percepatan . Gaya total bekerja pada partikel merupakan penjumlahan dua gaya :

1. Jumlah gaya eksternal yang diterapkan pada partikel .

2. Jumlah gaya internal pada partikel dengan n – 1 partikel dalam sistem

Jadi persamaan gerak untuk partikel sesuai dengan hukum Newton adalah :

= + = , = 1,2,…..n (10)

Dalam hal ini (11)

adalah gaya partikel ke pada partikel, karena vector alami dari persamaan

(10), dalam hal ini 3n untuk orde ke-2 secara persamaan differensial dapat terpecahkan.

Persamaan (10 )dapat diselesaikan dengan menggunakan pusat koordinat massa.

Momentum untukpartikel diberikanoleh :

= = (12)

Persamaan (10) diambil dari : = + (13)

JumlahkeduasisimeliputisemuaNpartikel,

Bilamana adalah jumlah momentum linier pada system partikel N partikel dan gaya luar

total yang bekerja pada system, maka :

, (15)

(16)

Selanjutnya jumlah gaya dalam yang bekerja pada semua system partikel sama

dengan nol (17)

Page 4: Mekanika print

Kombinasi Persamaan (15), (16), dan (17) dengan pers (14) didapatkan : (18)

Teorema Momentum untuk sistem partikel :

“Kekekalan momentum linier : perubahan rata – rata pada momentum liniear adalah

sama dengan gaya terapan luar total. Jadi bila jumlah semua gaya terapan luar sama dengan

nol, maka momentum liniear total dari sistem ini adalah konstan “.

= konstan, jika = 0 (19)

Pusat koordinasi massa

(20)

(21)

Sehingga dapat disimpulkan “Pusat massa pada sistem partikel bergerak seperti

halnya partikel tunggal bermassa m bekerja pada gaya tunggal F sama dengan jumlah

semua gaya luar yang bekerja pada sistem”.

Dua buah pendekatan differensial :

1. Hukum II Newton

2. Prinsip dari kerja nyatanya, sesuai dengan persamaan (11) :

merupakan gaya dorong pada partikel menuju partikel . Sesuai dengan hukum III

Newton.

(22)

Dengan menggunakan persamaan (11) jumlah semua gaya internal adalah

(23)

Pada pembuktian terdahulu, diasumsikan bahwa gaya internal datang secara

berpasangan. Kerja yang dilakukan oleh gaya internal pada suatu simpangan

sesungguhnya untuk partikel ke adalah : (24)

Kerja total yang dilakukanolejseluruhgaya internal adalah :

(25)

r sama untuk semua partikel, jika total kerja yang dilakukan oleh gaya internal sama dengan

nol untuk semua perpindahan maka :

Karena tidaknolmaka: (26)

C. KEKEKALAN MOMENTUM SUDUT

Momentum sudut dari partikel tunggal didefinisikan pada bentuk perkalian silang yaitu:

(27)

Pada system partikel N momentum sudut total dapat ditulis :

Page 5: Mekanika print

(28)

Turunan persamaan (28) terhadap waktu menghasilkan

) (29)

Suku pertama bagian kanan diabaikan karena hasil perkalian silangnya sama dengan nol

( xm =0), sedangkan m , dari persamaan (10) sama dengan gaya total yang bekerja pada

partikel k, diperoleh :

(30)

Dalam hal ini merupakan gaya luar total yang bekerja pada partikel k, dan

sebagai gaya dalam yang bekerja pada partikel menuju . Suku kedua pada ruas kanan

sama dengan nol, dalam hal ini,

(31)

Olehkarena - , maka persamaan dapat dinyatakan seperti gambar (2)

(32)

Penerapan ini sama dengan nol jika gaya dalam adalah pusat. Karena kedua partikel ini

saling tarik menarik atau tolak menolak sehingga suku bagian kanan persamaan (30)

dihilangkan dan persamaannya menjadi :

(33)

Jika merupakan torka pada partikel , maka torka totalnya adalah

(34)

Dan (35)

Kekekalan momentum sudut, untuk sistem yang tertutup , satu sama lain tidak bekerja gaya

luar, torka total menjadi nol, dalam hal ini momentum sudutnya konstan dalam besar dan

arah yakni

(36)

D. KEKEKALAN ENERGI

Pada beberapa situasi, gaya total yang bekerja pada partikel dalam sistem adalah suatu

fungsi posisi partikel pada sistem. Gaya k pada partikel kth adalah :

k = ke + ki = k ( 1, 2......, N) dalam hal ini k=1,2,....,N (37)

Page 6: Mekanika print

Gaya luar ke

dapat tergantung pada posisi k dari partikel k, sedangkan gaya dalam ki

tergantung pada posisi relatif dari partikel-partikel relatif lain terhadap partikel k, yakni k1

= k 1 dan sebagainya. Jika gaya k1 memenuhi kondisi,

(38)

Dan, fungsi potensial : (39)

Sehingga

(40)

Gerak partikel kth dinyatakan sebagai : (41)

Dengan menggunakan persamaan (40) didapat

(42)

Mengalikan persamaan pertama dengan k1 = k

, persamaan kedua dengan k1 = k

, dan

persamaan ketiga k1 = k, dan menambahkannya sehingga diperoleh,

dengan k = 1, 2, .......N (43a)

Jumlah meliputi semua nilai k, maka

(43b)

Dalam hal ini

K= Energi Kinetik (44)

Dan

(45)

Oleh karena itu persamaan (43b) dapat dinyatakan

atau K + V = E = konstan (46)

Yang merupakan “Hukum Kekekalan Energi”.

Jika gaya luar tidak gayut pada posisi dan potensial Vi gayut pada posisi relatif pasangan

partikel, maka

Vikl = V

ikl(rkl) = V

ikl (r2 - r1) (48)

Selama :

(49)

Dapat diperoleh bahwa :

(50)

Page 7: Mekanika print

Sistem ini merupakan gaya pergesaran dalam, seperti gaya pergeseran ini gayut pada

kecepatan relatif dari partikel dan bukan gaya pusat, sehingga hukum kekekalan energi,

persamaan (46) tidak dapat dicapai sebagai sistem.

E. Gerak Sistem dengan Variabel Massa:

Roket

Teknologi roket berdasarkan pada prinsip sederhana kekekalan momentum linear.

Sebuah roket terdorong kedepan dengan penyemburan massa yang arahnya terbalik

(kebelakang) dalam bentuk gas sebagai hasil pembakaran bahan bakar.

Gaya dorong roket merupakan reaksi menuju gaya dorong ke belakang dari gas yang

keluar dari tempat pembakaran bahan bakar. Untuk menentukan kecepatan roket pada waktu

meninggalkan bumi seperti ditunjukkan gambar3 dala hal ini t sebagai waktu, massa roket

(m) yang bergerak dengan kecepatan v relaif dengan beberapa system koordinat tertentu

(bumi). Kecepatan gas merupakan u terhadap roket, sedang kecepatan u + v terhadap system

koordinat tertentu. Pada interval waktu antara t dan t+dt, sejumlah pembuangan gas adalah

dm = -dm, sedangkan massa roket adalah m+dm dan kecepatan + .

Momentum system pada saat t yakni ( t)=m (51)

Dan momentum system pada saat t+dt adalah

(t+dt) = roket (t+dt) + gas(t+dt) = (m+dm)( + )( dm)( + ) (52)

Perubahan momentum selama selang waktu dt adalah:

(53)

Dalam hal ini dm dv ditiadakan, sedangkan persamaan (53) dapat dinyatrakan

sebagai , = = m (54)

Catatan bahwa adalah kecepatan dari gas yang keluar. Persamaan (54) dapat

ditulis sebagai: m (55)

Dalam hal ini sebagai gaya gravitasi, gaya gesek udara, atau beberapa gaya

luar lainnya, sedangkan m sebagai gaya daya dorong mesin roket. Oleh

karena dm/dt bernilai negative, daya dorong berlawanan dengan kecepatan u

dari gas yang dikeluarkan. Gaya 0 diperlukan untuk menjaga keadaan

setimbang.

0 = (56)

untuk = 0 persamaan (55) sebagai, (57)

perkalian kedua sisi dengan dt/m dan diintegrasikan,

= atau 0 .lnm]m

mo, karena m0>m maka,

0 0 ln (58)

Kecepatan akhir tergantung pada dua faktor,

1) Besar nilai , kecepatan dari gas yang dikeluarkan dan

m

Page 8: Mekanika print

2) Besar nilai m0/m, dalam hal ini m0 merupakan massa awal roket dan bahan bakar,

sedangkan m sebagai massa akhir saat semua bakar telah digunakan. Besar nilai m0/m

digunakan untuk satelit pesawat/ roket. Penambahan nilai m0/m digunakan untuk satelit

dan pesawat luar angkasa meninggalkan bumi.

Untuk posisi roket dekat permukaan bumi , maka gaya gravitasi tak dapat diabaikan

sehingga disunstitusi = m dalam persamaan (55) dan didapat:

m (59)

Dan hasil integrasinya,

=

Hasilnya, = 0 .ln ) + .t (60)

Pada saat t=0 dan besar kecepatan v0=0 dan berlawanan dengan , maka persamaan (60)

menjadi (bentuk scalar) : V = u.ln ( ) g.t (61)

Pada keadaan awal, daya dorong roket harus cukup besar untuk mengatasi gaya gravitasi

m0g.

Sabuk Conveyer

Ditinjau sabuk-berjalan untuk menghitung gaya , diperlukan sabuk berjalan bergerak

horizontal dengan kecepatan sedangkan massa pasir (barang) yang diberikan pada sabuk

tersebut dm/dt. Missal M sebagai massa sabuk dan m sebagai massa pasir pada sabuk

tersebut. Momentum total pada system,sabuk dan pasir pada sabuk yaitu,

= (m+M) (62)

Karena M dan konstan, sedangkan m berubah maka

= = (63)

Dalam hal ini merupakan gaya yang digunkan pada sabuk-berjalan. Daya yang

disuplai oleh gaya agar sabuk-berjalan dapat melaju v yakni,

Daya = P = F.v = v² = mv² = 2 ( mv²) atau = 2 ( (m+M)v²) = 2 (64)

Dalam hal ini besar daya dua kali laju perubahan energy kinetiknya, dan hokum

kekekalan energy mekanik tidak dapat diterapkan disini. Daya yang lepas digunakan untuk

bekerja berlawanan dengan gaya gesek. Ketika pasir mengenai sabuk-berjalan maka harus

dipercepat dari kelajuan nol sampai kelajuan sabuk-berjalan menempuh jaraj tertentu. Pada

pengamat yang berada pada sabuk, pasir yang jatuh ke bawah harus bergerak horizontal

dengan kelajuan v pada arah berlawanan dengan sabuk. Sabuk-berjalan menggerakkan pasir

bermassa dm dengan gaya horizontal d f yakni,

d f = µ(dm) (65)

Dalam hal ini µ merupakan koefisien gesekan kinetic antara sabuk dan pasir. Jadi

percepatan pasir adalah ( / m), sehingga

( = /µ ) (66)

Page 9: Mekanika print

Jarak x yang ditempuh oleh pasir yang mengalami perubahan kelajuan dari –v ke 0 yakni,

X= = (67)

Dan kerja yang dilakukan oleh gaya gesekan adalah

dWf = d f. = µ(dm)g = (dm) (68)

Daya yang hilang digunakan oleh gaya gesek yakni,

Pm = = v² = = P (69)

F. Tumbukan Lenting dan Hukum Kekekalan

Tumbukan antar partikel dapat dibedakan menjadi tumbukan elastis yang berlaku

kekekalan momentum linear dan energy kinetic, dan tumbukan tak elastis yang hanya berlaku

kekekalan momentum linear namun kekekalan energy kinetiknya tak berlaku. Pada gambar 5,

dan K merupakan momentum linear dan energy kinetic partikel sebelum tumbukan.

Sedangkan dan K sebagai momentum linear dan energy kinetic partikel setelah tumbukan,

dengan dengan demikian

Untuk tumbukan lenting : i = f dan K i = K f (70)

Untuk tumbukan lenting : i = f dan K i ≠ K f (71)

Y

V1i

x

(a) sebelum m2

2f (b)Sesudah

Gambar5. Tumbukan lenting diantara dua benda (a) sebelum dan (b) sesudah tumbukan

Sebuah benda bemassa m1 bergerak dengan kecepatan u dan mengenai sebuah

partikel lain bermassa m2 pada keadaan diam yang keduanya berada di sepanjang sumbu x.

Setelah tubukan massa m1 bergerak dengan keepatan 1f membentuk sudut ϴ dengan sumbu

x. kekekalan momentum linear dan energi yakni,

i = f dan K i = K f (72)

Sehingga, 1i + 2i = 1f + 2f (73)

Dan 1i + 2i = 1f + 2f (74)

Dalam hal ini

1. 1i = m1 1i , 2i = 0, dan if = m1 1f , 2f = m2 2f²

2. 1i = m1 1i², 2i = 0, dan 1f = m1 2²f , 2f = m2 2²f

Persamaan (73) dalam komponen sumbu x dan y didapat,

m1 1i = m1 1f .cos ϴ + m2 2f cos ϴ (75)

0= m1 1f .sin m2 2f cos ϴ (76)

Dan dari persamaan (74), didapatkan

Page 10: Mekanika print

m1 1²i = m1 1²f + m2 2²f (77)

Dengan demikian, 1i + 1f 2 1i 1f. cos ϴ = 2f (78)

Sedangkan dari persamaan (77) didapatkan (79)

Substitusi persamaan(79) ke dalam persamaan (75) diperoleh

(80)

Untuk kasus (a) ϴ = 0, tumbukan satu dimensi yang merupakan tumbukan tepat pusat

massa, substitusi ϴ = 0 ke persamaan (80) maka:

= 1 atau (81)

Bila disubstitusikan ke persamaan (79), maka

, jika (Tidak terjadi tumbukan) (82)

Dan untuk : (83)

Jika (84)

Untuk m1 = m2, maka dihasilkan , dan (85)

m1 << m2 , akan didapatkan i dan (86)

m1>> m2, maka dan (87)

Gambar 6. Tumbukan lenting satu dimensi di antara dua partikel

Pada kasus (b) m1 > m2, maka

Cos2θ ≥ (88)

Dan untuk θ = θm, persamaan (88), akan dihasilkan

Cos2θ = = 1 - , 0 ≤ θm ≤ (89)

a) m1 = m2

m1 , v1i m2 , v2i = 0 m1 , v1f = 0 m2 , v2f = 0

b) m1 << m2

m1 , v1i m2 , v2i = 0 m1 , v1f = - v1i m2 , v2f = 0

c) m1 >> m2

m1 , v1i m2 , v2i = 0 m1 , v1f = - v1i m2 , v2f = 0

Sebelum Tumbukan Sesudah tumbukan

Page 11: Mekanika print

Sudut hamburan θ harus lebih kecil daripada θm, jika θ> θm dan ≤ θ ≤ θ, nilai di bawah

tanda akar menjadi negatif. Dalam hal ini θm merupakan sudut maksimum = θ maks,

θ ≤ θmaks, dan 0 < θ < (90)

Gambar 7. Grafik hubungan sudut hamburan maksimum terhadap pada tumbukan m2

/ m1 lenting.

Untuk kasus (c) m1 < m2, dalam hal ini tidak ada batasan nilai sudut hamburan, suatu

keadaan sudut θ lebih besar dari maka dihasilkan hamburan balik.

Jika θ = 0 dan ϕ = 0 maka akan didapatkan seperti kasus pertama (a) yakni,

dan (91)

Untuk tumbukan pusat massa maka

= -1 ± [( ½ (92)

Sedangkan pada kasus (a) m1=m2, mengalikan persamaan (75) dengan cos θ dan

persamaan (76) dengan sin θ dan menjumlahkan, didapat :

v1i cos θ = v1i + v2f.cos(θ+ϕ) (93)

karena m1=m2, persamaan (80) menjadi v1i = v1f.cos (θ) (94)

dari persamaan (93) dan (94) didapat : cos(θ+ϕ)=0, atau (95)

G. Tumbukan Tak Lenting

Pada tumbukan antar partikel, ada kemungkinan energi kinetik akhir lebih kecil dari

pada energi kinetik awal, maka pada kondisi ini sistem menyerap energi, dan dinamakan

endoergenic atau tumbukan jenis pertama, sedangkan tumbukan yang menghasilkan energi

kinetik akhir lebih besar daripada energi energi kinetik awal, maka sistem melepas energi,

dan dinamakan exoergenic atau tumbukan jenis kedua. Jika energi kinetik awal Ki dan energi

kinetik adalah Kf, maka energi disintegrasi (φ) dapat dinyatakan sebagai : φ = Kf - Ki (96)

jika φ > 0 exoergik, tumbukan tak lenting jenis kedua (97a)

φ < 0 endoergik, tumbukan tak lenting jenis pertama (97b)

φ = 0 exoergik, tumbukan tak lenting jenis kedua (97c)

θ maks

0 O

45 O

90 O

m2 / m1

0,5 1,0

Page 12: Mekanika print

Seperti tampak pada gambar 8, tumbukan tak lenting antara dua partikel bermassa m1

yang bergerak dengan kecepatan 1i terhadap sebuah partikel bermassa m2 yang diam, dan

menghasilkan dua partikel baru dengan massa m3 dan m4 yang bergerak dengan kecepatan 3f

dan 4f yang membentuk sudut θ3 dan θ4 terhadap sumbu-x. Sedangkan K1, K2, K3, dan K4

merupakan energi kinetik partikel m1, m2, m3, m4, dan energi disintegrasinya Q. Berdasarkan

hukum kekekalan momentum dan energi kinetik, dapat ditulis

m1 1i = m3 3f.cosθ3 + m4 4f.cosθ4 (98)

0 = m3 3f.sinθ3 - m4 4f.sinθ4 (99)

Dan K1 + Q = K3 + K4 (100)

Gambar 8. Tumbukan tak elastis antara dua partikel

Dengan demikian akan diperoleh,

(m4 4f)2 = (m1 1i)

2 + (m3 3f)

2 – 2m1m3 1i. 3f.cosθ3 (101)

Dan mengkombinasi persamaan (100) dan (101) dan menggunakan relasi energi kinetik K1,

K3, dan K4, akan diperoleh energi disintegrasinya Q yakni,

(102)

Ditinjau sebuah objek bermassa m1 bergerak dengan kecepatan 1 menabrak sebuah objek

lain yang diam bermassa m2 , dan kemudian kedua objek menempel setelah tumbukan dan

kecepatannya 2. Menurut hukum konservasi momentum maka,

2 = (103)

Dalam hal ini energi kinetik tidak kekal, sehingga

Q = Kf – Ki = (m1 + m2) v22 - m1 v1

2

subtitusikan persamaan (103) untuk didapatkan,

Q = K1 –

(104)

Yang bernilai negatip dan tumbukannya bersifat endoergik.

y

m3 3f

θ3

m1 m2

1i θ4

Sebelum tumbukan Setelah tumbukan

4f

Page 13: Mekanika print

Jadi energi minimumnya (energi ambang) dinyatakan dengan persamaan

(105)

Untuk reaksi endoergic K1 harus menjadi ≥ (K1) ambang.

Hukum kekekalan momentum dan energi yang diperlukan pada tumbukan satu dimensi

antara dua buah objek seperti pada gambar 9, yakni

m1 1i + m2 2i = m1 1f + m2 2f (106)

m1 1i 2

+ m2 2i2 = m1 1f

2 + m2 2f

2 (107)

Dalam hal ini dihasilkan,

1i + 2i = 2f - 1f (108a)

Atau ( relatif)f = - ( relatif)i (108b)

Koefisien restitusi (e) = - (109)

Dalam hal ini, e=1 untuk tumbukan lenting dan e=0 untuk tumbukan tak lenting

sempurna, untuk tumbukan tak elastis e berada diantara 0 dan 1.

Gambar 9. Tumbukan lenting satu dimensi antara dua massa m1 dan m2

H. Sistem Koordinat Pusat Massa Dua Benda

Suatu sistem berisi dua objek bermassa m1 dan m2 pada jarak r1 dan r2 dari titik asal O,

seperti gambar 10., dan merupakan gaya luar yang bekerja pada m1 dan m2 ,

sedangkan 12i adalah gaya dalam yang bekerja antara m1 dan m2 , dan F21

i sebagai gaya

dalam yang bekerja antara m1 dan m2, sesuai dengan hukum III Newton,

12i = - F21

i = f (110)

Sedangkan gaya luar total yang bekerja pada suatu sitem

F = 1e + 2

e (111)

Mengikuti hukum II Newton, gerak dua benda dalam sistem lab dapat ditulis sebagai :

(112)

(113)

Koordinat pusat massa dapat dinyatakan dengan persamaan,

m1 m2 m1 m2

O 1i 2i 1f 2f X

1i - 2i = -( real)i 1i - 2i = ( real)f

Page 14: Mekanika print

(114)

Dan koordinat relatif (r) diberikan oleh

1 - 2 (115)

Sedangkan reverse transformasi diberikan dengan persamaan

1 = R + (116)

Gambar 10. Pusat massa dan gerak rektif untuk sistem tetap pada dua partikel

Dan 2= R - (117)

Penjumlah persamaan (112) dan (113) akan diperoleh,

Dengan menggunakan persamaan (110), (111), dan (114), didapatkan persamaan,

(m1 + m2) = F

Atau M = F (118)

sebagai percepatan pusat massa sistem M (m1 + m2) karena gaya luar Selanjutnya

dengan mengalikan persamaan (112) dengan m2 dan persamaan (113) dengan m1 dan

kemudian menguranginya, didapatkan persamaan :

m1m2 ( 1 - 2) = m2 1e - m1F2

e + m2F12i + m1F21

i

dari persamaan (110), didapat

(119)

Untuk khasus khusus, 1e = F2

e = 0 (120)

Atau (121)

Gaya luar yang bekerja pada objek tersebut proposional dengan massanya, sehingga

persamaan (119) menjadi

m1 m2 1 - 2) = (m1 + m2) f (122)

m2

CM

r2

R m1

r1

O

Page 15: Mekanika print

Oleh karena massa reduksi didefinisikan sebagai

µ = (123)

dan 1 - 2, maka persamaan (122)

µr = f (124)

Merupakan persamaan gerak benda bermassa µ yang diberif gaya iternal f = F21i

sehingga menghasilkan percepatan (r) seperti pada persamaan (118).

Untuk menentukan momentum linier (P), anguler (L), dan total energi kinetik K dalam

koordinat pusat massa (CM) maka ditinjau kembali kecepatan pusat massa yakni,

(125)

Dan kecepatan relatif (v)

v = = 1 - 2 (126)

Sedangkan invers tranformasinya dinyatakan sebagai,

(127)

(128)

Dengan demikian total momentum linier sistem yakni,

P = m1 1 + m2 2 = M (129)

Dan total momentum sudut sistem yakni,

L = m1 (r1 x 1) + m2(r2 x 2) (130)

Subtitusi untuk 1 dan 2 dari persamaan (127) dan (125), didapatkan

L = M (R x ) x µ (r x 2) (131)

Sedangkan untuk energi kinetiknya diberikan oleh persamaan

K = m1 r12 + m2 r2

2 (132)

Dengan mensubtitusikan 1 dan 2 didapat

K = M2 + µ

2 (133)

Atau K = M2 + µ

2

I. Tumbukan dalam Sistem Koordinat Pusat Massa

Sebelumnya telah dibahas tumbukan elastik dan tak elastik antar dua benda dari sudut

pandang pengamat yang diam dalam sistem koordinat laboratorium (SKL). Pada banyak

kasus, akan memudahkan apabila pengamatan dilakukan dalam dalam sistem koordinat yang

bergerak terhadap SKL. Umumnya sistem koordinat yang digunakan adalah sistem koordinat

pusat massa (SKPM), di mana tumbukan diamati oleh pengamat yang ada di pusat massa

yang tentunya ikut bergerak dengan kecepatan yang sama dengan pusat massa.

Misalkan sebuah partikel bermassa m1 di x1 bergerak dengan kecepatan v1i, sementara

sebuah partikel bermassa m2 di x2 diam seperti ditunjukkan gambar 11 pusat massa xc

diberikan oleh

Page 16: Mekanika print

(m1 + m2)xc = m1x1 + m2x2 (135)

Sementara kecepatan pusat massa diperoleh dari differensiasi persamaan 135 yaitu

(m1 + m2)vc = m1x1 + m2x2 (136)

Dimana vc = dxc/dt, untuk situasi seperti yang ditunjukkan gambar 11, x1=v1 dan x2=0,

sehingga kecepatan pusat massa vc terhadap SKL diberikan oleh

vc = v1i (137)

dimana µ adalah massa tereduksi.

Gambar 11. Kecepatan m1 dan m2 dan pusat massanya dalam sistem koordinat lab

(SKL).

Misalkan tumbukan antara m1 dan m2 diamati oleh pengamat yang berada dalam

SKPM yang bergerak dengan kecepatan vc. Kecepatan m1 dan m2 terhadap SKPM adalah

v’1i dan v’2i (tanda aksen menunjukkan bahwa besaran digambarkan dalam SKPM).

Gambar 12. Gerak partikel m1 dan m2 pada sistem koordinat pusat massa (SKPM).

Gambar 12 menunjukkan gerak kedua partikel terhadap SKPM. Momentum tiap partikel

sebelum tumbukan dalam SKPM adalah

Jadi momentum linier total dari sistem dalam SKPM sebelum tumbukan adalah

Bahwa momentum linier total sebelum tumbukan sama dengan nol merupakan salah satu sifat

penting dari SKPM. Hal ini berakibat agar momentum liniear kekal, momentum linier total

setelah tumbukan harus nol juga. Dipandang dari SKPM dua partikel bermassa m1 dan m2

saling mendekat dalam garis lurus dan setelah tumbukan saling menjauh dalam garis lurus

m1 CM m2

O x

v’1i = v1i - vc v2i = - vc

CM m2

v1i v2i = 0

m1 CM m2

X

v1i v2i = 0

Page 17: Mekanika print

juga dengan kecepatan awal yang sama, seperti ditunjukkan dalam gambar 13(a). Garis yang

menghubungkan kedua partikel yang saling menjauh dapat juga membentuk sudut θc (dalam

SKPM). Sebagai perbandingan, gambar 13(b) menunjukkan tumbukan yang diapandang dari

SKL.

(a)

(b)

Gambar 13. Tumbukan antara dua partikel bermassa m1 dan m2 yang dilihat dari (a)

SKPM (b) SKL

Selanjutnya akan dibahas masalah bagaimana cara kembali dari SKPM ke SKL dan

hubungan antara sudut yang dibuat oleh partikel setelah tumbukan dengan arah mula-mula

baik dalam SKL maupun SKPM. Dalam SKPM, kecepatan akhir dan arah partikel setelah

tumbukan ditunjukkan pada gambar 13(a). Untuk menentukan kecepatan akhir partikel dalam

SKL, maka prosedur untuk berubah dari SKL ke SKPM dapat dibalik. Hal ini dapat

dilakukan dengan menambahkan ke kecepatan akhir v’1f = (v1i – vc) dan v’2f = vc, kecepatan

pusat massa vc seperti ditunjukkan oleh gambar 14, dapat ditentukan hubungan θL dan ΦL

dalam SKL dan θL dalam SKPM. Dengan menguraikan ke dalam komponennya, persamaan

(143) dapat dituliskan

v1f cos θL = vc + v’1f cosθC (145)

v1f sin θL = v’1f sinθC (146)

Y m1 v’1f = v1i - vc

m1 v’2i m2 X

O v’1i = v1i - vc m2

v’2f = vc

SEBELUM SESUDAH

Y

vc

v’1f θL v1f

O θc X

ϕL

v’2f v2f

vc

Y m1 v1f

v1 θL X

O m1 m2 ΦL

m2 V2f

Page 18: Mekanika print

Dengan saling membagi akan diperoleh

tan L= = (147)

atau tan θL = (148)

Dimana

γ = = (149)

Nilai dari vc dan v’1f diberikan oleh persamaan (137) dan (135). Dari persamaan (137)

vc = v1i = v1i (150)

Dimana µ adalah massa tereduksi dan v1i adalah kecepatan relatif awal (= v1i – v2i = v1i – 0

=v1i). Kecepatan relatif akhir, v’1f (= v’1i), dari persamaan (138) sama dengan

v’1f = v1f = v1f (151)

Gabungan tiga persamaan tersebut (dan dengan memperhatikan bahwa kecepatan akhir

sama dengan kecepatan awal dalam SKPM), diperoleh

γ = = (152)

Untuk tumbukan tak lenting v1i ≠ v1f sehingga persamaan (145) menjadi

tan θL = (153)

Untuk tumbukan lenting, v1i = v1f sehingga persamaan (153) menjadi

tan θL = (154)

Ditinjau beberapa kasus khusus dari persamaan (154) untuk tumbukan lenting :

Kasus (a) : Jika m1 = m2, seperti dalam khusus tumbukan antara neutron dan proton,

persamaan (154) dapat dituliskan sebagai

tan θL = = = tan (155)

sehingga θL = (156)

Karena dalam SKPM θc dapat memiliki nilai antara 0 dan π, maka θL dapat memiliki

nilai maksimum .

Kasus (b) : Jika m2 > m1, persamaan (154) dapat dituliskan sebagai

tan θL ≈ = tan c (157)

sehingga θL ≈ θ C (158)

Kasus (c) : Jika m1 > m2, partikel yang menumbuk lebih berat dibandingkan partikel sasaran.

Dalam kasus ini, θL harus sangat kecil, tidak peduli berapa nilai θc. Hal ini bersesuaian

dengan persamaan (90) yang menyatakan bahwa θL tidak dapat lebih besar nilainya

dibandingkan dengan nilai maksimum θmaks.

Page 19: Mekanika print

J. Gaya Tolak Kuadrat Terbalik : Hamburan Rutherford

Salah satu contoh gerak partikel dalam medan gaya tolak kuadrat terbalik adalah

pembelokan atau hamburan partikel atomik yang bergerak cepat seperti proton dari partikel

alfa oleh inti bermuatan positif. Lintasan dari hamburan seperti ini adalah “hiperbolik”.

Seperti ditunjukkan pada gambar 15 (a) dan (b), partikel bermuatan positif q, bermassa m1

memiliki kecepatan vo bergerak menuju sebuah inti sasaran yang bermuatan positif Q dan

bermassa M yang diam. Gaya tolak kuadrat terbalik antar kedua partikel adalah

F = k = (159)

Dimana k = 8,99 x 109

N M2

/ C2 dan K = kQq bernilai positif sehingga F merupakan

gaya tolak. Dalam kasus khusus hamburan partikel alfa oleh inti, q = 2e dan Q = Ze dimana

Z adalah nomor atom dari inti. Karena e = 1,6 x 10-19

C (C = coloumb).

K = kQq = 2kZe2 = (4,6 x 10

-28 Nm

2) Z (160)

Dengan K bernilai positif. Dari persamaan eksentrisitis e, yaitu

e = (111)

Gambar 15. (a) Lintasan hiperbolik dari partikel bermuatan positif q dalam medan

gaya bermuatan positif Q. θ merupakan sudut hamburan dan b adalah parameter

tumbukan. (b) seperti (a) juga menunjukkan hubungan antara r, rmin,b dan θ.

Agar lintasan partikel alfa yang datang berbentuk hiperbolik maka >1. Sudut

hamburan θ yang merupakan sudut antara kedua simplot : θ = - 2a (161)

Oleh karena itu : tan = tan( = cot (162)

Dalam persamaan hiperbolik : r = (118)

Untuk partikel yang berada di tak hingga r = , dan persamaan tersebut menjadi

Cos α = (163)

Dimana merupakan nilai eksentrisitas. Apabila digabungkan menjadi

tan = cot = = = (164)

Substitusi untuk 2 diperoleh

(a)

θ

Q b α

F ac a F

(b)

r min

θ

m

r

b b Q

F

Page 20: Mekanika print

tan = (165)

Ketika partikel berada di taj terhingga energy potensialnya adalah V = K / r = K / = 0

sehingga energy totalnya merupakan energi kinetic

E = mv02 (166)

Karena partikel alfa bergerak menuju pusat gaya F, ketika tidak ada gaya maka tidak akan

disimpangkan geraknya melainkan akan melewati pusat gaya pada jarak b, dimana partikel

melewati pusat gaya sebagai parameter tumbukan. Momentum sudut dari partikel

L = mv0b (167)

yang tetap konstan geraknya akibat hukum kekekalan momentum sudut. Dengan substitusi E

dan L akan menjadi

tan = sehingga tan = (168)

dimana K = kqQ. Sehingga hubunganya

b = cot (169)

θ = 2arc cot [( (170)

Sudut hamburan θ dapat ditentukan secara eksperimen sehingga parameter tumbukan

dapat ditentukan pula dari persamaan di atas. Ketika b membesar, θ akan mengecil, atau

semakin kecilparameter tumbukan, sudut hamburanya akan membesar.

Misalkan patikel dengan parameter tumbukan disimpangkan melalui θ, sementara

partikel dengan parameter tumbukan b+db disimpangkan melalui sudut b+db dengan θ

bernilai negatif.

Missal terdapat N partikel yang menumbuk lempeng target dan lempeng mengandung

inti per satuan luas sehingga terdapat pusat hamburan per satuan luas. Maka jumlah partikel

alfa dN yang dihamburkan melalui sudut θ dan θ+dθ sebanding dengan pusat hamburan n dan

jumlah yang datang N

dN = nN dσ (171)

dimana dσ didefinisikan sebagai tampang-lintang untuk hamburan melalui sudut θ dan θ+d

θ. Dσ dapat dibayangkan sebagai daerah efektif yang mengelilingi tiap pusat hamburan

dimana partikel yang datang harus menumbuk agar terhambur, sehingga daerah sensitif total

untuk hamburan dalam satuan daerah target adalah n dσ. Jika partikel yang datang memiliki

parameter tumbukan antara 0 dan b, partikel akan dihamburkan pada sudut θ atau lebih besar

dari θ. Tampang-lintang dalam hal ini adalah σ dan sama dengan daerah piringan jari-jari b

dalam dengan pusat di F, sehingga

σ = 2 (172)

Partikel yang datang mendekati pusat hamburan F memilki parameter tumbukan antara b+db.

Partiel-partikel ini akan dihamburkan pada sudut antara θ dan θ-dθ jika menumbuk daerah

piringan di sekitar F yang berjari-jari dalam b dan berjari-jari luar b+db, sehingga daerah

piringan merupakan daerah tampang-lintang dσ

Page 21: Mekanika print

dσ = 2 (173)

b dan db dapat dinyatakan

b = cos (169)

Dengan differensiasi : db = - (174)

selain itu digunakan pula untuk mencari b

b = (175)

substitusi untuk b dan db dari persamaan (174) dan (175) ke persamaan (173) diperoleh

dσ = d θ (176)

Karena K = kQq, maka : dσ = d θ (177)

Merupakan “rumus hamburan Rutherford”. Dσ dapat diukur secara eksperimental dan

dibandingkan dengan hasil teoritis. Rutherford menggunakan rumus tersebut untuk

menganalisa hasil eksperimen hamburan partikel alfa (q = 2 oleh inti target (Q = Z pada

lempeng tipis. Dapat disimpulkan bahwa muatan positif inti terkonsentrasi dalam bola

berjari-jari kurang dari 10-14

m. partikel alfa yang datang dapat berada paling dekat dengan

inti jika parameter tumbukannya b = 0. Nilai ini meberikan jarak minimum perihelion dan

pada jarak ini seluruh energi kinetic partikel mulai bebalik arah.

K = V =kQq / rmin (178)

Penyimpangan dari rumus hamburan Rutherford terjadi jika energy kinetik K dari

partikel yang datang lebih besar daripada energy potensial minimum pada jarak rmin. Dari

pengamatan seperti ini, Rutherford menyimpulkan bahwa jari-jari inti adalah 10-14

m.

Jika inti target tidak cukup berat, seperti yang diasumsikan pada bahasan di atas, maka inti

akan ikut bergerak selama tumbukan seperti tumbukan SKPM. Hasil akhir diperoleh dengan

mengganti m oleh massa tereduksi µ= [mM / (M+m)] dan θ oleh θc pada persamaan (176),

yaitu

dσ = d θc (179)

pada kasus m1=m2 maka θc=2θL=2θ sehingga

dσ = d θc (180)