Download - Bab v Transkripsi

Transcript

BAB V. TRANSKRIPSI Pokok bahasan di dalam bab ini meliputi prinsip dasar transkripsi, yang mencakup ciri-ciri dan tahapan transkripsi, transkripsi pada prokariot, dan transkripsi pada eukariot, dengan penekanan pada karakteristik enzim RNA polimerasenya. Setelah mempelajari pokok bahasan di dalam bab ini mahasiswa diharapkan mampu menjelaskan: 1. prinsip dasar transkripsi, 2. transkripsi pada prokariot, khususnya pada bakteri Escherichia coli, dan 3. transkripsi pada eukariot. Pengetahuan awal yang diperlukan oleh mahasiswa agar dapat mempelajari pokok bahasan ini dengan lebih baik adalah struktur asam nukleat dan replikasi DNA, yang masing-masing telah dijelaskan pada Bab II dan Bab IV. Selain itu, konsep dasar tentang gen dan transkripsi yang telah diperoleh pada mata kuliah Genetika juga sangat mendukung pemahaman materi bahasan di dalam bab ini. Prinsip Dasar Transkripsi Pada Bab IV telah disebutkan bahwa fungsi dasar kedua yang harus dijalankan oleh DNA sebagai materi genetik adalah fungsi fenotipik. Artinya, DNA harus mampu mengatur pertumbuhan dan diferensiasi individu organisme sehingga dihasilkan suatu fenotipe tertentu. Fungsi ini dilaksanakan melalui ekspresi gen, yang tahap pertamanya adalah proses transkripsi, yaitu perubahan urutan basa molekul DNA menjadi urutan basa molekul RNA. Dengan perkataan lain, transkripsi merupakan proses sintesis RNA menggunakan salah satu untai molekul DNA sebagai cetakan (templat)nya. Transkripsi mempunyai ciri-ciri kimiawi yang serupa dengan sintesis/replikasi DNA, yaitu 1. Adanya sumber basa nitrogen berupa nukleosida trifosfat. Bedanya dengan sumber basa untuk sintesis DNA hanyalah pada molekul gula pentosanya yang tidak berupa deoksiribosa tetapi ribosa dan tidak adanya basa timin tetapi digantikan oleh urasil. Jadi, keempat nukleosida trifosfat yang diperlukan adalah adenosin trifosfat (ATP), guanosin trifosfat (GTP), sitidin trifosfat (CTP), dan uridin trifosfat (UTP). 2. Adanya untai molekul DNA sebagai cetakan. Dalam hal ini hanya salah satu di antara kedua untai DNA yang akan berfungsi sebagai cetakan bagi sintesis molekul RNA. Untai DNA ini mempunyai urutan basa yang komplementer dengan urutan basa RNA

48 hasil transkripsinya, dan disebut sebagai pita antisens. Sementara itu, untai DNA pasangannya, yang mempunyai urutan basa sama dengan urutan basa RNA, disebut sebagai pita sens. Meskipun demikian, sebenarnya transkripsi pada umumnya tidak terjadi pada urutan basa di sepanjang salah satu untai DNA. Jadi, bisa saja urutan basa yang ditranskripsi terdapat berselang-seling di antara kedua untai DNA. 3. Sintesis berlangsung dengan arah 5 3 seperti halnya arah sintesis DNA. 4. Gugus 3- OH pada suatu nukleotida bereaksi dengan gugus 5- trifosfat pada nukleotida berikutnya menghasilkan ikatan fosofodiester dengan membebaskan dua atom pirofosfat anorganik (PPi). Reaksi ini jelas sama dengan reaksi polimerisasi DNA. Hanya saja enzim yang bekerja bukannya DNA polimerase, melainkan RNA polimerase. Perbedaan yang sangat nyata di antara kedua enzim ini terletak pada kemampuan enzim RNA polimerase untuk melakukan inisiasi sintesis RNA tanpa adanya molekul primer. Secara garis besar transkripsi berlangsung dalam empat tahap, yaitu pengenalan promoter, inisiasi, elongasi, dan teminasi. Masing-masing tahap akan dijelaskan secara singkat sebagai berikut. Pengenalan promoter Agar molekul DNA dapat digunakan sebagai cetakan dalam sintesis RNA, kedua untainya harus dipisahkan satu sama lain di tempat-tempat terjadinya penambahan basa pada RNA. Selanjutnya, begitu penambahan basa selesai dilakukan, kedua untai DNA segera menyatu kembali. Pemisahan kedua untai DNA pertama kali terjadi di suatu tempat tertentu, yang merupakan tempat pengikatan enzim RNA polimerase di sisi 5 (upstream) dari urutan basa penyandi (gen) yang akan ditranskripsi. Tempat ini dinamakan promoter. Inisiasi Setelah mengalami pengikatan oleh promoter, RNA polimerase akan terikat pada suatu tempat di dekat promoter, yang dinamakan tempat awal polimerisasi atau tapak inisiasi (initiation site). Tempat ini sering dinyatakan sebagai posisi +1 untuk gen yang akan ditranskripsi. Nukleosida trifosfat pertama akan diletakkan di tapak inisiasi dan sintesis RNA pun segera dimulai.

49 Elongasi Pengikatan enzim RNA polimerase beserta kofaktor-kofaktornya pada untai DNA cetakan membentuk kompleks transkripsi. Selama sintesis RNA berlangsung kompleks transkripsi akan bergeser di sepanjang molekul DNA cetakan sehingga nukleotida demi nukleotida akan ditambahkan kepada untai RNA yang sedang diperpanjang pada ujung 3 nya. Jadi, elongasi atau polimerisasi RNA berlangsung dari arah 5 ke 3, sementara RNA polimerasenya sendiri bergerak dari arah 3 ke 5 di sepanjang untai DNA cetakan. Terminasi Berakhirnya polimerisasi RNA ditandai oleh disosiasi kompleks transkripsi atau terlepasnya enzim RNA polimerase beserta kofaktor-kofaktornya dari untai DNA cetakan. Begitu pula halnya dengan molekul RNA hasil sintesis. Hal ini terjadi ketika RNA polimerase mencapai urutan basa tertentu yang disebut dengan terminator. Terminasi transkripsi dapat terjadi oleh dua macam sebab, yaitu terminasi yang hanya bergantung kepada urutan basa cetakan (disebut terminasi diri) dan terminasi yang memerlukan kehadiran suatu protein khusus (protein rho). Di antara keduanya terminasi diri lebih umum dijumpai. Terminasi diri terjadi pada urutan basa palindrom yang diikuti oleh beberapa adenin (A). Urutan palindrom adalah urutan yang sama jika dibaca dari dua arah yang berlawanan. Oleh karena urutan palindom ini biasanya diselingi oleh beberapa basa tertentu, maka molekul RNA yang dihasilkan akan mempunyai ujung terminasi berbentuk batang dan kala (loop) seperti pada Gambar 5.1. Inisiasi transkripsi tidak harus menunggu selesainya transkripsi sebelumnya. Hal ini karena begitu RNA polimerase telah melakukan pemanjangan 50 hingga 60 nukleotida, promoter dapat mengikat RNA polimerase yang lain. Pada gen-gen yang ditranskripsi dengan cepat reinisiasi transkripsi dapat terjadi berulang-ulang sehingga gen tersebut akan terselubungi oleh sejumlah molekul RNA dengan tingkat penyelesaian yang berbeda-beda. Transkripsi pada Prokariot Telah dikatakan di atas bahwa transkripsi merupakan proses sintesis RNA yang dikatalisis oleh enzim RNA polimerase. Berikut ini akan diuraikan sekilas enzim RNA

50 polimerase pada prokariot, khususnya pada bakteri E.coli, promoter 70, serta proses transkripsi pada organisme tersebut. urutan penyela 5 3 ATTAAAGGCTCCTTTTGGAGCCTTTTTTTT T A A T T T C C G A G GA AA A C C T C G G A A AAA A AA 3 5 transkripsi DNA

U U U C C U C G G A A 5 A U U A U G G A G C C U U U 3 U U U U U RNA

Gambar 5.1 Terminasi sintesis RNA menghasilkan ujung berbentuk batang dan kala

RNA polimerase E. coli Enzim RNA polimerase pada E. coli sekurang-kurangnya terdiri atas lima subunit, yaitu alfa (), beta (), beta prima (), omega (), dan sigma (). Pada bentuk lengkapnya, atau disebut sebagai holoenzim, terdapat dua subunit dan satu subunit untuk masing-masing subunit lainnya sehingga sering dituliskan dengan 2. Holoenzim RNA polimerase diperlukan untuk inisiasi transkripsi. Namun, untuk elongasi transkripsi tidak diperlukan faktor sehingga subunit ini dilepaskan dari kompleks

51 transkripsi begitu inisiasi selesai. Sisanya, yakni 2, merupakan enzim inti (core enzyme) yang akan melanjutkan proses transkripsi. Laju sintesis RNA oleh RNA polimerase E. coli dapat mencapai sekitar 40 nukleotida per detik pada suhu 37C. Untuk aktivitasnya enzim ini memerlukan kofaktor Mg2+. Setiap berikatan dengan molekul DNA enzim RNA polimerase E. coli dapat mencakup daerah sepanjang lebih kurang 60pb. Meskipun kebanyakan RNA polimerase seperti halnya yang terdapat pada E. coli mempunyai struktur multisubunit, hal itu bukanlah persyaratan yang mutlak. RNA polimerase pada bakteriofag T3 dan T7, misalnya, merupakan rantai polipeptida tunggal yang ukurannya jauh lebih kecil daripada RNA polimerase bakteri. Enzim tersebut dapat menyintesis RNA dengan cepat, yaitu sebanyak 200 nukleotida per detik pada suhu 37C. Subunit Dua subunit yang identik terdapat pada RNA polimerase inti. Kedua-duanya disandi oleh gen rpoA. Ketika bakteriofag T4 menginfeksi E.coli, subunit akan dimodifikasi melalui ribosilasi ADP suatu arginin. Hal ini berkaitan dengan berkurangnya afinitas pengikatan promoter sehingga subunit diduga kuat memegang peranan dalam pengenalan promoter. Subunit Seperti halnya subunit , subunit juga terdapat pada RNA polimerase inti. Subunit ini diduga sebagai pusat katalitik RNA polimerase, yang dibuktikan melalui hasil penelitian mengenai penghambatan transkripsi menggunakan antibiotik. Antibiotik rifampisin merupakan inhibitor potensial bagi RNA polimerase yang menghalangi inisiasi tetapi tidak mempengaruhi elongasi. Kelompok antibiotik ini tidak menghambat polimerase eukariot sehingga sering digunakan untuk mengatasi infeksi bakteri Gram positif dan tuberkulosis. Rifampisin telah dibuktikan berikatan dengan subunit , dan mutasi-mutasi yang menyebabkan resistensi terhadap rifampisin telah dipetakan pada gen rpoB, yaitu gen yang menyandi subunit . Selanjutnya, kelompok antibiotik yang lain, yakni streptolidigin, ternyata menghambat elongasi transkripsi, dan mutasi-mutasi yang menyebabkan resistesi terhadap antibiotik ini juga dipetakan pada gen rpoB. Kedua hasil

52 penelitian tersebut mendukung pendapat bahwa subunit diduga mempunyai dua domain yang bertanggung jawab terhadap inisiasi dan elongasi transkripsi. Subunit Subunit juga terdapat pada RNA polimerase inti. Subunit yang disandi oleh gen rpoC ini mengikat dua ion Zn2+ yang diduga berpartisipasi dalam fungsi katalitik polimerase. Suatu polianion, yakni heparin, terbukti mengikat subunit . Heparin menghambat transkripsi secara in vitro dan juga berkompetisi dengan DNA dalam pengikatan RNA polimerase. Hal ini mendukung pendapat bahwa subunit diduga bertanggung jawab terhadap pengikatan DNA cetakan. Faktor Faktor yang paling umum dijumpai pada E. coli adalah 70 (disebut demikian karena mempunyai berat molekul 70 kDa). Pengikatan faktor pada RNA polimerase inti akan mengubah enzim tersebut menjadi holoenzim. Faktor memegang peranan yang penting dalam pengenalan promoter tetapi tidak diperlukan untuk elongasi transkripsi. Kontribusi faktor dalam pengenalan promoter adalah melalui penurunan afinitas enzim inti terhadap tempat-tempat nonspesifik pada molekul DNA hingga 10 4, disertai dengan peningkatan afinitas terhadap promoter. Banyak organisme prokariot, termasuk E. coli, mempunyai beberapa faktor . Semuanya terlibat dalam pengenalan kelompok-kelompok promoter tertentu. Faktor dilepaskan dari RNA polimerase inti ketika sintesis RNA mencapai panjang 8 hingga 9 nukleotida. Enzim inti tersebut kemudian akan bergerak di sepanjang molekul DNA sambil menyintesis untai RNA. Sementara itu, faktor dapat segera bergabung dengan RNA polimerase inti lainnya dan melakukan inisiasi transkripsi kembali. Jumlah faktor di dalam sel lebih kurang hanya 30% dari jumlah RNA polimerase inti sehingga hanya sepertiga di antara kompleks RNA polimerase yang akan dijumpai dalam bentuk holoenzim pada suatu waktu tertentu. Promoter 70 pada E. coli Seperti telah dikatakan di atas, promoter merupakan tempat tertentu pada molekul DNA yang mempunyai urutan basa spesifik untuk pengikatan RNA polimerase dan

53 inisiasi transkripsi. Promoter yang berbeda akan dikenali oleh faktor RNA polimerase yang berbeda pula. Meskipun demikian, faktor yang paling umum dijumpai pada E. coli adalah 70. Promoter pertama kali dikarakterisasi melalui percobaan mutasi yang meningkatkan atau menurunkan laju transkripsi gen-gen seperti halnya gen-gen struktural pada operon lac. Mutagenesis promoter-promoter pada E. coli menunjukkan bahwa urutan basa yang menentukan fungsi promoter tersebut hanyalah suatu urutan yang sangat pendek. Promoter 70 terdiri atas urutan basa sepanjang 40 hingga 60 pb. Daerah antara 55 dan +20 telah diketahui merupakan daerah pengikatan RNA polimerase, sedangkan daerah antara 20 dan +20 diketahui sangat terlindung dari aktivitas nuklease oleh DNase I.. Hal ini menunjukkan bahwa daerah tersebut sangat berkaitan dengan polimerase yang menghalangi akses nuklease menuju DNA. Mutagenesis promoter memperlihatkan bahwa urutan hingga lebih kurang 40 mempunyai peranan yang penting bagi fungsi promoter. Selain itu, dua urutan sepanjang 6 pb pada posisi sekitar 10 dan 35 terbukti sangat penting bagi fungsi promoter pada E. coli. Urutan 10 Urutan yang paling lestari (konservatif) pada promoter 70, atau sering dikatakan sebagai urutan konsensus, adalah urutan sepanjang 6 pb yang dijumpai pada promoterpromoter berbagai macam gen pada E. coli. Urutan ini terpusat di sekitar posisi 10 jika dilihat dari tapak inisiasi transkripsi (Gambar 5.2), dan dinamakan kotak Pribnow karena ditemukan oleh Pribnow pada tahun 1975. Urutan konsensus pada kotak Pribnow adalah TATAAT. Kedua basa pertama (TA) dan T yang terakhir merupakan basa-basa yang paling konservatif. Urutan heksamer ini dipisahkan sejauh 5 hingga 8 pb dari tapak inisiasi, dan urutan penyela yang memisahkan urutan -10 dengan tapak inisiasi tersebut tidaklah konservatif. Urutan 10 nampaknya merupakan urutan tempat terjadinya inisiasi pembukaan heliks oleh RNA polimerase.

TTGACA -35

16-18pb

TATAAT -10

5-8pb

CG/AT +1

Gambar 5.2. Urutan konsensus pada promoter-promoter E. coli

54 Urutan -35 Pada Gambar 5.2 terlihat bahwa selain urutan -10, terdapat pula urutan heksamer lain yang konservatif, yaitu urutan di sekitar posisi -35, yang terdiri atas TTGACA. Urutan ini akan lebih konservatif lagi pada promoter-promoter yang efisien. Tiga basa pertama (TTG) merupakan posisi yang paling konservatif. Pada kebanyakan promoter urutan -35 dipisahkan sejauh 16 hingga 18 pb dari kotak Pribnow, dan urutan penyelanya bukanlah urutan yang penting. Tapak inisiasi transkripsi Pada 90% di antara semua gen, tapak inisiasi transkripsi (posisi +1) berupa basa purin, dan dalam hal ini G lebih umum dijumpai daripada A. Di samping itu, basa C dan basa T sering kali mengapit tapak inisiasi sehingga terdapat urutan CGT atau CAT (Gambar 5.2). Efisiensi promoter Urutan-urutan konsensus tersebut di atas khas dijumpai pada promoter-promoter yang kuat. Akan tetapi, di antara promoter yang berbeda sebenarnya terdapat variasi urutan yang cukup nyata, yang dapat mengakibatkan perbedaan efisiensi transkripsi hingga 1.000 kali. Secara garis besar, fungsi daerah-daerah pada promoter dapat dijelaskan sebagai berikut. Urutan -35 merupakan urutan pengenalan yang akan meningkatkan pengenalan dan interaksi dengan faktor RNA polimerase, urutan -10 penting untuk inisiasi pembukaan heliks, dan urutan di sekitar tapak inisiasi mempengaruhi inisiasi transkripsi. Sementara itu, urutan 30 basa pertama yang akan ditranskripsi juga mempengaruhi transkripsi. Urutan ini mengatur laju pelepasan promoter dari RNA polimerase, yang memungkinkan reinisiasi transkripsi dapat dilakukan oleh kompleks polimerase lainnya. Pada akhirnya hal ini akan berpengaruh terhadap laju transkripsi dan kekuatan promoter. Pentingnya pemisahan untai DNA pada reaksi inisiasi diperlihatkan oleh pengaruh superkoiling negatif DNA cetakan yang pada umumnya akan memacu laju transkripsi. Hal ini diduga karena struktur superkoil tersebut hanya memerlukan sedikit energi untuk membuka heliks.

55 Beberapa urutan promoter tidak cukup mirip dengan urutan konsensus yang akan ditranskripsi dengan kuat pada kondisi normal. Sebagai contoh, promoter lac (Plac), yang memerlukan faktor aktivasi tambahan berupa protein reseptor cAMP atau cAMP protein receptor (CPR) untuk mengikat suatu tempat pada DNA yang letaknya berdekatan dengan urutan promoter tersebut agar pengikatan RNA polimerase dan inisiasi transkripsi dapat ditingkatkan. Sejumlah promoter lainnya, misalnya untuk gen-gen yang berhubungan dengan kejut panas, mempunyai urutan konsensus tertentu yang hanya dapat dikenali oleh RNA polimerase dengan faktor selain 70. Tahapan transkripsi pada prokariot Seperti proses transkripsi pada umumnya, transkripsi pada prokariot berlangsung dalam empat tahap, yaitu pengikatan promoter, inisiasi, elongasi, dan teminasi. Di bawah ini akan dijelaskan pula sekilas tentang pembukaan heliks, yang terjadi antara tahap pengikatan promoter dan insiasi transkripsi. Pengikatan promoter Pada awalnya, RNA polimerase inti (2) mempunyai afinitas nonspesifik terhadap DNA. Keadaan ini dikenal sebagai pengikatan longgar, dan sifatnya cukup stabil. Namun, begitu faktor bergabung dengan enzim inti tersebut hingga terbentuk holoenzim, terjadilah pengurangan afinitas nonspesifik terhadap DNA hingga 20.000 kali. Sejalan dengan hal itu, faktor juga meningkatkan pengikatan holoenzim pada tempat pengikatan promoter yang tepat hingga 100 kali. Dengan demikian, akan terjadi peningkatan spesifisitas holoenzim yang tajam dalam mengenali promoter. Pada genom E. coli holoenzim dapat mencari dan mengikat promoter dengan sangat cepat. Bahkan, karena begitu cepatnya, maka proses ini tidak mungkin terjadi melalui pengikatan dan pelepasan holoenzim dari DNA secara berulang-ulang. Kemungkinan yang masuk akal hanyalah melalui pergeseran holoenzim di sepanjang molekul DNA hingga mencapai urutan promoter. Pada promoter, holoenzim mengenali urutan -35 dan 10. Kompleks awal antara holoenzim dan promoter dikenal sebagai kompleks tertutup (closed complex).

56 Pembukaan heliks Agar pita antisens dapat diakses untuk perpasangan basa antara DNA dan RNA yang disintesis, untai ganda (heliks) DNA harus dibuka terlebih dahulu oleh enzim RNA polimerase. Pada kebanyakan gen pembukaan heliks oleh RNA polimerase akan dimudahkan oleh struktur superkoiling negatif DNA sehingga transkripsi dapat ditingkatkan. Namun, tidak semua promoter dapat diaktivasi oleh superkoiling negatif sehingga terisyaratkan bahwa perbedaan topologi DNA dapat mempengaruhi transkripsi. Hal ini mungkin karena adanya perbedaan hubungan sterik pada urutan -35 dan -10 di dalam heliks. Sebagai contoh, promoter untuk subunit enzim DNA girase justru dihambat oleh superkoiling negatif. Seperti kita ketahui, DNA girase adalah enzim yang bertanggung jawab untuk superkoiling negatif pada genom E. coli (Bab IV) sehingga superkoiling negatif ini dapat bertindak sebagai umpan balik yang menghambat ekspresi DNA girase. Pembukaan awal heliks DNA akan menyebabkan pembentukan kompleks terbuka (open complex) dengan RNA polimerase. Proses ini dikenal sebagai pengikatan ketat. Inisiasi Berbeda dengan sintesis DNA (Bab IV), sintesis RNA dapat berlangsung tanpa adanya molekul primer. Oleh karena hampir semua tapak inisiasi transkripsi berupa basa G atau A, maka nukleosida trifosfat pertama yang digunakan untuk sintesis RNA adalah GTP atau ATP. Mula-mula RNA polimerase akan menggabungkan dua nukleotida pertama dan membentuk ikatan fosfodiester di antara kedua nukleotida tersebut. Selanjutnya, sembilan basa pertama ditambahkan tanpa disertai pergeseran RNA polimerase di sepanjang molekul DNA. Pada akhir penambahan masing-masing basa ini akan terdapat peluang yang nyata terjadinya aborsi untai RNA yang baru terbentuk itu. Proses inisiasi abortif mempengaruhi laju transkripsi secara keseluruhan karena proses tersebut memegang peranan utama dalam menentukan waktu yang dibutuhkan oleh RNA polimerase untuk meninggalkan promoter dan memungkinkan RNA polimerase lainnya menginisiasi putaran transkripsi berikutnya. Waktu minimum untuk pengosongan promoter ini adalah 1 hingga 2 detik, suatu waktu yang relatif lama bila dibandingkan dengan waktu untuk tahap-tahap transkripsi lainnya.

57 Elongasi Jika inisiasi berhasil, RNA polimerase melepaskan faktor , dan bersama-sama dengan DNA dan RNA nasen (RNA yang baru disintesis), akan membentuk kompleks terner atau kompleks yang terdiri atas tiga komponen. Dengan adanya kompleks terner ini RNA polimerase dapat berjalan di sepanjang molekul DNA. Artinya, promoter akan ditinggalkannya untuk kemudian ditempati oleh holoenzim RNA polimerase berikutnya sehingga terjadi reinisiasi transkripsi. Bagian DNA yang mengalami pembukaan heliks, atau disebut dengan gelembung transkripsi (transcription bubble), akan terlihat bergeser di sepanjang molekul DNA sejalan dengan gerakan RNA polimerase. Panjang bagian DNA yang mengalami pembukaan heliks tersebut relatif konstan, yakni sekitar 17 pb (Gambar 5.3), sedangkan ujung 5 molekul RNA yang disintesis akan membentuk heliks hibrid dengan pita antisens DNA sepanjang lebih kurang 12 pb. Ukuran ini ternyata tidak mencapai satu putaran heliks. RNA polimerase E. coli bergerak dengan kecepatan rata-rata 40 nukleotida per detik. Akan tetapi, angka ini dapat bervariasi sesuai dengan urutan lokal DNA (urutan DNA yang telah dicapai oleh RNA polimerase). Tetap dipertahankannya bagian DNA yang mengalami pembukaan heliks menunjukkan bahwa RNA polimerase membuka heliks DNA di depan gelembung transkripsi dan menutup heliks DNA di belakangnya. Dengan demikian, heliks hibrid RNA-DNA harus berputar setiap kali terjadi penambahan nukleotida pada RNA nasen. Terminasi RNA polimerase tetap terikat pada DNA dan melangsungkan transkripsi hingga mencapai urutan terminator (sinyal stop), yang pada umumnya berupa struktur seperti tusuk konde (hairpin). Struktur yang terdiri atas batang dan kala (loop) ini terjadi karena RNA hasil transkripsi mengalami komplementasi diri. Biasanya, bagian batang sangat kaya dengan GC sehingga sangat stabil (GC mempunyai ikatan rangkap tiga). Di sebelah downstream (3) dari struktur tusuk kode sering kali terdapat urutan yang terdiri atas empat U atau lebh seperti pada Gambar 5.1. Nampaknya RNA polimerase akan segera berhenti begitu struktur tusuk konde RNA disintesis. Bagian ujung RNA yang mengandung banyak U tersebut mempunyai

58 ikatan yang lemah dengan basa-basa A pada DNA cetakan sehingga molekul RNA hasil sintesis akan dengan mudah terlepas dari kompleks transkripsi. Selanjutnya, pita DNA cetakan yang sudah tidak berikatan atau membentuk hibrid dengan RNA segera menempel kembali pada pita DNA komplemennya. RNA polimerase inti pun akhirnya terlepas dari DNA. Terminasi menggunakan protein rho Telah disinggung di muka bahwa selain karena adanya struktur tusuk konde, terminasi transkripsi dapat juga terjadi dengan bantuan suatu protein khusus yang dinamakan protein rho (). Rho merupakan protein heksamer yang akan menghidrolisis ATP dengan adanya RNA untai tunggal. Protein ini nampak terikat pada urutan sepanjang 72 basa pada RNA, yang diduga lebih disebabkan oleh pengenalan suatu struktur spesifik daripada karena adanya urutan konsensus. Rho bergerak di sepanjang RNA nasen menuju kompleks transkripsi. Pada kompleks transkripsi ini rho memungkinkan RNA polimerase untuk berhenti pada sinyal terminator tertentu. Sinyalsinyal terminator ini, seperti halnya sinyal terminator yang tidak bergantung kepada rho, lebih dikenali oleh RNA daripada oleh DNA cetakannya. Adakalanya terminator tersebut juga berupa struktur tusuk konde tetapi tidak dikuti oleh urutan poli U.

Gambar 5.3. Struktur skematik gelembung transkripsi selama elongasi

59

Transkripsi pada Eukariot Mekanisme transkripsi pada eukariot pada dasarnya menyerupai mekanisme pada prokariot. Namun, begitu banyaknya polipeptida yang berkaitan dengan mesin transkripsi pada eukariot menjadikan mekanisme tersebut jauh lebih kompleks daripada mekanisme pada prokariot. Ada tiga macam kompleks RNA polimerase, yang masing-masing diperlukan untuk transkripsi tipe-tipe gen eukariot yang berbeda. Perbedaan ketiga macam RNA polimerase tersebut dapat diketahui melalui pemurnian menggunakan teknik

kromatografi dan elusi pada konsentrasi garam yang berbeda. Masing-masing RNA polimerase mempunyai sensitivitas yang berbeda terhadap toksin jamur -amanitin, dan hal ini dapat digunakan untuk membedakan aktivitasnya satu sama lain. RNA polimerase I (RNA Pol I) mentranskripsi sebagian besar gen rRNA. Enzim ini terdapat di dalam nukleoli dan tidak sensitif terhadap -amanitin. RNA polimerase II (RNA Pol II) mentranskripsi semua gen penyandi protein dan beberapa gen RNA nuklear kecil (snRNA). Enzim ini terdapat di dalam nukleoplasma dan sangat sensitif terhadap -amanitin. RNA polimerase III (RNA Pol III) mentranskripsi gen-gen tRNA, 5S rRNA, U6 snRNA dan beberapa RNA kecil lainnya. Enzim ini terdapat di dalam nukleoplasma dan agak sensitif terhadap -amanitin. Di samping enzim-enzim nuklear tersebut, sel eukariot juga mempunyai RNA polimerase lainnya di dalam mitokondria dan kloroplas. Subunit-subunit RNA polimerase pada eukariot Ketiga RNA polimerase pada eukariot merupakan enzim berukuran besar yang terdiri atas 12 subunit atau lebih. Gen-gen yang menyandi dua subunit terbesar mempunyai homologi satu sama lain. Sementara itu, ketiga RNA polimerase eukariot membawa subunit-subunit yang mempunyai homologi dengan subunit-subunit RNA polimerase inti pada E. coli (2). Subunit terbesar RNA polimerase eukariot menyerupai subunit , sedangkan subunit terbesar kedua menyerupai subunit , yang merupakan pusat katalitik RNA polimerase E.coli. Homologi struktur ini ternyata

60 berkaitan dengan homologi fungsional karena subunit terbesar kedua pada RNA polimerase eukariot juga mengandung tapak aktif. Dua subunit yang sama antara RNA Pol I dan RNA Pol III, serta satu subunit lainnya yang khas pada RNA Pol II, memperlihatkan homologi dengan subunit RNA polimerase E. coli. Sekurang-kurangnya ada lima subunit lainnya yang lebih kecil, yang memperlihatkan kesamaan di antara ketiga RNA polimerase eukariot. Masing-masing RNA polimerase ini juga membawa empat hingga tujuh subunit tambahan yang hanya dijumpai pada salah satu di antara ketiganya. Aktivitas RNA polimerase eukariot Seperti halnya RNA polimerase bakteri, masing-masing RNA polimerase eukariot mengatalisis transkripsi dengan arah 5 ke 3 dan menyintesis RNA yang komplementer dengan urutan DNA cetakan. Reaksi tersebut memerlukan prekursor berupa ATP, GTP, CTP, UTP, dan tidak memerlukan primer untuk inisiasi transkripsi. Namun tidak seperti pada bakteri, RNA polimerase eukariot yang dimurnikan memerlukan adanya protein inisiasi tambahan sebelum enzim ini dapat berikatan dengan promoter dan melakukan inisiasi transkripsi. Gen-gen yang ditranskripsi oleh RNA Pol I RNA Pol I bertanggung jawab dalam sintesis rRNA secara terus-menerus selama interfase. Sel manusia mengandung lima rumpun (cluster) gen penyandi rRNA yang terdiri atas sekitar 40 salinan dan terletak pada kromosom-kromosom yang berbeda. Masing-masing gen rRNA menghasilkan transkrip 45S rRNA yang panjangnya lebih kurang 13.000 nukleotida (nt). Transkrip ini akan terbagi menjadi sebuah 28S (5.000 nt), 18S (2.000 nt), dan 5,8S (160 nt) rRNA. Transkripsi salinan gen-gen rRNA secara berkesinambungan diperlukan untuk mencukupi produksi rRNA yang selanjutnya akan dikemas ke dalam ribosom.

61

Masing-masing rumpun gen rRNA dikenal sebagai daerah pengatur nukleolar (nucleolar organizer region) karena nukleolus mengandung kala (loop) DNA berukuran besar yang sesuai dengan rumpun-rumpun gen tersebut. Setelah sebuah sel dihasilkan dari mitosis, sintesis rRNA akan dimulai kembali dan nukleoli yang kecil akan muncul pada lokasi kromosomal yang ditempati oleh gen-gen rRNA. Selama sintesis rRNA berlangsung aktif, transkrip pra-rRNA dikemas di sepanjang gen-gen rRNA dan jika divisualisasikan menggunakan mikroskop elektron akan nampak sebagai struktur pohon natal. Di dalam struktur ini transkrip-transkrip RNA dikemas dengan rapat di sepanjang molekul DNA dan masing-masing muncul tegak lurus dari DNA. Transkrip yang pendek dapat dilihat pada bagian awal gen tersebut. Transkrip akan makin bertambah panjang pada bagian-bagian berikutnya untuk kemudian menghilang ketika mencapai ujung unit transkripsi. Promoter-promoter gen pra-rRNA pada mamalia mempunyai suatu daerah kontrol transkripsi bipartit, yang terdiri atas elemen inti atau core element dan elemen kontrol hulu atau upstream control element (UCE), yang secara skema dapat dilihat pada Gambar 5.5. Elemen inti meliputi tapak awal transkripsi dan terbentang dari posisi -31 hingga +6, yang merupakan urutan esensial untuk transkripsi. Sementara itu, UCE mempunyai panjang sekitar 50 hingga 80 pb yang dimulai dari posisi -100. UCE bertanggung jawab untuk peningkatan transkripsi sekitar 10 hingga 100 kali bila dibandingkan dengan laju transkripsi oleh elemen inti saja.

UCE

elemen inti gen pra-rRNA -100 +1

Gambar 5.5. Struktur promoter gen pra-rRNA pada mamalia UCE akan berikatan dengan suatu protein spesifik pengikat DNA, yang disebut dengan faktor pengikatan hulu atau upstream binding factor (UBF). Selain dengan UCE, UBF juga berikatan dengan suatu urutan di sebelah hulu elemen inti. Kedua urutan yang berikatan dengan UBF tersebut tidak mempunyai kesamaan yang nyata. Sebuah

62 molekul UBF diduga mengikat UCE, sedangkan sebuah molekul UBF lainnya mengikat urutan yang kedua. Selanjutnya, kedua molekul UBF akan saling berikatan melalui interaksi protein-protein sehingga terbentuk struktur kala (loop) pada segmen DNA di antara kedua tempat pengikatan tersebut (Gambar 5.6).

Gambar 5.6. Model skematik inisiasi transkripsi rRNA

63 Selain UBF, terdapat faktor lain yang esensial untuk transkripsi RNA Pol I. Faktor ini adalah faktor selektivitas atau selectivity factor (SL1), yang akan berikatan dengan kompleks UBF-DNA dan kemudian menstabilkannya. SL1 berinteraksi dengan bagian hilir elemen inti yang bebas. Pengikatan kompleks UBF-DNA oleh SL1 memungkinkan RNA Pol I untuk memasuki kompleks tersebut dan melakukan inisiasi transkripsi. Saat ini SL1 telah diketahui mengandung beberapa subunit, antara lain berupa suatu protein yang dinamakan protein pengikat TATA atau TATA-binding protein (TBP). TBP diperlukan untuk inisiasi ketiga RNA polimerase eukariot, dan nampaknya merupakan faktor penting dalam transkripsi eukariot. Ketiga subunit SL1 lainnya dikenal sebagai faktor-faktor yang berasosiasi dengan TBP atau TBP-associated factors (TAFs), dan di antara subunit tersebut yang diperlukan untuk transkripsi RNA Pol I dinamakan TAF1s. Pada Acanthamoeba, suatu eukariot sederhana, terdapat elemen kontrol tunggal di daerah promoter gen rRNA yang terletak sekitar 12 hingga 72 pb ke arah hulu dari titik awal transkripsi. Tempat ini akan diikat oleh faktor TIF-1, yang homolog dengan SL1. Dengan pengikatan ini RNA Pol I akan dapat melakukan inisiasi transkripsi. Pada waktu RNA Pol I bergerak di sepanjang molekul DNA, faktor TIF-1 tetap terikat pada tempat semula sehingga memungkinkan terjadinya inisiasi transkripsi oleh RNA Pol I yang lain, dan beberapa putaran transkripsi dapat berlangsung. Oleh karena itu, mekanisme ini dapat dilihat sebagai sistem kontrol transkripsi yang sangat sederhana. Di sisi lain, untuk vertebrata nampaknya terdapat suatu UBF tambahan yang bertanggung jawab atas pengikatan promoter oleh SL1 secara spesifik. Gen-gen yang ditranskripsi oleh RNA Pol III RNA Pol III terdapat di dalam nukleoplasma dan sekurang-kurangnya terdiri atas 16 subunit yang berbeda. Enzim ini menyintesis prekursor tRNA, 5S rRNA, serta berbagai snRNA dan RNA sitosolik. Transkrip pertama yang dihasilkan dari gen-gen tRNA merupakan molekul prekursor yang akan diproses menjadi RNA matang. Daerah kontrol transkripsi gen-gen tRNA terletak di sebelah hilir tapak inisiasi transkripsi. Ada dua urutan yang sangat konservatif di dalam gen tRNA, yaitu kotak A (5- TGGCNNAGTGG - 3) dan kotak B (5- GGTTCGANNCC - 3). Kedua urutan ini juga menyandi urutan penting di dalam

64 tRNA sendiri, yang disebut dengan kala D (D-loop) dan kala TC. Hal ini berarti bahwa urutan yang sangat konservatif di dalam tRNA juga merupakan urutan promoter yang sangat konservatif. Dua faktor pengikatan DNA yang kompleks telah diketahui memegang peranan penting dalam inisiasi transkripsi tRNA oleh RNA Pol III (Gambar 5.7). TFIIIC mengikat baik kotak A maupun kotak B di dalam promoter tRNA. Sementara itu, TFIIIB mengikat daerah sejauh 50 pb ke arah hulu dari kotak A. TFIIIB terdiri atas tiga subunit, yang salah satu di antaranya adalah TBP, suatu faktor inisiasi umum yang diperlukan oleh ketiga RNA polimerase. Subunit yang kedua dan ketiga masing-masing dinamakan BRF dan B. Faktor TFIIIB tidak memiliki spesifisitas urutan sehingga tempat pengikatannya bergantung kepada posisi pengikatan TFIIIC pada DNA. TFIIIB memungkinkan RNA Pol III untuk melakukan inisiasi transkripsi. Begitu TFIIIB terikat, TFIIIC dapat dikeluarkan tanpa mempengaruhi transkripsi. Oleh karena itu, TFIIIC dapat dilihat sebagai faktor perakitan untuk penempatan faktor inisiasi TFIIIB.

Gambar 5.7. Inisiasi transkripsi pada promoter tRNA eukariot

65 RNA Pol III mentranskripsi gen 5S rRNA, yang merupakan satu-satunya subunit rRNA yang ditranskripsi secara terpisah. Seperti halnya gen-gen rRNA lainnya yang ditranskripsi oleh RNA Pol I, gen-gen 5S rRNA tersusun secara tandem (berurutan) di dalam suatu rumpun gen. Pada manusia terdapat suatu rumpun yang berisi sekitar 2.000 gen. Promoter gen 5S rRNA mengandung daerah kontrol internal yang dinamakan kotak C. Letaknya sekitar 81 hingga 99 pb ke arah hilir dari tapak inisiasi transkripsi. Selain itu, terdapat juga kotak A yang berada pada posisi sekitar +50 hingga +65. Kotak C pada promoter 5S rRNA berperan sebagai tempat pengikatan protein spesifik, yaitu TFIIIA (Gambar 5.8). TFIIIA bekerja sebagai faktor perakitan yang memungkinkan TFIIIC berinteraksi dengan promoter 5S rRNA. Sementara itu, kotak A akan menstabilkan pengikatan TFIIIC sehingga faktor ini berikatan dengan DNA pada posisi yang relatif sama dengan posisi pengikatan pada promoter tRNA. Begitu TFIIIC terikat pada DNA, TFIIIB dapat berinteraksi dengan kompleks pengikatan tersebut dan memungkinkan RNA Pol III untuk melakukan inisiasi transkripsi.

Gambar 5.8. Inisiasi transkripsi pada promoter 5S rRNA eukariot

66 Banyak gen yang ditranskripsi oleh RNA Pol III bergantung kepada urutan hulu untuk regulasi transkripsinya. Beberapa promoter seperti U6 snRNA dan gen-gen RNA kecil dari virus Epstein-Barr hanya menggunakan urutan regulator yang letaknya di sebelah hulu dari tapak inisiasi transkripsinya. Daerah penyandi U6 snRNA mempunyai sebuah kotak A yang khas. Akan tetapi, urutan ini tidak diperlukan untuk transkripsi. Daerah hulu pada U6 snRNA mengandung urutan khas promoter RNA Pol II, yang meliputi kotak TATA pada posisi -30 hingga -23. Promoter ini juga memiliki beberapa urutan di daerah hulu sebagai tempat pengikatan faktor transkripsi lainnya seperti pada kebanyakan gen U RNA yang ditranskripsi oleh RNA Pol II. Hal ini mendukung pendapat bahwa faktor-faktor transkripsi umum dapat mengatur gen-gen yang ditranskripsi baik oleh RNA Pol II maupun oleh RNA Pol III. Terminasi transkripsi oleh RNA Pol III nampaknya hanya memerlukan pengenalan polimerase berupa urutan nukleotida sederhana. Urutan ini terdiri atas sekelompok residu dA yang efisiensi terminasinya dipengaruhi oleh urutan di sekitarnya. Urutan 5GCAAAAGC - 3 merupakan sinyal terminasi yang efisien untuk gen 5S rRNA pada Xenopus borealis. Gen-gen yang ditranskripsi oleh RNA Pol II RNA Pol II terdapat di dalam nukleoplasma dan bertanggung jawab untuk transkripsi semua gen penyandi protein dan beberapa gen snRNA. Pra-mRNA (transkrip primer) yang baru disintesis harus mengalami prosesing melalui pembentukan pelindung (cap) pada ujung 5 RNA dan penambahan poli A pada ujung 3 di samping pembuangan intron dan penyatuan (splicing) ekson. Banyak promoter eukariot mengandung suatu urutan konservatif yang dinamakan kotak TATA. Letaknya sekitar 25 hingga 35 pb dari tapak inisiasi transkripsi, berisi urutan konsensus sepanjang 7 pb, yaitu 5- TATA(A/T)A(A/T) - 3. Meskipun demikian, saat ini diketahui bahwa protein yang mengikat kotak TATA, yakni TBP, ternyata berikatan dengan urutan sepanjang 8 pb. Tambahan sepasang basa ini letaknya di sebelah hilir dari kotak TATA dan identitasnya tidaklah penting. Kotak TATA bekerja dengan cara yang sama dengan urutan -10 pada promoter E. coli dalam menempatkan RNA Pol II agar diperoleh inisiasi transkripsi yang benar. Meskipun urutan di antara kotak TATA

67 dan tapak inisiasi transkripsi bukan merupakan urutan yang penting, jarak antara kedua tempat tersebut ternyata penting. Hampir 50% tapak inisiasi transkripsi berupa residu A. Beberapa gen eukariot tidak mempunyai kotak TATA tetapi memiliki suatu elemen insiator, yang terletak di sekitar tapak inisiasi transkripsi. Namun, beberapa promoter tidak memiliki baik kotak TATA maupun elemen inisiator. Gen-gen semacam ini biasanya ditranskripsi dengan lambat, dan inisiasi transkripsi dapat terjadi di tempattempat yang berbeda sepanjang 200 pb. Gen-gen ini sering kali mengandung daerah yang kaya GC sepanjang 20 hingga 50 pb pada posisi 100 hingga 200 pb arah hulu dari tapak inisiasi transkripsi. Aktivitas promoter basal yang rendah akan sangat ditingkatkan oleh adanya elemen-elemen lain di sebelah hulu promoter. Elemen-elemen ini dijumpai pada kebanyakan gen dengan tingkat ekspresi yang sangat bervariasi di antara jaringan yang berbeda. Dua contoh yang umum adalah kotak SP1, yang terletak di sebelah hulu dari banyak gen baik yang mempunyai maupun yang tidak mempunyai kotak TATA, dan kotak CCAAT. Promoter dapat memiliki salah satu, keduanya, atau bahkan banyak salinan urutan/kotak tersebut. Urutan yang pada umumnya terletak 100 hingga 200 pb arah hulu dari promoter ini dinamakan elemen regulator hulu atau upstream regulatory elements (UREs). UREs memegang peranan penting dalam menjamin berlangsungnya transkripsi yang efisien. Transkripsi kebanyakan promoter eukariot dapat dipacu oleh elemen kontrol yang letaknya beribu-ribu pasang basa dari tapak inisiasi transkripsi. Hal ini pertama kali ditemukan pada genom virus SV40. Suatu urutan sepanjang kira-kira 100 pb pada DNA virus ini dapat dengan nyata meningkatkan transkripsi dari promoter basal. Urutan pemacu (enhancer) ini mempunyai panjang 100 hingga 200 pb dan mengandung banyak elemen yang menghasilkan aktivitas totalnya. Pemacu dapat dijumpai pada sembarang sel atau hanya pada tipe sel tertentu. Dengan makin banyaknya pemacu dan promoter yang ditemukan, terlihat bahwa motif kedua elemen tersebut ternyata tumpang tindih, baik secara fisik maupun fungsional. Dengan demikian, terdapat spektrum elemen regulator yang sinambung, mulai dari elemen-elemen pemacu yang sangat panjang rentangnya hingga elemenelemen promoter yang pendek rentangnya.

68 Serangkaian faktor transkripsi basal yang kompleks telah diketahui berikatan dengan promoter RNA Pol II dan bersama-sama melakukan inisiasi transkripsi. Urutan pembentukan kompleks inisiasi transkripsi RNA Pol II dapat dilihat pada Gambar 5.9.

Gambar 5.9. Diagram pembentukan kompleks inisiasi transkripsi RNA Pol II

69 Pada promoter yang mengandung kotak TATA, TFIID merupakan faktor pertama yang akan mengikat promoter tersebut. Faktor ini terdiri atas banyak molekul protein, tetapi hanya salah satu di antaranya, yakni protein pengikat TATA atau TATA-binding protein (TBP), yang akan berikatan dengan kotak TATA. Seperti pada RNA Pol I, pada TFIID juga terdapat faktor-faktor yang berasosiasi dengan TBP atau TBP-associated factors (TAFIIS). Pada sel-sel mamalia TBP nampaknya akan berikatan dengan kotak TATA dan kemudian bergabung dengan sekurang-kurangnya delapan TAFIIS untuk membentuk TFIID. TBP dijumpai pada ketiga kompleks transkripsi eukariot (dalam SL1, TFIIIB, dan TFIID), dan dapat dipastikan memegang peranan penting dalam inisiasi transkripsi. TBP merupakan protein monomerik. Semua TBP eukariot mempunyai domain yang terdiri atas 180 residu asam amino pada ujung C yang sangat konservatif, dan dapat berfungsi sebagai molekul protein seutuhnya pada transkripsi in vivo. Oleh karena itu, fungsi domain pada ujung N yang kurang konservatif belum sepenuhnya diketahui. TBP mempunyai struktur fisik seperti pelana, yang akan mengikat lekukan kecil molekul DNA pada kotak TATA dan menghasilkan sudut 45 di antara kedua pasang basa pertama dan kedua pasang basa terakhir dari 8pb elemen TATA. Mutasi TBP pada domain pengikatannya dengan kotak TATA tetap mempertahankan fungsinya sebagai faktor transkripsi untuk RNA Pol I dan RNA Pol III, tetapi menghalangi inisiasi transkripsi oleh RNA Pol II. Hal ini menunjukkan bahwa RNA Pol I dan RNA Pol III menggunakan TBP untuk inisiasi transkripsi, tetapi peranan TBP itu sendiri yang sesungguhnya pada kompleks transkripsi tersebut masih belum jelas. Faktor transkripsi berikutnya, TFIIA, akan mengikat TFIID dan meningkatkan stabilitas pengikatan TFIID pada kotak TATA. TFIIA sekurang-kurangnya tersusun dari tiga subunit. Pada studi transkripsi in vitro, yang dilakukan dengan memurnikan TFIID, TFIIA ternyata menjadi tidak dibutuhkan lagi. Namun, pada sel-sel yang utuh TFIIA nampaknya akan menghilangkan pengaruh faktor-faktor penghambat yang berasosiasi dengan TFIID. Jadi, pengikatan TFIIA pada TFIID rupanya akan mencegah masuknya faktor-faktor penghambat tersebut sehingga proses transkripsi dapat berlanjut. Begitu TFIID terikat dengan stabil pada DNA, faktor transkripsi lainnya, yakni TFIIB, akan berikatan dengan TFIID. Faktor ini akan berperan sebagai perantara yang

70 memungkinkan masuknya RNA Pol II ke dalam kompleks inisiasi transkripsi bersama dengan masuknya faktor berikutnya, TFIIF. Setelah RNA Pol II terikat pada kompleks inisiasi transkripsi, tiga faktor lainnya, masing-masing TFIIE, TFIIH, dan TFIIJ, segera berasosiasi dengan kompleks tersebut. Ketiga faktor ini diperlukan untuk transkripsi in vitro dan penggabungannya dengan kompleks tersebut terjadi melalui urutan tertentu. Di antara ketiga faktor tersebut, TFIIH merupakan molekul protein terbesar yang sekurang-kurangnya terdiri atas lima subunit. TFIIH mempunyai aktivitas kinase dan helikase. Aktivasi oleh TFIIH akan menyebabkan fosforilasi domain ujung C atau carboxyl-terminal domain (CTD) pada RNA Pol II sehingga terbentuk kompleks RNA Pol II yang siap untuk diproses dan meninggalkan daerah promoter. Dengan demikian, TFIIH nampaknya mempunyai fungsi yang sangat penting dalam kontrol elongasi transkripsi. Komponen-komponen TFIIH juga penting dalam mekanisme perbaikan DNA dan dalam fosforilasi kompleks kinase yang mengatur daur sel. Pada kebanyakan promoter RNA Pol II yang tidak memiliki kotak TATA terdapat suatu elemen inisiator yang letaknya tumpang tindih dengan tapak inisiasi transkripsi. Rupanya pada promoter semacam ini TBP dimasukkan ke promoter oleh suatu protein pengikat DNA yang terikat pada elemen inisiator. TBP kemudian memasukkan faktorfaktor transkripsi lainnya beserta RNA Pol II dengan cara seperti pada promoter yang mempunyai kotak TATA. Struktur faktor transkripsi pada eukariot Faktor-faktor transkripsi pada eukariot mempunyai dua aktivitas yang berbeda, yaitu pengikatan spesifik pada DNA dan aktivasi transkripsi. Masing-masing aktivitas ini dilaksanakan oleh domain-domain protein yang terpisah, yaitu domain pengikatan DNA dan domain aktivasi. Selain itu, banyak faktor transkripsi berupa homodimer atau heterodimer, yang bersama-sama disatukan melalui domain dimerisasi. Beberapa faktor transkripsi mempunyai domain pengikatan ligan yang memungkinkan aktivitas faktor regulasi transkripsi melalui pengikatan suatu molekul tambahan yang berukuran kecil. Reseptor hormon steroid merupakan salah satu contoh protein yang mempunyai keempat macam domain tersebut.

71 Dari percobaan-percobaan yang dikenal sebagai percobaan pertukaran domain atau domain swap experiments, diketahui bahwa domain pengikatan DNA dan domain aktivasi faktor transkripsi Gal4 dan Gcn4 pada khamir terletak pada bagian protein yang berbeda. Domain aktivasi akan bergabung dengan represor LexA pada bakteri, menghasilkan protein hibrid yang mengaktivasi transkripsi dari promoter dengan urutan operator lexA. Hal ini menunjukkan bahwa fungsi aktivasi transkripsi pada protein khamir terpisah dari aktivitas pengikatan DNAnya. Ada tiga macam domain pengikatan DNA, yaitu domain helix turn helix, domain zinc finger, dan domain basic. Domain helix turn helix mempunyai sebuah heliks pengenalan yang akan berinteraksi dengan DNA (Gambar 5.10.a). Domain zinc finger mempunyai dua buah kala. Pada domain zinc finger C2H2 masing-masing kala berupa enam asam amino yang berujung pada dua residu sistein dan dua residu histidin. Keempat residu asam amino ini berkoordinat pada suatu ion zinkum (Gambar 5.10.b). Domain basic biasanya berasosiasi dengan salah satu dari dua domain dimerisasi, yaitu leucine zipper atau helix-loop-helix (HLH), sehingga masing-masing dikenal sebagai protein basic leucine zipper (bZIP) dan basic HLH. Dimerisasi protein-protein ini akan membawa kedua domain basic, yang kemudian dapat berinteraksi dengan DNA. Domain dimerisasi, seperti telah disinggung di atas, dapat berupa protein leucine zipper atau HLH. Leucine zipper mengandung sebuah residu leusin hidrofobik pada setiap posisi ketujuh yang akan berikatan dengan ujung C domain basic. Leusin-leusin pada domain leucine zipper tersusun dalam struktur -heliks (Gambar 5.11). Domain HLH mempunyai struktur yang menyerupai domain leucine zipper, kecuali dalam hal adanya suatu kala rantai polipeptida yang memisahkan kedua -heliks protein monomeriknya. Seperti halnya leucine zipper, motif HLH sering kali dijumpai berdekatan dengan domain basic yang memerlukan dimerisasi dalam pengikatan DNA. Domain aktivasi transkripsi dapat berupa domain aktivasi asam, domain kaya glutamin, atau domain kaya prolin. Domain aktivasi asam mengandung banyak sekali residu asam amino yang bersifat asam sehingga sering disebut juga dengan gumpalan asam atau gumpalan negatif. Masih belum diketahui dengan pasti gambaran struktur lainya yang diperlukan oleh domain ini agar dapat berfungsi sebagai domain aktivasi transkripsi yang efisien. Domain kaya glutamin pertama kali ditemukan pada faktor

72 transkripsi SP1. Pada domain ini banyak sekali ditemukan residu glutamin. Begitu juga, pada domain kaya prolin banyak sekali ditemukan residu prolin. Regulasi transkripsi dapat terjadi melalui interaksi tidak langsung dengan fungsi suatu faktor transkripsi, antara lain dengan blokade tempat pengikatan faktor transkripsi pada DNA (seperti pada kebanyakan represor prokariot), pembentukan kompleks pengikatan non-DNA (misalnya protein inhibitor Id yang tidak mempunyai domain pengikatan DNA akan menggangu interaksi protein HLH dengan DNA), dan blokade domain aktivasi faktor transkripsi meskipun pengikatannya pada DNA tetap berlangsung (misalnya Gal80 akan menutupi domain aktivasi faktor transkrispi Gal4 pada khamir). Di samping itu, penghambatan transkripsi dapat juga terjadi secara langsung karena adanya domain tertentu pada represor. Sebagai contoh, suatu domain reseptor hormon tiroid pada mamalia akan menekan transkripsi apabila tidak ada hormon tiroid dan akan mengaktifkannya apabila terikat pada hormon tersebut. Begitu pula, produk gen tumor Wilms berupa protein WT1 yang akan menekan tumor, mempunyai domain represor spesifik yang banyak mengandung prolin.

Gambar 5.10. Domain pengikatan DNA a) helix turn helix b) zinc finger C2H2

73

Gambar 5.11. Protein bZIP (dimer antara domain leucine zipper dan domain basic)


Top Related